Beyond Technology:
The Financial and Political Layer
Protocol Design – S-38.3157

The Internet in 1972

How is the Internet paid for?
- Generally: cost is distance insensitive
 - Strong promoter of globalization
- There are some incentives to keep traffic local, though (Throughput ~ 1/RTT)
- Dial-up
 - per minute (peak hours, off-peak)
 - monthly flat rate
- Direct connection
 - volume bands or per “k bytes”
 - more likely: flat rate
 - typically independent of time and destination
- Attempt to change:
 - pay for reserved bandwidth?
 - pay for enhanced service profiles (market differentiation)
- Trend: pay for additional services
 - Within the provider’s network only

Who runs the Internet?
- “Nobody”
- Network: site network providers, ISPs (Internet Service Providers), NAPs (Network Access Providers), ...
 - Trend towards “value-added services” beyond simple packet carrier
- Lines/Fibers: telephone companies, railroads, utilities, ...
- Names and Numbers:
 - ICANN (Internet Corporation for Assigned Names and Numbers)
 - Numbers: IANA (Internet Assigned Numbers Authority)
 - Names: RIPE (Europe), Internic (USA), APNIC (Pacific)
- Standards: IETF
- Technology: vendors (standards-based + proprietary)
- Content: “everybody”

The Internet Landscape Today
- Users
- Commercial ISPs
 - Working for profit
- Private sector network providers
- Governments
 - Want to care, need to care
- Intellectual Property Right (IPR) holders
- Providers of content and higher level services
 - Streaming, telephony, media, ...
- Tensions between interests of the various parties
- “Support” for applications, users, etc.
Changes over time…

- From closed academic environment to global society
 - Trusted users vs. non-trusted users
 - Users who know what they do vs. users who don’t want to (need to) know

- From research to commercial

- New stakeholders in the Internet
 - Internet Service Providers (ISPs)
 - Application Service Providers (ASPs)
 - Governments

- Third parties (to facilitate interactions)
 - Trusted entities, caches, proxies, ...

Protocol design
does not happen in a vacuum

- With exceptions:
 - Some protocols never leave the closed environment they were designed for
 - but many surprisingly do!
 - It makes sense to think bigger
 - It also makes sense not to burden a design with issues it need not be burdened with
 - Use judgement.

- Even so:
 - staying in the mainstream will make life easier for those poor people that will have to maintain your protocol in the future.
 - you have to “sell” your protocol within your own organization
 - which may have a slightly different, but still quite difficult, “political” situation.

How to get your protocol deployed?

Why would anyone want to invest money in

- implementing
- deploying
- operating
- using
- learning your protocol?

Can you get everyone on board who needs to cooperate to make your protocol a success?

Is there a way from here to there?

Deployment Economy

What is the motivation for deployment:

- Incremental improvements in bottom line?
 - You have to make a pretty good case
 - But you can stay on the technical/economical side

- Fear of losing all to the competition?
 - Marketing is more important
 - Create the impression of a groundswell
 - You’ll need the pundits, Gartners etc.

The final decision is unlikely to be made by technical people!

Getting a protocol deployed

The decision will be made:

- not necessarily on technical grounds (alone)
- you still have to (appear to) solve the problem (of course, or maybe not)

The actual deciders are usually not the technologists

- Perceived reality (a.k.a. magazine articles) may be more important than real reality

Much of this is actually self-fulfilling prophecy

- If predictions that a technology will win cause an increase in investments...
 - Pundits are quite often completely off the mark, thought!

If you have competition, FUD may be the most powerful force

- Is there something that can be said about the other protocol that will stick?

Gaining visibility and credibility

You need marketing

- “Henry”: A large potential customer speaks out repeatedly
- A technical leadership figure with marketing skills can also help

It helps to be perceived as "the answer"

So you need to align well-regarded organizations behind the protocol

- e.g., the IETF

It helps to align with big trends

- Examples from a distant past: ATM, QoS; Lightweight protocols; ALF, soft state, ...

