
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 1

Robustness

Protocol Design – S-38.3157

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

2

Network Protocols need to be robust…
During normal operation
Against simple failures

Packet being dropped (of course!)
Link going down
Node going down (and taking its memory = state with it)

Against malfunctions
Hardware problems causing incorrect operation

Link errors occur often enough that we use checksums to reduce their probability
Implementation errors (bugs, ambiguities in the specification)
Heterogeneity
Configuration errors

Against malice
Attacks intending to cause damage (“Denial of Service”)
Attacks intending to subvert access control

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

3

Robustness against simple failures
Bit errors are converted into dropped packets

CRCs are pretty good checksum, if used correctly

Dropped packets are retransmitted
Reliability at L4 (and possibly L2).

Link and node failures are typically handled at L3
Job of the routing protocol to find an alternate path

Applications on failed nodes don’t need the network
“Fate sharing”: Application and transport state go away at the same time

Distributed applications need to recover from node failures
This is its own subject in CS: Distributed Systems

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

4

Robustness against malfunctions and malice
Much harder!

We can no longer think in “probabilities”
An “improbable” malfunction may become the “preferred” attack vector

Generalized CS approach: “Byzantine Generals”
Theoretical results show that system breaks down if > 1/3 of nodes malfunction
Solutions are typically very heavyweight

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 5

Robustness During
Normal Operation

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

6

Traffic Surges in Multiparty Environments
Need not be multicast protocols

Meshes of point-to-point relationships do as well
As do individual relationships with the same peer (e.g., some server)

Synchronization
Coupled systems tend to synchronize
Explicitly care for randomization/dithering

Implosion
Positive or negative acknowledgements, state change notifications, …

Transients
E.g. rebooting after failures

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

7

Case Study
University of Wisconsin NTP server was hard-coded in ~700K
appliances (routers, firewalls)
Implementation bug: request is retransmitted after only 1s
Surge after non-reachability of server

~500 Mbit/s request traffic
Mitigation:

(a) Software update
Problem: does not happen

(b) Replying to all requests to silence requester
Problem: reverse path may be fogged

(c) Remove hard-coded IP address from BGP routing system
Practical policy problem: can’t eliminate a single IP address from routing tables

Lesson learned: Want to have back-off mechanism!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

8

Soft state:
Don’t allow bad information to stick around

Hard state approach: Agree on each state change, try to keep
state in sync

Can always be made more efficient than soft state — if network conditions are
known in advance

Soft state approach: Keep desired state alive
State returns to default value after prolonged silence
“return to default value” message not even
strictly required
Requires more base traffic
Less likelihood to go wrong in times of
extreme stress

Soft
State
Proto

col

Normal
Operating

Regime

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

9

Design: Don’t overoptimize
Premature optimization is the root of all evil

— Tony Hoare/Donald Knuth

Optimization should be based on measurements

(Of course, algorithms with exponential complexity etc. should be
avoided from the outset, this is about micro-optimization…)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 10

Robustness against
Simple Failures

Beyond dealing with packet losses and the like

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

11

Timeouts
Timeouts of the involved peers need to “match”

May be subject to misconfiguration

Timeouts should be adaptive (see scalability)
Issue: independent measurements

Timeouts may need to account for repeated packet loss

Timeouts should be handled only on one side
Otherwise: if a timeout occurs, there is little point in saying so

Issue: Slowness of application vs. problem to be handled
Application may be “swapped out”, computer may experience high load, …
Leads to delayed response

Can exacerbate server load

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

12

Notifying Timeout Not Necessarily Useful

64*T1

64*T1

UAC UAS

Timeout

Request

408 Request Timeout

(If the requester has its own timer…)

Example: SIP

[Robert Sparks, 59th IETF]

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

13

64*T1

64*T1

UAC Proxy

Request

408

Proxy Proxy UAS

Request
Request

Request

408

408

408

408

408

408

408

408
408

The 408 Cascade “Storm”

[Robert Sparks, 59th IETF]

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

14

Fate Sharing
If the application crashes, the network cannot help much

If some random network element fails, the application should not
need to care

Couple / store application state only with the application
One aspect of the end-to-end principle

“The fate-sharing model suggests that it is acceptable to lose the
state information associated with an entity if, at the same time, the
entity itself is lost.”

