
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 1

Designing for and Living
with NATs and Firewalls

Protocol Design – S-38.3157

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

2

“The primary purpose of firewalls has always
been to shield buggy code from bad guys.”

Steve Bellovin, IETF Security AD

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

3

Reminder: Internet Architecture

Transport and application protocols operate end-to-end
Port numbers: addressing of processes (applications)
Network-components and topology are invisible
All functions performed end-to-end

Network
protocol

stack

Network
protocol

stack

Network
protocol

stack

Network
protocol

stack

Internet
Protocol

Internet
Protocol

Internet
Protocol

Network
protocol
stacks

Transport
Protocols

Transport
Protocols

Application
Protocols

Application
Protocols

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

4

An IP Network: Application’s View

Source IP Address 1.2.3.4
Source Port Number 51000
Destination IP Address 5.6.7.8
Destination Port Number 80
Protocol ID TCP

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

5

An IP Network: Router’s View

Destination IP Address
(Source IP Address)
(…)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

6

Key Concepts of the Internet Architecture

Hosts know nothing about the network.

Routers know nothing about applications.

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

7

The Internet in the good ol’ times…

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

8

…and today.

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

9

Fencing off (Sub)Networks in the Internet (1)
Because they do not mix

Issue 1: Technical incompatibility because of addressing
Historic motivation: lack of IPv4 addresses
Network Address (and Port) Translator (NAT, NAPT)
More general problem: translating between different addressing realms
Different example: parallel operation of IPv6 and IPv4

“GW”A BNetwork
Realm 1

Network
Realm 2

Address Type 1 Address Type 2
Representation
of A in Realm 2

Mapping

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

10

Fencing off (Sub)Networks in the Internet (2)
Issue 2: Different levels of trustworthiness

Firewalls: “outside” vs. “inside” of corporate networks
Sometimes semi-trusted (“demilitarized”) zone (DMZ)
Dedicated devices for an entire subnet
Complemented by host firewalls

Minimize the amount of code that needs to work properly for effective defense

FWA BCorporate
Network

InternetFW
DMZ

Servers (mail, web, etc.)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

11

A Sample Network Setup

R

R R

R

Internet
(via ISPs)

Site 1 Site 2

R

R

RR

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

12

Recap: “Security Devices” for IP Networks
Packet Filter

(dis)allow forwarding of packets to/from certain addresses
Protect networks from stray traffic

Application Layer Gateway (ALG) / Proxy
control (and police) communications at application layer

Firewall
Combination of the above
protect internal resources against access from the outside

Network Address Translator (NAT)
minimize required fraction of “Internet” address space
hide internal IP addresses
perform packet filtering for unknown traffic

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

13

Classifying Traffic: The E(vil)-Bit
Key question: how to identify malicious or other unwanted traffic
Potentially intense processing required per packet

Source + destination IP addresses and port numbers, protocol type
Stateful packet inspection even more expensive

Solution: RFC 3514
“The Security Bit in the IPv4 Header”
Straightforward traffic identification
Fail-safe, easy to implement
E == 1: packet has evil content
E == 0: packet is ok
Firewalls simply discard evil packets
Extension for IPv6: “evil strength”

(1 April 2003)

Data

Total LengthSrvc. TypeHlen.Vers.

FlagsIdentification Fragment offset

Time to live Protocol Header checksum

Source IP Address

Destination IP Address

PaddingIP options (if any)

4 8 16 310

E Bit

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

14

Classifying Traffic (2)
Traditional approach: quintuple:
(src IP address, dst IP address, protocol, src port, dst port)

Generally used for flow identification

Hope to identify traffic as “legitimate”

Issues
IP addresses often largely meaningless
Attackers also know what may be considered legitimate

E.g., src port 20 for ftp-data

Dynamic ports
IPsec protected traffic: ports become invisible
Application layer multiplexing
Future transport protocols?

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

15

IP Layer: Packet Filter

RA B

Network
protocol

stack

Network
protocol

stack

IP

Corporate
Network

Internet

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

16

Packet Filter

Corporate
Network R Internet

• Source, destination IP address
• Protocol (UDP, TCP, ICMP)
• Source, destination port
• Direction of traffic
May be dynamically configured.

