
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2007 Jegadish. D 1

Introduction to Network
Programming using C/C++

Slides mostly prepared by Joerg Ott (TKK) and Olaf Bergmann (Uni Bremen TZI)

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

2

Would be giving brief introduction on...
 Parsing Command line
 Socket Related Address Structures
 Host Name / IP Address resolution
 Socket Creation
 Making TCP and UDP Connection
 Sending and Receiving Data
 Mulitcasting
 Multiplexing I/O
 Handling Timeouts
 Packet Pacing
 Random Number Generators
 Suggestions & Hints for the Assignment

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

3

Parse Command Line
int getopt(cnt,argv,optstring)

int oc;
while((oc=getopt(argc,argv,"a:bi:sl:D:t:")) != -1)
{
 switch(oc) {
 case 'a' : addAddress(optarg); break;
 case 'b' : usage(); exit(0);
 case 'i' : addInterface(optarg); break;
 case 's' : summary = true; break;
 case 'l' : dumplen = GetInt(optarg); break;
 case 't' : controlAddress(optarg); break;
 case 'D' : duration = GetInt(optarg); break;
 default :
 opterr(oc);
 }
}

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

4

Address Structures
 struct sockaddr_in {

 uint8_t sin_len; /* length of structure (16) */

 sa_family_t sin_family; /* AF_INET */

 in_port_t sin_port; /* 16-bit TCP or UDP port number */

 struct in_addr sin_addr; /* 32-bit IPv4 address */

 char sin_zero[8];

 };

 struct in_addr {

 in_addr_t s_addr; /* 32-bit IPv4 address */

 };

 struct sockaddr {

 uint8_t sa_len;

 sa_family_t sa_family; /* address family: AF_xxx value */

 char sa_data[14]; /* protocol-specific address */

 };

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

5

Address Structures Contd...
 bind(), recvfrom() and sendto() function uses sockaddr structure

 A normal practice is to fill the stuct sockaddr_in and cast the pointer to
struct sockaddr while socket operartions

struct hostent {
char *h_name; // Official name of the host
char **h_aliases; // Alternative names
int h_addrtype; // Address Type (AF_INET)
int h_length; // Length of each address
char **h_addr_list; // Address List
char *h_addr; // h_addr_list[0]
};

gethostbyname() returns the resolved address in struct hostent
format. A hostname may have multiple interfaces, so hostent
structure is designed to hold the multiple addresses of the
resolved hostname

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

6

Address Conversion functions (1)

Ipv4 Conversion:
in_addr_t inet_addr (char *buffer)
in_addr_t inet_aton (char *buffer)
char * inet_ntoa (in_addr_t ipaddr)

For Ipv6 Conversion:
 aaaa:bbbb:cccc:dddd:eeee:ffff:gggg:hhhh (IPv6)

int inet_pton(int af, const char *src, void *dst)
dst: in_addr or in6_addr

const char *inet_ntop
(int af, const void *src, char *dst, size_t)

src: in_addr bzw. in6_addr
char dst[INET_ADDRSTRLEN] bzw. char
dst[INET6_ADDRSTRLEN]

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

7

Conversion Functions (2)
Network vs. Host Byte Order:

All data in the network is sent as “Big Endian”
Conversion into little Endian representation required for Intel
Example: unsigned short var = 255; (0x00FF)
Little Endian: FF 00 (Host Byte Order)
Big Endian: 00 FF (Network Byte Order)

netshort = htons (hostshort)
netlong = htonl (hostlong)
hostshort = ntohs (netshort)
hostlong = ntohl (netlong)

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

8

Socket Types

 Socket Descriptor: similar to file i/o or stdin/stdout
 Each socket descriptor represents a connection or a particular IP

and Port address

 Supports different types of communications, u.a.
SOCK_STREAM: TCP
SOCK_DGRAM: UDP
SOCK_RAW: Raw IP
SOCK_PACKET: Link-Layer-Frames

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

9

Socket Creation

int socket(domain,type,proto)
int bind(sd,addr,addrlen)

int createSocket(const sockaddr_in &addr)
{
 int sd=socket(AF_INET,SOCK_DGRAM,0);
 if (sd<0) return -1;

 int yes = 1;
 setsockopt(sd, SOL_SOCKET, SO_REUSEADDR, (char*)&yes, sizeof yes);
 fcntl(sd,F_SETFL,O_NONBLOCK);
 if (bind(sd,(struct sockaddr *)(&addr),sizeof(struct sockaddr))<0) {
 std::cerr << strerror(errno) << std::endl;
 return -1;
 }
 return sd;
}

Socke t domain
 AF_INET, PF_INET6
Socke t type
 SOCK_STREAM, SOCK_DGRAM, …
Protocol
 0 (a ny), 6 (tcp), 17 (udp)

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

10

Creating UDP and TCP connections
 UDP:

 Create a socket with SOCK_DGRAM
 Bind the socket to a address (particular IP and port
number)

 Ex- bind (int sd, struct sockaddr *, socklen_t len);
 Now the socket can be used for send and receive operations

