Apply Protocol Design Insights Analytically

- For diversity: look at two different protocols
 - From two rather different application domains
 - No comparison, just analyze them by themselves

- Assess their respective protocol design (in the sense of “grading”)
 - Using the background knowledge from the lectures (and related sources!)
 - With respect to the areas we discussed in the lectures
 - And also with respect to other “classical” criteria of your choice
 - E.g., performance

- General hint: look for concepts but not for the last bit of detail
 - Even though sometimes the details make the difference
Some Explicit Questions to ask

- What are the protocol’s strengths and weaknesses?
- Are there any inherent showstoppers for deployment?
 - Example: “This protocol is designed for end users who are authenticated by their personal certificate…”
- Would an “applicability statement” be necessary?
 - If so, phrase one
- What are your recommendations for the next version of the respective protocol?
 - Extensions? Deletions? Modifications?

Two Protocols: Brief Introduction

- Server Cache Synchronization Protocol (SCSP)
 - RFC 2334 [40 pages]
 - Parts of OSPF, RFC 2328 [many pages, but you know OSPF already]

- Message Session Relay Protocol (MSRP)
 - draft-ietf-simple-message-sessions-14.txt [59 pages]

- Relay Extensions for MSRP
 - draft-ietf-simple-msrp-relays-07.txt [36 pages]
SCSP: Motivation and Background

- State synchronization protocol for a server group
 - Each server has state information cached about the clients it serves
 - Robustness requires avoiding single points of failure
 - To allow another server to take over, state changes need to be sync’ed

Background: ATM

- NHRP, ATMARP
 - Usages defined in RFC 2335, 2443
 - Not restricted to these uses

Terms, Phases, and Protocols

- SCSP Entities
 - Local Server (LS)
 - Directly Connected Server (DCS)
 - Remote Server (RS)

1. Hello
 - Hello protocol
2. Database synchronization
 - Cache Alignment (CA) Protocol
3. Flooding
 - Cache state update (CSU) protocol
Protocol Operation Summary

- **Hello Protocol**
 - After establishment of “lower layer” connectivity, LS sends HELLO messages to each DCS including its own ID
 - Observes incoming messages for its own ID to check for bidirectional connectivity

- **Cache Alignment Protocol**
 - Initial master-slave negotiation
 - Deterministically determine asymmetric roles of the involved peers
 - Cache summarization
 - Exchange a summary of the present state at each peer
 - Updating cache
 - Synchronize the state of the two peers by inquiring/providing missing pieces of state
 - Aligned ➔

- Active flooding of state changes via Cache State Update protocol

Miscellaneous

- Binary packet format
- Not an IP-based protocol
 - Uses LLC/SNAP encapsulation for link layer mapping
MSRP

MSRP: Background and Motivation

- Used in the context of SIP-based messaging in interpersonal communications
- Intended to address two major issues with SIP messaging
 1. MESSAGE: Message frequency
 - Only one outstanding message: one MESSAGE per RTT
 - But: messages are stand-alone; no dialog context to check against
 2. MESSAGE: Large messages
 - UDP is an acceptable transport for SIP: no congestion control
 - Endpoints can’t see beyond next hop
 - Artificial limit on message size (1300 bytes) not really acceptable
 - Alternative: Content indirection: store message contents in an accessible locations and convey only pointers (URLs) in message
Message Session Relay Protocol (MSRP)

- Protocol for Messaging Sessions
 - Uses TCP or another reliable and congestion controlled transport
 - Message encoding similar to SIP and HTTP
- Just another media protocol
 - Messaging sessions require explicit setup and teardown
 - E.g., SIP dialogs (INVITE, BYE)
 - SDP to describe sessions \((m=\text{message})\)
 - Uses SDP Offer/Answer to convey parameters
 - Exchange dynamic transport addresses for communications (MSRP URLs)
 - Negotiate supported message formats
 - \(\text{SEND}\) method to convey messages
 - May request confirmation from the remote side (on success and/or failure)
 - Support for chunking of large messages (2 KB chunks)
 - \(\text{REPORT}\) method to provide confirmations
- Two modes of operation
 - Direct communication between peers \((\text{simple case})\)
 - Communication via relays \((\text{NATs, firewalls, policy})\)

Direction Communication between Peers

A

Choose URL

SIP INVITE

200 OK

SEND

200 OK

REPORT

SEND

200 OK

SIP BYE

200 OK

B

m=\text{message} 9 msrp *
c=IN IP4 a.dom.org
a=accept-types:text/plain, text/html
a=session:msrp://a.dom.org:9876/abc;tcp

MSRP bla4711 SEND
To-path: msrp://b.dom.org:9876/abc;tcp
From-path: msrp://a.dom.org:8888/xyz;tcp
Message-ID: 123
Content-Type: text/plain
Success-Report: yes

Hi! How are you doing?
---------bla4711$

MSRP xyz42 REPORT
To-path: msrp://a.dom.org:9876/abc;tcp
From-path: msrp://b.dom.org:8888/xyz;tcp
Message-ID: 123
Status: 200 OK
---------xyz42$
Communication via a Relay

How much?

- Just to give a ballpark figure
- 10 pages (12 points, 1.5 lines spacing)
- May include figures
- May be 7 or 8 pages, may be 12 or 14
- May not be 2 pages or 40