Packet filter spec

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

17

Stateful Packet Inspection

RA B

Network
protocol

stack

Network
protocol

stack

IP

Transport

Application

Corporate
Network

Internet

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

18

Application Layer Gateway

RA B

Network
protocol

stack

Network
protocol

stack

IP

TransportTransport

ALG

IP

Corporate
Network

Internet

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

19

Application Layer Gateway (Proxy)

Corporate
Network H Internet

FTP proxy

HTTP proxy

SIP proxy

ftp client

http server

client / server

ftp server

Web browser

client / server

Access policies

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

20

Summary: Firewalls
Packet filters, enforcing packet altering/forwarding policies

Filter specification: Usually statically configured
Most configurations disallow packets for “non-standard ports”

Stateful packet inspection
Detect transport or application context of packets
Dynamically adapt filter specification

Application layer gateways
Terminate connections: act as transparent or explicitly visible proxies
Monitor connection: parse contents of application protocols

Functioning precludes end-to-end security!

Dynamically adapt filter specification

Policies may be applied at all layers

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

21

Network Address Translators
Intermediate systems that can translate addresses
(and port numbers) in IP packets

Often used to map global addresses to address/port number combination of
hosts in a corporate network

Different motivations
Efficient usage of address space

Share one globally unique address
Use a private address space in the enterprise (10.x.x.x, 192.168.x.x, …)

Security
Make internal host inaccessible from the public Internet
Hide addresses / address structure

Include dynamically configured packet filters, stateful packet
inspection

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

22

Network (+Port) Address Translators (NAT)

RPrivate
Network

Public
NetworkA B

Network
protocol

stack

Network
protocol

stack

IP

Transport Mapping
Function

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

23

Network Address Translators

Corporate
Intranet R

ftp server

ftp server

telnetd

H1: ftp

H2: ftp

H2: telnet

Translation
table

H1

H3

H2

10.0.42.x

H3: http

10.0.42.16 130.3.18.39

10.0.42.2:17202

10.0.42.2:19001

10.0.42.3:32006

10.0.42.1:16587

130.3.18.39:20002

130.3.18.39:20003

130.3.18.39:20004

130.3.18.39:20001

web serverH
os

t I
P

A
dd

re
ss

, P
or

t

Fi
xe

d
IP

 A
dd

re
ss

, P
or

t

Internet

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

24

Operation of NA(P)Ts
NATs usually only one-way permeable for initiating connections

From private to public network
Other direction limited to statically pre-configured addresses

NATs create address/port number mappings
Mappings are usually created dynamically, e.g. on connection setup
Static configurations also possible
Works best with connection-oriented communication
Most common case: TCP connection from client-server sessions

Client in private address space, server in public Internet

NATs have to keep state for mappings that are tied to “connections”
To allow for traffic in the opposite direction to pass

Which traffic is allowed back in depends on NAT type
Important for UDP traffic (i.e. media streams)!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

25

“Full Cone” NAT

Outbound packets establish
temporary address/port
binding

Any host may respond to
mapped address/port

Incoming packets are
dropped when no binding
exists

Internet

10.0.0.101

10.0.0.102

10.0.0.100:12836 48.7.29.160:61795

48.7.29.160

10.0.0.1

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

26

“(Port) Restricted Cone” NAT
Outbound packets establish
temporary address/port
binding

Incoming packets are
dropped when no binding
exists

Binding valid only for
destination IP address
(and optionally port)

Packets from other hosts
(and ports) are dropped

Internet

10.0.0.101

10.0.0.102

10.0.0.100:12836 48.7.29.160:61795;
← Allowed from 134.102.218.236(:32768)

48.7.29.160

10.0.0.1

×

134.102.218.236

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

27

“Symmetric” NAT

Port Restricted Cone NAT
behavior

Different bindings for different
destinations

Drop incoming packets when
no appropriate binding
present

Internet

10.0.0.101

10.0.0.102

10.0.0.100:12836 48.7.29.160:61795;
for 134.102.218.236:5061

10.0.0.100:12836 48.7.29.160:42123;
for 194.25.159.110:18268

48.7.29.160

10.0.0.1

134.102.218.236

194.25.159.110

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

28

Some Assumptions for NATs and Firewalls

Applications follow client-server paradigm
Communications are usually invoked from the inside

Traffic is self-describing
Example: applications use well-defined ports
Example: TCP ACK bit indicates established connection

Connection-oriented protocols (e.g. TCP) dominate
Beginning and end of communication session can be identified

Communications from the outside limited to a few servers
Often placed in a DMZ

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

29

Some Issues with Firewalls and NATs (1)
Fragmentation

Outbound: Fragmentation ID collision (unique per source IP address)
Inbound: Fragments cannot (easily) be forwarded (port numbers are missing)

Packet forwarding
IPsec end-to-end does not work
ICMP state needed
Integrated service?