 TCP:

 Create a socket with SOCK_STREAM
 Bind the socket to a address (particular IP and port
number

 If program need to accept any connection request, then
listen on the socket

 Listen() - allows to specify the number of backlogs of
connection requests that can be buffered

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

11

Connections (TCP) contd..
➔ Connecting to a listening end

connect (int sd, struct sockaddr *target, socklen_t
len);

Function call only complete when the connection is established, if a timeout
occurs without response (may be several minutes), or when ICMP error
messages indicate failure (e.g., destination unreachable)

➔ Accepting an incoming connection (cannot reject anyway:))

new_sd = accept (int sd, struct sockaddr *peer,
socklen_t *peerlen);

Creates a new socket descriptor for the new connection
The original one (sd) continues to be used for accepting further connections

➔ Closing a connection

shutdown (int sd, int mode)

 0: no further sending, 1: no further reception, 2: neither sending nor receiving
close(sd) to clean up – beware of data loss!

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

12

Sending Data
 Connection-oriented (TCP)

 write (int sd, char *buffer, size_t length);
 writev (int sd, struct iovec *vector, int count);

 List of buffers, each with pointer to memory and length

 send (int sd, char *buffer, size_t length, int flags)

 Connectionless (UDP)
 sendto (int sd, char *buffer, size_t length, int flags,

 struct sockaddr *target, socklen_t addrlen)
 sendmsg (int sd, struct msghdr *msg, int flags)

 Target address
 Pointer to the memory containing the data
 Control information

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

13

 Connection-oriented (TCP)
 read (int sd, char *buffer, size_t length);

 readv (int sd, struct iovec *vector, int count);
 List of buffers, each with pointer to memory and length

 recv (int sd, char *buffer, size_t length, int flags)

 Connectionless (UDP)
 recvfrom (int sd, char *buffer, size_t length, int flags,

 struct sockaddr *target, socklen_t addrlen)
 recvmsg (int sd, struct msghdr *msg, int flags)

 Sender address
 Pointer to the data
 Control information

Receiving Data

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

14

Further Functions
 getpeername (int sd, struct sockaddr *peer, size_t *len)

Obtain the address of the communicating peer
 getsockname (int sd, struct sockaddr *local, size_t *len)

Obtain the address of the local socket (e.g., if dynamically assigned)

 Modify socket parameters
 getsockopt (int sd, int level, int option_id, char *value, size_t length)
 setsockopt (int sd, int level, int option_id, char *value, size_t length)

 Examples:
 Buffer size, TTL, Type-of-Service, TCP-Keepalive, SO_LINGER, ...

 fcntl (int sd, int cmd [, long arg] [, ...]);

Non-blocking I/O

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

15

Multicast reception
➔ Multicast JOIN

setsockopt (sd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
struct ip_mreq *mreq, sizeof (ip_mreq));

struct ip_mreq {
struct in_addr imr_multiaddr; /* IP multicast address of

group */
struct in_addr imr_interface; /* local IP address of

interface */
};

➔ Multicast-LEAVE
setsockopt (sd, IPPROTO_IP, IP_DROP_MEMBERSHIP, struct
ip_mreq *mreq, sizeof (ip_mreq));

➔ Optional: Allow repeated use of an address (needed for multicasting)
char one = 1;
setsockopt (sd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof
(char))

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

16

I/O Multiplexing (select)

 socket descriptors specifed in the file descriptor set (FDSET)
 Determine earliest timeout
 Call select()
 Error?

 Fatal - Terminate
 Repairable (e.g. interrupted system call) - repeat

 Timeout?
 Timer handling; use struct timeval { … } to specify (sec, usec) pair
 NULL pointer == blocking (no timeout), (0, 0) == polling

 Success
 Determine active file descriptors and handle events

int select(maxfdset,read,write,ext,timer)

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

17

fd_set Makros used by select

fd_set base_set working_set;
FD_ZERO (&working_set);
FD_SET (fd, &base_set);
 .
 .
 .
if (FD_ISSET(fd, &working_set))
 . . .

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

18

Select() example
•

rc_select = select (max_sd + 1, &working_set, NULL, NULL, &select_timeout);
/* Check to see if the select call failed. */
if (rc_select < 0)
{
 perror("select() failed");
 check errorno and act accordingly
}
/* Check to see if the 'n' minute time out expired. */
if (rc_select == 0)
{
 fprintf(stderr, "\n select() timed out. \n");
 return -1;
}
.....

/* Check to see if there is a incoming connection request */
if (FD_ISSET(sd, &working_set))
{

.......

.......