[Dave Clark]

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

15

Case study: NFS (beyond fate sharing)
NFS provides file service to a client

The files are persistent (by definition), the server state may be not!

If client crashes: application went with it (fate sharing)
If server crashes: application should be able to continue after
server reboot

NFS operates with a stateless server
All state is on the client
Handles handed out as intermediate result survive a server reboot

Note: stateless ≠ connectionless
Modern NFS variants use TCP
Client can simply reconnect after a failure

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

16

Case Study: OSPF
Broadcast networks:

Everyone would need to form an adjacency with everyone else
N × (N-1) / 2 adjacencies

Traffic
State

Scalability:
Elect a Designated Router (DR)
Form adjacencies from everyone to DR only

Robustness:
Also elect a Backup Designated Router (BDR)
Form adjacencies from everyone to BDR as well

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

17

Case Study: SIP
Separates application from transport state

TCP connections may go up and down without harming dialog state
(Unlike: SMTP, POP3, IMAP4, FTP, Telnet)

May separate dialog state (“in the network”) from media flow

Allows for stateless operation of intermediaries
SIP stateless proxies
Forwarding decision is taken per request message
Response routing is done based upon Via: path in message

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

18

And the Hard Failures?
Robustness requirements are application-specific

Safety-critical applications
Banking, transportation, emergency responders, …
Stronger demand for synchronization, failover mechanisms, fail-safe properties,
etc.

Fault tolerance is a (CS) discipline of its own.

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 19

Robustness against
Malfunctions

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

20

Case study: Arpanet 1980-10-27 (RFC 789)
IMPs (routers) were 100 % busy handling routing updates

At a much higher rate than they “could” have been produced

IMPs “could” only produce one routing update every 5 seconds
Sequence number in 6-bit window made sure only the newest one
would be sent on
Hardware error created three copies with numbers 8, 40, 44

Each of these is “newer” than the previous one ➡ tight loop

System was not self-stabilizing
Patched code had to be deployed to remove just the looping updates
Once system had stabilized, patch had to be removed again to resume normal
operation

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

21

What can be learned from RFC 789?
Systems should be self-stabilizing

Removing a malfunctioning system should return normal operation
Bad information, however it got into the system, should not survive indefinitely

Assertions valid at one point in the system don’t necessarily
transfer to other points

If an IMP cannot generate more than one routing update every 5 seconds,
this does not mean data of this kind cannot turn up in the network
Always consider the case that data might be bad: does the system stabilize?

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

22

Brittleness: Misconfiguration
If two systems both have to be configured in a certain way to
communicate successfully, brittleness ensues.

Misconfiguration is likely
Misconfiguration can lead to “half-working” states that are hard to detect

Detect misconfiguration
Incompatible systems should refuse to appear to be talking

Avoid misconfiguration
Remove options from protocols!
Use negotiation to agree on critical options

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

23

Negotiation: Ethernet
Ethernet can be configured in dozens of variants

10baseT, 100baseTX, 1000baseT
Half duplex, full duplex
Flow control options

Different speeds just don’t talk: good!

Duplex mismatches appear to work until load becomes significant

Ethernet has a negotiation protocol (“link pulses”)
Can be switched off (another source of mismatches!)
Has been implemented in numerous incorrect ways

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

24

When failing hard is good
A bad link may be worse than a dead link

Routing protocol may have a perfect alternative
But hello protocol may still make the link appear to work

Links that turn bad look like they go down and up: “Flapping”
Can cause significant traffic (bits and CPU) in routing protocol

If 10 % of 150 000 routes flap…
Overloading of routers can cause cascading failures