Configuring NATs / firewalls
Inbound vs. outbound connections – what is inbound, what is outbound?
Per-endpoint restriction (sender, receiver) may be desirable
How to identify and authenticate users and their flows in a middlebox

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

30

Some Issues with Firewalls and NATs (2)
Running servers (on well-defined transport addresses)

Firewalls: Allow specific transport addresses to be reachable (“www.tkk.fi:80”)
NATs: Specify port forwarding for specific nodes

Port 80 of a public IP address is mapped to one particular private IP address
Issue: Only one entity per port number

Running peer (and peer-to-peer) protocols
Firewalls: issue with dynamically assigned IP addresses
NATs: Port forwarding impossible: only one entity per port number

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

31

Some Issues with Firewalls and NATs (3)
Major issue: Non-predictable addresses

Dynamically negotiated addresses during communications
Symmetric communication relationships with different client addresses
(Invocation of) communications from/to unknown peers

Trivial example: FTP
Data transfer uses newly opened TCP connection (from server to client)
Client supplies parameters dynamically (valid only for limited period of time)
Firewall: who is prepared to receive incoming connections when?
NAT: address translation renders specified address unusable

Private address “leaks” to a public node

FTP remedy: passive mode → reverse connection setup direction
Implicit assumption: server resides in public address space and is not protected
by a firewall

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

32

Some Issues with Firewalls and NATs (4)
Non-trivial example: SIP-based telephony

Both peers may or many not be behind NATs/firewalls
Many peers may be behind the same NAT/firewall
Signaling (reachability) solved moderately well within SIP
One issue (out of many): Uses UDP-based media streams
No connection setup, no client-server relationship
Firewalls will drop packets: Phones allow specifying fixed port ranges
NATs will invalidate addresses

Side issue: 10.0.0.5 ≠ 10.0.0.5 ?
Private address spaces are often the same (meant to be!)
Is a received address local (and thus valid) or remote (and hence not valid)?

Increasingly relevant for modern protocols
beyond plain client-server!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

33

Summary: Firewall and NAT Applicability
Firewalls and NATs help against unwanted traffic from the outside

Denial-of-Service attacks, port scans, break-in attacks, worms
ALGs against viruses

But: Firewalls and NATs may also prevent legitimate traffic
Evil effect on IP communications: Break end-to-end model
Have many implicit assumptions about protocols
Do not work well with a number of protocols

Including their security features

Just one piece in a security portfolio, to be applied wisely
Applications and protocols still need security

Users and their behavior still pose a significant risk

But they are real and they will stay around!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

34

Dealing with Firewalls and NATs

[Write only client-server protocols and place the server in
the open Internet — or something similar…]

Application Layer Gateways

Middlebox Communications (MIDCOM)

Simple Traversal of UDP through NATs (STUN*)

Travel Using Relay NAT (TURN*)

Interactive Connectivity Establishment (ICE*)

*) Unilateral Self-address fixing (UNSAF) considerations (RFC 3424)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 35

Application Layer Gateways (ALGs)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

36

Application Layer Gateway (1)
Gateway system with
application intelligence

Co-located with
NAT/firewall/router

Different configurations
Transparent/Non-
transparent
Fixes protocol messages
by adapting address in
different fields

Corporate
Intranet H

SIP proxy SIP UASIP UA

Internet

m=audio 53000 RTP/AVP 0
c=IN IP4 192.169.0.12
a=…

m=audio 59451 RTP/AVP 0
c=IN IP4 130.233.160.19
a=rtcp:58005
a=…

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

37

Application Layer Gateways

F

R R

F

Internet
(via ISPs)