It hurts to align with big trends

- you are one fish of a big school
- you may cause a “wait and see” attitude

Appeal to taste

- do things the customary (modern?) way
- but not too avantgarde or weird

Many who where ahead of their time had to wait for it to arrive while staying in uncomfortable places
Don’t put in showstoppers

- Make sure deployment does not depend on factors you cannot control
 - don’t commit error 33
- Make sure you don’t turn up on the losing side of a market fight
 - hard to predict!
 - make sure your protocol is not perceived as aiding that side
- Patents (see later)

Be timely

- Moore’s law is going to negate any performance benefit if its complexity causes delaying productization
- release early, release often
 - but then, make sure you don’t get known for a losing release
 - creating one big splash may also be important for marketing (if it comes in time)
- an open-source implementation will help tremendously
 - helps the technologists understand the issues
 - demonstrates concept (to technologists and deciders)
 - eases entry (as a reference or as the actual implementation going live)
 - builds your coalition
 - can be used for interop testing
 - allays fears of a “cabal protocol” that can only be implemented by an in-group of expensive consultants
 - (and helps debug your protocol as well)

Is your protocol “just technology”?
Will your protocol be used for
- improving efficiency in an existing market
- creating a market
- impeding creation of a market
- furthering political change
- impeding political change
- or all of the above?

To be successful, protocols need to interact properly with the financial and political space.

The decision makers are fighting a different fight

- Position their company in a changing market
 - E.g., attempt to lock in customers: Customers might fiercely fight back
 - Find ways to offer differential pricing (“value pricing”)
- Position themselves in a changing company
 - Most managers are risk-averse for good reasons
- Support one side in a tension between competing interests
 - Music sharing vs. IPR protection
 - Privacy vs. wiretapping
 - User freedom vs. ISP’s desire for control (and accounting)
- “Tussle” [Clark/Sollins/Wroclawski/Braden 2002]

Guidelines for keeping protocols out of trouble (1)

- Design to win regardless of outcome
 - The tussle should take place within your design, not distort it
- Do not design to dictate the outcome
 - You may have a preference, but the opponents will fight you and your protocol
- “Provide Mechanism, not Policy”
 - The right policy may not even have been invented at deployment time
 - (But then, it is hard to design mechanism that can support any policy)
- Isolation of conflicts of interest: If there are tussles, separate functions in the tussle from those outside the tussle
 - Even if there is no technical reason
Guidelines for keeping protocols out of trouble (2)

- **Design for choice**
 - E.g., decentralize, allow for parameters selecting entities, etc.
 - May require its own set of protocols: e.g., number portability

- **Design for change**
 - Assumptions may not hold forever — don’t wire them into the protocol
 - May need to take explicit action to maintain changeability during protocol evolution
 - Resist short term optimizations for specific uses or operation points
 - But then: may have to compromise to encourage deployment

Limitations of Protocol Design

- **Remember:**
 - Don’t try to provide technical solutions for every social problem; some problems need to be solved in a non-technical fashion!
 - E.g.: Hardening security may cause people to route around it
 - E.g., password expiry schemes lead users to choose guessable passwords
 - People may entirely avoid a protocol if its security is too cumbersome

- **Providing a little technical help for social processes is OK, though**
 - Cf. Slashdot moderation points

Further Tussle: Regulation

- The market is often not left alone to decide
- Governments (have to) pursue various interests
 - To protect their citizens
 - To protect the economy
 - To protect themselves
- May take the shape of regulations and policy enforcement
- May follow national or international (e.g., EU) rules
- Regulation sets the stage for technology deployment
 - Pre-scribes non-functional requirements
 - Adds functional requirements
 - Uses technology to achieve its goals

Registration Example: (IP) Telephony (1)

- Many countries guarantee privacy rights to their inhabitants
 - Example: Privacy of telephony and (postal) mail
 - Protocol world: perform (strong) encryption
- but at the same time reserve the right for making exceptions
 - Example: Eavesdropping, collecting call history of users
 - System world: counter encryption, demand eavesdropping systems, keys, …
 - Demands and requirements are not always clear about practical implication

- **Another example:** anonymous calling
 - Allow hiding the caller’s identity
 - Exception: perform malicious call tracing and accountability
 - Ensure that the caller’s identity can be determined by the authorities later on
- Applicable beyond telephony
 - Tracking actions of Internet users: for web access, peer-to-peer usage, etc.