BGP implementations have route flap damping to suppress flapping

Other Countermeasures:
UDLD (Unidirectional Link Detection)
LQM (Link Quality Monitoring, part of PPP)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

25

Negotiation: TLS
TLS (“SSL”) peers need to negotiate crypto parameters

This needs to be done before full crypto is in effect

Attack: interfere with negotiation
Mismatches result in interesting behavior
E.g., “negotiate-down” attack: convince both sides the other side has only
limited crypto capabilities (“export version”)

Solution:
Agree on the exact result by exchanging signed statements about all
handshake messages at the end of negotiation

“Bidding down” attacks may occur in all kinds of security protocols

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

26

Negotiation: PPP
PPP is probably the most configurable protocol
Also very interoperable!
Secret: LCP, NCPs negotiate all the options

Interoperable baseline (must implement)

ConfigReq list all options desired
If not acceptable, peer can ConfigNAK, ConfigRej
Original proposer has to present another complete set in another ConfigReq
Peer echoes back the complete accepted set in an ConfigAck

Occasional bugs in the negotiation convergence
Very few bugs in misunderstanding of resulting configuration

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

27

Dealing with implementation differences
IEN 111 (August 1979):
The implementation of a protocol must be robust. Each
implementation must expect to interoperate with others created
by different individuals. While the goal of this specification is to
be explicit about the protocol there is the possibility of differing
interpretations. In general, an implementation should be
conservative in its sending behavior, and liberal in its
receiving behavior. That is, it should be careful to send well-
formed datagrams, but should accept any datagram that it can
interpret (e.g., not object to technical errors where the meaning is
still clear).
“should” became “must” in RFC 791 (September 1981)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

28

Dealing with implementation differences
RFC 1122 (October 1989), 1.2.2 Robustness Principle:
At every layer of the protocols, there is a general rule whose application can
lead to enormous benefits in robustness and interoperability [RFC791]:
"Be liberal in what you accept, and conservative in what you send"
Software should be written to deal with every conceivable error, no matter
how unlikely; sooner or later a packet will come in with that particular
combination of errors and attributes, and unless the software is prepared,
chaos can ensue. In general, it is best to assume that the network is filled with
malevolent entities that will send in packets designed to have the worst
possible effect. This assumption will lead to suitable protective design,
although the most serious problems in the Internet have been caused by
unenvisaged mechanisms triggered by low-probability events; mere human
malice would never have taken so devious a course!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

29

Dealing with implementation differences
Adaptability to change must be designed into all levels of Internet host
software. As a simple example, consider a protocol specification that contains
an enumeration of values for a particular header field -- e.g., a type field, a port
number, or an error code; this enumeration must be assumed to be
incomplete. Thus, if a protocol specification defines four possible error codes,
the software must not break when a fifth code shows up. An undefined code
might be logged (see below), but it must not cause a failure.
The second part of the principle is almost as important: software
on other hosts may contain deficiencies that make it unwise to
exploit legal but obscure protocol features. It is unwise to
stray far from the obvious and simple, lest untoward effects
result elsewhere. A corollary of this is "watch out for misbehaving hosts";
host software should be prepared, not just to survive other misbehaving hosts,
but also to cooperate to limit the amount of disruption such hosts can cause to
the shared communication facility.

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

30

Dealing with implementation differences
Jon Postel’s “Robustness Principle”: be conservative in what
you do, be liberal in what you accept from others. [RFC793]

Paradoxical result: Tag Soup! [See also RFC3117]

Formalisms such as XML Schemas can help pinpoint and thus
minimize deviant behavior

Harder to do for behavior beyond syntax, though

In the end, it’s interoperability, not conformance, that counts
Early implementations leave an imprint that is best documented in an
“implementer’s guide”; can later go into draft standard

RTP ROHC, 168 pages, has implementer’s guide with 24 pages (including 2 pages code)

RFC standards process is intended to weed out features where interoperability
hasn’t been demonstrated

Interop events rather than compliance certification!