Site 1 Site 2

F

R

NR

F

A

A

A

F

N

A ALG

Firewall

N NAT

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

38

SIP Application Layer Gateway (2)
Many issues

Conflicts with security (e.g., signed or encrypted message contents)
TLS: client-side certificate check will not succeed
Snooping-only ALG may not even see the relevant information
Essence: ALG must become part of (trusted?) application infrastructure

ALG solution requires application-specific support for each application
Have to be upgraded for new applications
Application protocols may be complex (ALG builders may not get them right)
Feature race between application protocol designers (and implementers) and ALG vendors

Scalability
Functionality concentrated on single NAT/ALG box
Must be available on all entities along the path

Robustness
Intermediary boxes become single points of failure (unless state sharing protocol implemented)
even if the application protocol itself supported failover

Reliability
Rewriting of protocol messages not robust with respect to extensions, future protocol versions etc.

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 39

Explicit Middlebox Signaling

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

40

MIDCOM
Idea: Application-independent Control Protocol

SIP UA (or proxy) controls on-path intermediaries
Open pinholes, obtain NAT bindings etc.

Example: UPnP control of DSL routers

Requirements specification: RFC 3304

Abstract protocol semantics: RFC 3989

Evaluation of Candidate Protocols: RFC 4097
Simple Network Management Protocol (SNMP)
Realm-specific IP (RSIP)
Media Gateway Control (MEGACO)
Diameter
Common Open Policy Service (COPS)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

41

Trivial Example: SOCKS (RFC 1928)
SOCKS allows a client to communicate via a middlebox

Protocol between client “behind” middlebox and middlebox

Operations
Bind to an externally visible address (and obtain this address) at the middlebox
Connect via a middlebox to a TCP peer
Create an association for a UDP flow via the middlebox

UDP-in-UDP tunneling of datagrams

Authentication with the middlebox needed

Usable for
IPv4-IPv6 translation
NAT and firewall traversal

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

42

MIDCOM

F

R R

F

Internet
(via ISPs)

Site 1 Site 2
F

R

NR

F

M
M

F

M MIDCOM agent

Firewall

N NAT

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

43

MIDCOM Issues
Needs to be standardized in the first place
Must be supported by vendors (may lose their competitive edge)

If so, products need to become available and to be deployed
Location problem: How to discover intermediaries?

Organizational problems: Security Policy
Cannot control NAT box of public ISP

E.g., in a WLAN hot-spot
Motivation for the hot-spot operator?

Authentication of users and authorization of operations

Must be really secure (authentication, authorization)
Hard to achieve
Example: UPnP is rather insecure today
And: third parties may misuse pinholes once created

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 44

NATs: Determining usable “outside”
addresses in the endpoints

(Unilateral Self-Address Fixing, UNSAF)

Maintain end-to-end idea as much as possible
Examples: STUN, TURN, ICE

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

45

Reminder
NATs translate “internal” transport addresses (IP address, port) to “external” ones

Using one or more “external” IP addresses
External address may or may not be public IP addresses

NATs may be cascaded
Address space re-use in different realms

10.0.0.5 ≠ 10.0.0.5 ?
Different NATs use different rules

How to choose the “next” external address
When to choose a new external address

Source IP address and port number mandatory
Optional: Destination IP address and port number

Which filter rules to install for inbound traffic
Traffic directed at an allocated port mapping
Traffic originating from a transport address a
packet was previously sent to

Cleaning up NAT bindings
TCP: typically tied to connection state
UDP: typically handled via timeouts
Other protocols: may or may not be supported

N

N

N

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

46

UNSAF Considerations for NATs
There is no uniquely determinable “outside” to NATs

Addresses can only be determined relative to a specific point in
the network

It may not be known “where” this point is
An UNSAF service may have a different viewpoint with respect to an entity and
thus see a different “relative” address compared to the peer of the entity

Enabling incoming traffic may circumvent other security measures

Basing future operation on past observations is risky

UNSAF services and middleboxes may increase brittleness

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

47

Simple Traversal of UDP Through NATs (STUN)

Detect NAT type and public IP address
External server echoes observed source address and port
Optionally request IP address and/or port change for response