Regulation Example: (IP) Telephony (2)

- Adding functional requirements to a protocol or system
 - Which may lead to “more expensive” protocol design and operation

- **Example: Emergency calling**
 - Comprehensive requirements from traditional landline service
 - Locating the emergency caller
 - Has been somehow easy when using fixed landlines
 - Routing the call to the closest “Public Safety Answering Point” (PSAP)
 - Implications for IP-based technologies
 - Need to provide location information about IP phones
 - Despite the ability of the user to move
 - Need to identify a call as an emergency call
 - Regardless where the user is
 - Obey privacy rules for highly sensitive location information

- **The Grey and Dark Sides: Blocking Access**
 - Basically legitimate goals
 - Parental control of Internet usage
 - ISP control of users
 - Block spammers
 - Sources of DoS attacks, viruses
 - Governmental control
 - Restrict access to legally prohibited contents (e.g., anti-constitutional, subversive)
 - But also: limit freedom of information
 - May succeed somehow easily with the masses
 - But may also have quite a few “false positives” beyond intentions
 - But: potential for yet another technology race for the bad guys
 - There are usually technical ways around
The Spam Tussle (1)

- Problem: Internet lowers transaction cost considerably
 - Anyone can send messages to many at near zero cost
 - There is a (human) cost for consuming a message, though
- Conflict: How to stay open?
 - Do I want to accept messages from unknown sources?
 - "Known-sources only" becomes limiting quickly
- Technological response:
 - Spam filters try to detect "unsolicited bulk" messages
 - Arms race, limited success (spammers are hard to trace, use botnets)
- Economical response:
 - Re-introduce "cost" for a message
 - Might be waived for messages that actually were "wanted"
 - Issue: How to design for choice?

The Spam Tussle (2)

- Nominally, everyone is "against spam"
 - This is not about protocol features shot down because they "would hurt spam"
 - (But you don't want to have protocol features that actually would help spam)
- The part of the tussle relevant to protocol design:
 - Business opportunities from spam
 - More precisely: from the extreme pain point spam now causes in business
- Use Spam to reign in control lost 10 years ago
 - Use market power to establish patented system as de-facto spam reduction standard
 - Establish a service for centralized spam checking
 - Compete by protocol support in dominant implementations
 - Provide a Mail service with better spam control than others
 - Real competition!

Controlled Transparency

- Originally: what goes in, comes out.
- But there may be reason to have something in the way
 - Likely trust-regulated
- Consumer protection: users want to be kept out of trouble
 - 1972 won’t come back; firewalls are here to stay
 - Complete transparency may make it too easy for the bad guy
 - Efficient markets may need regulation
 - Otherwise transaction cost soars
- "Peeking is irresistible"
 - Transparent features will be used for differential pricing
 - And to improve service to the user — at a cost?

Case study: TCP/IP vs. OSI

- Tussle: Who was going to control the future of open systems?
 - Running code vs. great ambition
 - Helped tremendously by BSD 4.2
 - (which, at its time, was as close as you could get to open source)
 - All universities were using it ➔ multiplicators
 - ping (diagnosability)
 - Operations people loved it (and networks actually worked!)
 - Running code for File transfer, Mail, X11 and other killer apps
 - Users loved it (and got actual work done)
 - Finally decided by Web (another killer app)

Case study: PostScript

- Low barrier to use (text based)
 - easy to "write code" to create beautiful type
 - offloading processing to printer allowed upgrade in functionality
- Extensibility over performance
 - widened applicability and allowed growing with the problem set
- Device independence, scalability
 - Black/white first, later extended to color and other new devices
- Active maintenance, reasonable licensing by Adobe
 - (but still limited pick-up in the low-cost market)
 - good enough to spawn emulation market
- ➔ Became suitable interchange format, too
 - but: violates "use the simplest language you can use"