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

19

I/O Multiplexing (poll)

 struct pollfd {
 int fd; // file descriptor

 int events; // events to watch for
 int revents; // occurred events
};

 Poll events:
POLLIN input pending
POLLOUT socket writable (only needed with non-blocking i/o)
POLLHUP, POLLERR

 Timeout is specified in milliseconds
 -1 == no timeout, 0 == return immediately (perform real polling)

 Handling otherwise identical to select()

int poll(pollfd,n_fd,timeout)

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

20

Timeouts
 Protocols use many timeouts

 Some Examples of timeouts are, (i)timeouts used for packet pacing,
(ii)retransmission timeouts

 An occurrence of an event may change(set/reset/cancel) the timeout variables
 Must be implemented efficiently

 select () and poll () allow you to specify a timeout value
 In poll(), timeout is specified in milliseconds
 and select () provides microseconds resolution (uses struct timeval)

 Keep an ordered list of all your timeouts
 Store absolute time for the timeout
 Event this timeout is about (a timeout event may trigger a change in STATE of the

protocol)
 Before calling select/poll

 Determine current time (gettimeofday ())
 Determine first timeout in list and calculate delta

(if timeout has already passed initiate handling right away)
 Parameterize poll/select() with the delta

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

21

Timeouts ...contd

Example:
Timeout 200ms

struct timeval tv, delta, now;

/* some event occurs -> calculate absolute time in tv */
gettimeofday (&tv, NULL);
tv.tv_usec += 200*1000;
if (tv.tv_usec >= 1000000) {

tv.tv_usec -= 1000000;
tv.tv_sec++;

}

/* ... many other activities -> back in mainloop */
gettimeofday (&now, NULL);
delta.tv_usec = tv.tv_usec – now.tv_usec;
delta.tv_sec = tv.tv_sec - now.tv_sec;
if (delta.tv_usec < 0) {
 delta.tv_usec += 1000000;
 delta.tv_sec--;
}
if (delta.tv_sec < 0) {
 /* timeout has also passed -> handle now */
}
switch (n = select (..., ..., ..., ..., &delta) {
 ...
}

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

22

Packet pacing

 To achieve a target bit rate, need to send packets in regular
intervals

 Calculate your target packet interval from the packet size…
Your own header + 8 bytes UDP + 20 bytes IPv4 + 1024 bytes payload

 …and the target bit rate on the command line

 Use a recurring timer for transmission
 Important: calculate your transmission interval based upon a single initial

absolute time value
 E.g. calculate your initial transmission time based upon getttimeofday ()
 Always add your constant interval to the previous timeout value without calling

gettimeofday () again for this purpose

Do not do regular calculations
 This will lead to underutilization as it does not account for local processing time

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

23

Random number generators
 int rand() and void srand(unsigned int seed) ISO C

srand sets the seed value of the generating function
Call to rand() generates a random number between 0 and RAND_MAX

(using GNU C Library)
RAND_MAX: 2147483647(largest signed integer representable using 32 bits)

 long int random() and void srandom(unsigned int seed) BSD
Their working is very similar to the ISO C functions

 double drand48() and void srand48(long int seed) SVID
Uses a state of 48 bits of data, provides better randomness than ISO and

BSD functions
Call to drand48() generates a value in the range of 0.0 to 1.0 (exclusive)
srand48() can initialize only the 32 bits of the state data, but the function

unsigned short * seed48(unsigned short seed[3]) can be used initialize all the
48 bits of state data.

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

24

Beware of threads

 If your coding language allows you to avoid them
Will save you hassle (and overhead) in synchronizing access to internal

data structures

 Instead
Maintain your own state explicitly in some data structure
Remember what to do next

 E.g., send data at a certain time, wait for a response, etc.

 “Register” all socket descriptors for your mainloop
 “Register” all your timeouts
Process incoming events for all contexts one by one

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

25

Hints (1)

 Transport address(es) to receive data on
socket (SOCK_DGRAM, AF_INET, …)
Create and bind an individual UDP socket for every address
Remember host vs. network byte order

 Generation of artificial packet loss
Write your own small lossy_sendto (...)
Use drand48() instead of rand() or random()

double p_loss = ...;

lossy_sendto (int sd, void *msg, size_t len, ...) {
 if (drand48 () > p_loss)
 return sendto (sd, msg, len, ...);
 return len;
}

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

26

Hints (2)

 Timer handling
gettimeofday(2) yield detailed system clock reading as (sec, usec) pair
 If you work with timeout, calculate its absolute time
 In the mainloop, determine the time to wait based upon the current time

 This result is what you feed into poll() or select()
 Note that both use completely different time formats

 If poll()/select() returns 0, a timeout has occurred

 DO NOT USE SIGNALS FOR TIMING
Such as done by alarm()
This may just cause system call interruptions that you do not want or need
Better to stay in control all the time

© 2007 Jegadish. D

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

27

Hints (3)

 Signals
You may need to catch at least SIGINT: signal (SIGINT, signalhandler);

 In this case, you would just set a global variable and return (terminate = 1;)
 Need to check the variable regularly even if no packets arrive

Will cause interrupted system calls (errno == EINTR)
 Need to check for this also in your main loop and behave accordingly

 File access
Regular i/o operation (open/close/read/write, fopen/fclose/fread/fwrite)
MS Windows: you may need O_BINARY to avoid end of line conversion
Use fstat () to obtain file attributes (including file size)