Internet

STUN Client
STUN Server

1. Echo source address,
send from recv port

2. Client requested
port change

3. Client requested
address change

Received/dropped
responses determine
type of NAT

1
2

3

STUN server

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

48

Simple Traversal of UDP Through NATs (STUN)

Internet

STUN Client
STUN Server 1

1

STUN server 2

1. Binding request to STUN server 1 No Response?
No UDP connectivity,
give up

Response
Server returns
MAPPED-ADDRESS
(48.7.29.160:4560)

Client is behind NAT

But what type of NAT?
10.0.0.101:6789

48.7.29.160:4560

NAT

134.102.218.99:3344

134.102.218.98:3345
(may be the same physical machine

and just use a different IP address/port)

2

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

49

Simple Traversal of UDP Through NATs (STUN)

Internet

STUN Client
STUN Server 1

STUN server 2

2. Binding request to STUN server 1
with change IP and change port flags Response?

Client is behind full cone
NAT

No Response?
Repeat Test 1 (1’)

Send Binding Request to
server 2

Server 2 returns
MAPPED-ADDRESS
(48.7.29.160:4560)

Client is behind restricted/
port restricted NAT

Server 2 returns other
MAPPED-ADDRESS

Client is behind a
symmetric NAT

10.0.0.101:6789

48.7.29.160:4560

NAT

134.102.218.99:3344

134.102.218.98:3345

1

2

1’

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

50

Simple Traversal of UDP Through NATs (STUN)

Internet

STUN Client
STUN Server 1

STUN server 2

3. Binding request to STUN server 1
with change port flag Response?

Client is behind
restricted NAT

No Response?
Client is behind port

restricted NAT

Repeat transmissions
because of potential
packet loss

10.0.0.101:6789

48.7.29.160:4560

NAT

134.102.218.99:3344

134.102.218.98:3345

1
2

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

51

STUN Security
Anybody could send UDP messages with faked IP addresses

Gives rise to numerous attacks

Establish a shared secret between client and server
Performed via TLS (i.e., reliable and secured transport)
Server authenticated by means of certificate
Server issues temporary “username” and “password”
Used in subsequent UDP-based STUN binding requests for authentication

Alternative: STUN client and server share a signaling relationship
E.g. a SIP dialog when the STUN server runs on the peer system

STUN server dynamically instantiated on each RTP or RTCP port

Leverage the trust previously established – no need for TLS connection

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

52

STUN Summary
STUN provides a means for an application to traverse NATs

Detect existence of NATs
Detect type of NATs
Learn address bindings and usable public address
Intended for enabling peer-to-peer communication in NAT scenarios

Not a complete solution
Symmetric NATs still a problem
Does not help if both peers are behind NATs

Approach to deal with symmetric NATs
Run STUN server with each media endpoint
(on each RTP/RTCP port)
Does not help if both endpoints are behind different NATs

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

53

Traversal Using Relay NAT (TURN)
Idea: Provide forwarding service in the public internet

Client behind NAT has single connection to TURN server
Server forwards incoming packets destined for TURN client

Relay NAT
Protocol-agnostic – no ALG needed
Authentication to prevent DoS-attacks (similar to STUN)

Internet

TURN-enabled
endpoint

TURN Server

2

External peer

1. Allocate TURN port

2. TURN-response,
including address/port

3. Forward external
address to peer

Subsequent
messages to this
address will reach
endpoint

1

3

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

54

TURN DetailsClient

TURN
server

1 2PeersNAT
Allocate (UDP)

Resp (IP Addr, port)

Listening address
created

Send (dst=1, data)
Data packet

Send (dst=2, data)
Data packet

Both 1 and 2 have permission
to send packets to the client

Data packet
Data Ind. (src=1, data)

Data packet
Data Ind. (src=2, data)

Client
goes for
peer 1

SetActive (dst=1) Peer 1 locked down

Data packets
Data packets

Allocate (refresh), …

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

55

Interactive Connectivity Establishment (ICE)
Networks with segmented connectivity, different address realms

Try to find optimal connection between endpoints
Use relays only if necessary
Deal with the issue of ambiguous addresses (e.g., 10.0.0.5)
Support for STUN and TURN

draft-ietf-mmusic-ice-08.txt
Just a short-term solution on the road to middle-box control