Case study: PDF

- Used PostScript as a lever
 - Using market asymmetry (cheap reader/low cost writer)
 - Natural replacement for PostScript as an interchange format...
 - remove programmability
 - By then, problem set had become much more well understood
 - add "modern" formats (images, color spaces, compression, etc.)
 - continued evolution
 - Microsoft is trying to replace PDF with Metro

Net Neutrality?!
Case study: SIP

- Incessant marketing by “Godfather of SIP”
- Helped by easy “first mile” of text-based, HTTP-like protocol
 - In particular after the H.323 portrayed complexity and PER disaster
 - plus H.323’s “closed group + expensive consultants” image, late open source
- However, damaged in mass market by
 - NAT problems
 - moving target syndrome
 - Configuration complexity (odesisy of a simple client configuration format)
 - dearth of good soft clients
- Does not have a good answer to the “federation problem”
 - May be eclipsed by Jabber/Jingle in certain applications

Case study: Skype

- Tussle: get new application VoIP going despite restrictive firewalls
 - Phone calls at zero incremental cost (beyond broadband already available)
- Usable, polished client (including IM and Video)
 - solves NAT problem
- Low barrier to entry for new users
 - Early adopters: download, try, works — recommend!
 - Metcalfe’s law kicked in soon
- High end user benefit
 - including high connection quality (wideband)
- (Unfortunately, Skype is fundamentally flawed — and not open in the first place)

Case study: Jabber

- Tussle: whose IM systems will dominate? (AIM, MSN, …)
 - libgaim
- Jabber (XMPP): the standardized protocol in the IM space
 - Well, there are IRC, SIMPLE, …
- Low-barrier design
- Has a successful federation policy
 - Design for choice
 - (and the other guy is unlikely to be a spammer)
- Once that works, why not use it in place of SIP?
 - google talk, jingle
- ...we are in the middle of the telephony tussle...

Case study: RSS

- "Push" did not quite work because of the firewall/NAT problem
- Idea: Provide “push” by repeated “pull”
 - Browser needs to find out if information is “new”
- RSS: Rich site summary/Really simple syndication
 - “Feed” metadata: Title + Link + Updated + Author
 - Array of “Entry” metadata: Title + Link + Id + Updated + Summary [+ Content]
- Use XML format
- Problem: Tag Soup effect; multiple RSS versions
- Solution: IETF process → Atom (RFC 4287)
 - Atom is quickly becoming the “Enterprise Message Bus” of the Internet

Case study: DVD-successor

- Tussle 1: Copyright holders against the rest of the world
 - Threaten not to provide pre-recorded HD content unless DRM is draconian
 - Need to control entire system
- Tussle 2: Two patent pools fighting each other
 - Indecision between HD-DVD and Blu-Ray
 - Microsoft changing sides every week
- Result:
 - Delayed market introduction (Tussle 1)
 - Immense market confusion (Tussle 2), “wait and see” attitude
- Tussle 1 also makes it less likely that consumers will actually want the “advances” of the DVD-successor
- Interesting development to follow

Loose ends: Protection Rights (“IPR”)

There are several kinds of “protection rights”

- Copyright: protects a work (book, program) against copying
 - Still the basis for the most important revenue models of the information economy
- A reform is probably inevitable, but might take a couple more decades
- Trademark: protects the branding of a product (“Coca-Cola”)
 - Essentially irreplaceable from a consumers’ rights point of view
 - Somewhat unfortunate side-effects on DNS name space
- Patent: protects ideas, even if they are reinvented
 - Designed for 19th century industrial economy
IPR issues for protocol designers

- Copyrights: issue mainly on specifications
 - Make sure the copyright on a specification does not become a showstopper
 - (Copyright enforcement may also be the objective of a protocol, of course)
- Trademarks: issue mainly in protocol marketing
 - Make sure the name under which a protocol is marketed is not the trademark of a competitor
 - (Also an issue if a protocol uses user-visible name spaces, like DNS)
- Patents (in Networking Technology) == technology destroyers
 - Or sometimes delays: e.g., RSA was essentially ignored until patent ran out
 - A reasonable standards body will always choose an unencumbered technology over an incrementally better patented one
 - E.g., Zero-knowledge proofs are pretty much dead because of unclear patent situation

But patents work great!

- Patents encouraged much of the industrial innovation
 - Small entities — individual inventors and small companies — are a very important source of innovation
 - They have no other way to protect themselves from the big guys
- Polaroid, Xerox would not exist without patents
- Without patents, there would be no way to finance pharmacy research
- But then, how did software flourish before software patents were invented???

So what’s the problem with patents…

In Networking?

- Networking is about interoperability, which needs agreement
- It’s hard for people to agree on something the adoption of which will generate lop-sided revenue to one party
 - That’s why oligopolies like the GSM manufacturers are so much about patent pools
- Patent licensing tremendously increases the transaction cost
 - Pay the lawyers $50’000+ for anything you do
 - Often, it is necessary to keep track of volumes etc.
 - You have to sell things you’d rather give away
- Interoperability of a feature imposes patent transaction cost on peer system implementer

So what’s the problem with patents…

In Software? Software ≠ Hardware!

- Hardware production requires higher investments and longer timelines
 - So doing the patent dance may be an OK part of the budget (monetary and time)
 - Hardware is often done by bigger companies that have cross-licensing agreements anyway
- Software can be (and will be!) implemented in a garage
 - Most innovations are from startups or people who haven’t even started a company yet
 - Software can be given away (“free as in beer!”)
 - Can’t do that with patented technology
 - Patents exclude open-source world
- Software is way more complex
 - Several hundred million lines of code are running on my laptop
 - Developing anything today requires making use of a dozen million lines of code
 - Patent minefield

One size never fits all.
Defects in the patent system (1)

- It is relatively easy to obtain a patent (tens of thousand Euros)
 - Very limited expertise on the part of the patent examiners
 - The "inventor" (applicant) has control over the process
 - Most patents are "trivial patents"
- Patent applications stay a secret for 18 months (or until granted)
 - Submarine patents
 - Even published patents become submarines by novel re-interpretation
- "Prior Art" arguments need to be fought in court
 - In theory, they can be fought in the objection phase after granting
 - But: This gives "inventor" too much control over the process
 - Documents "used up" here are hard to reuse in court

Defects in the patent system (2)

- Court proceedings:
 - Are obscenely expensive
 - Take a long time
 - during which the technology and the companies using it are branded with a big question mark
 - Are completely unpredictable in their final outcome (≠ logic)
 - Challenging a patent is a lopsided exercise
 - Patent holder has high stakes
 - Challenging patent user only has a partial stake in the other side
 - Large incentive to "settle"
 - saves court costs
 - gives the "settler" an unfair advantage over its competitors that haven't settled yet
 - might be the more expensive route though, if the patent is finally thrown out
 - In the US, patent holder can obtain injunction that essentially stops everything that is using the technology
 - extremely high damage to technology user and its customers
 - absolutely no call for proportionality

Results of the patent system for networking

- It is always unknown whether a specification is unencumbered
 - in particular, it may be very expensive to say it is
- There is no way to ascertain patent-free status
 - Submarine patents
 - Patents are written in many languages
 - The language of patents is often unrelated to that of technology
 - Or that of humans ("a plurality of...")
- Civilization is about controlling risks
 - Software patents are the anathema of civilization
 - "Technology companies" == wayside robbers
 - Damage to economy (chilling effects) far outweighs proceeds to individuals

So why are the big guys arguing for software patents?

Battle being fought in Europe right now

- US already have software patents
 - Big companies need to pay the cost there to stay in the game (protection from other patents)
- Big companies can benefit from their US investment
 - Can use patents to squash smaller European innovators
- Another reason: The corporate position on patents is usually defined by _______ the patent department!
 - What do you think would they say?

What can a protocol designer do?

- Not much
 - There is no protection against submarines
 - Patent searches are an expensive and unreliable process
- Be open-eyed, though
 - That technology being pitched so heavily — what is the intention?
 - Has it been around for at least 18 months?
 - Some companies set interesting patent objectives for their employees
- Standards setters can define disclosure policies
 - E.g., IETF: If the technology you talk about is encumbered, you have to tell
 - W3C has an RF (royalty-free) policy
 - Some consortia have patent pooling as a membership requirement