Applies to media path, not signaling
But signaling must be aware of ICE (specific SDP attributes)
Poor default behavior for non-ICE clients

Abstract signaling model
Fits SIP, H.323, RTSP and similar protocols

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

56

Operation
Idea: peers exchange lists of transport addresses,
mutual connectivity tests

Clients must detect own transport addresses
The more, the better
Local interfaces (including private addresses, e.g. in 10/8 net)
Detection using “external” reflectors (e.g. STUN, TURN)
Assigned tunnel addresses (e.g. PPTP)

Clients run STUN servers on every published transport address
Explicit keep-alives for NAT binding
Shared with media streams

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

57

ICE Operation

Gather addresses

Offer

Gather addresses
Answer

STUN checks

Offer

Answer

Media streams

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

58

STUN
Server

ICE: Address Gathering

A B

STUN
Server

TURN
Server

STUN
Server

TURN
Server

10.0.1.19

10.0.5.12

Local: 10.0.1.19:51000, 10.0.5.12:51002
STUN-derived: 130.233.99.70:58000, 130:233.99.70:58090
TURN-derived: 130.149.25.97:63673

130.233.99.70

130.149.25.97

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

59

STUN
Server

ICE: Address Gathering

A B

STUN
Server

TURN
Server

STUN
Server

TURN
Server

10.0.1.19

10.0.5.12

Local: 10.0.1.19:51000, 10.0.5.12:51002
STUN-derived: 130.233.99.70:58000, 130:233.99.70:58090
TURN-derived: 130.149.25.97:63673

130.233.99.70

130.149.25.97

v=0
o=jo 2890856678 2890856709 IN IP4 10.0.1.19
s=-
t=0 0
c=IN IP4 130.149.25.97
m=audio 63673 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=candidate:A 1 asdl7b UDP 1.0 IN IP4 10.0.1.19 51000
a=candidate:A 1 adjka2 UDP 1.0 IN IP4 10.0.5.12:51002
a=candidate:A 2 873xvi UDP 0.7 IN IP4 130.233.99.70:58000
a=candidate:A 2 bznzdl UDP 0.7 IN IP4 130:233.99.70:58090

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

60

Design Aspects for Application Protocols (1)
Operation without specific support from middleboxes

Guidelines for application protocol design for NATs: RFC 3235
Fairly general statements of limited usefulness (nothing really new in 2002)
Don’t send addresses in the payload
Avoid session bundles
Session bundles originate from the same end (typically the client)
Prefer connection-oriented transport

STUN, TURN, ICE: one solution set preserving end-to-end model

Frequent “fallback” position: tunneling through HTTP (port 80)
This SHOULD NOT be the default option — may subvert security
Endless race between firewall vendors and application designers
“Smart” firewalls analyzing port 80 contents may have undesired side effects
The same applies to other well-known ports

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

61

Design Options for Application Protocols (2)
If you want to work with ALGs

Design your protocol “in the open” (publish it!)
Need to motivate middlebox vendors to support it — or forget about it

Self-describing (ideally per packet!) traffic; easy to parse
Separate communicated transport addresses from other protocol parameters
If needed, avoid securing these (only) in the signaling protocol

Move validating towards the dynamically established transport instead

Perform in-band protocol validation and negotiation (within a session)
Minimize cross-session dependencies

Communication architecture
Make use of representative nodes (“servers”, “proxies”, “super-nodes”, etc.) if
possible and useful for the application
But beware of introducing additional points of failure, scaling issues, etc.

And the need for operations and management

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

62

Design Options for Application Protocols (3)
Protocol design itself

Don’t fragment
Introduce additional (application layer) demultiplexing

To reduce the need for transport bundles
Avoid communicating addresses in the payload if possible
Otherwise: make use of UNSAF and/or middlebox traversal mechanisms as
applicable

Using STUN, TURN, ICE requires demultiplexing e.g. STUN and application protocol
messages on the same transport address (“socket”)
Negotiation protocol needed (currently ICE only specified for SDP and offer/answer)

Minimize brittleness
Use minimal number of addresses
Observe and deal with communication failures

Be careful with assumptions
(non-)existence of middleboxes; operation of a middlebox
Which side of the middlebox you are on