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 31

Robustness against Malice
(“Security”)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

32

The four phases of an attack
Reconnaissance
Intrusion (using an “exploit”)

May involve gaining initial access + escalation of privilege

Consolidation, Cover up, Plant Backdoors (e.g., rootkit)
Employment for objective

Good security looks at all these phases:
prevent, detect, contain

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

33

Spoofing
Instead of subverting access control:
Just pretend to be authorized

Some systems only check source IP address
UDP: very easy to fake
TCP: more difficult, but in some cases still possible

Session hijacking: take over connection after authentication
Simple countermeasures are part of TCP

Only protect against off-path attackers (subverted by eavesdropping)
Real protection requires cryptography

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

34

(D)DoS attack
Denial-of-Service: Attacking the security objective availability

Make a server crash
Use programming mistakes (e.g., unchecked buffers)

Cause a system to go into circle-of-wagons mode
E.g., when accounts get closed after three wrong passwords

Overload server (or network)
DDoS: Distributed DoS: Farm of “Zombies”, Botnet

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

35

Reflection/Amplification: Aiding in DDoS
Reflection: Sending a “reply” to an unverified address

Can be used by attacker to hide identity

Amplification: sending “back” more
Attacker needs less capacity to mount powerful DDoS attack

Classic example: Smurf
Directed broadcast
Source address = victim
All destination hosts send “back” ICMP “port not reachable”

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

36

SYN-flood attack
Objective: clog server

Bonus: do this without giving hints about identity of attacker

TCP: protected by three-way-handshake
Connection only is completed when peer answers with correct sequence
number
Cannot easily fake source address

Idea: just send SYN packet only
Easy to fake source address
Server needs to establish state (Timeout after several minutes)

1 Gbit/s ≈ 3 106 packets/s ≈ 0.5 109 half-open connections

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

37

Countering Resource Depletion
Attackers attempt to bind more resources on the target system
than required to mount the attack

Make your system perform many and/or expensive computational operations
Particularly relevant with security checks (e.g., signature or certificate validation)

Make your system create state information
(Make your system transmit data, preferably to somebody else)

Issue: distinguishing legitimate work from attack
There is not necessarily a well-defined user behavior
Example HTTP: Botnet fetching pages, search crawlers, site replication (wget)

Some web pages inspect the HTTP User-Agent: header and deny access to bots

General Approach
Avoid creating (much) state early on the server side
Make the client work harder (client-side easier to scale anyway)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

38

Example: TCP SYN Cookies (1)
Normal TCP operation when a SYN packet comes in

Create protocol control block (PCB), choose random initial sequence number,
set cleanup timeout (in case you never get an ACK), send SYN-ACK back
State will last until timeout expires

TCP SYN Cookie idea (D. J. Bernstein, 1996)
Do not create state
Encode the local state you would create in 32-bit sequence number

Part of this is protected cryptographically
Send SYN-ACK
If ACK comes back: recreate state from acknowledgement number
If no ACK comes back: nothing lost except for a few CPU cycles
Equalizes the burden

Attacker needs to respond and thus bind local resources
Attacker can no longer use random source addresses

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

39

Example: TCP SYN Cookies (2)

Issues: limits TCP option negotiation capabilities
E.g., large windows, SACK

24

310

5 3

Timer t % 32 (increments every 64 s)

Encodes response to received MSS

Cryptographic part: secret function
(e.g., strong keyed hash function)
F (server IP address + port number,

client IP address + port number, t)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

40

Example: SCTP Association Initialization
A: choose verification tag Ta, send INIT

also: window size, TSN, other param.s
B uses Ta in all responses

B: choose verification tag Tb, send ACK
returns local association state in cookie

e.g. state+check+lifetime+…+MAC(key,…)

do not keep local state
Cookie is variable length

A: returns cookie to Tb
may include user data

B: re-creates state from cookie
considers association established
responds with ACK
may include data as well

COOKIE ECHO (tag=Tb,c=x)
+ optional DATA

A B

INIT ACK (tag=Ta,vtag=Tb)
+ COOKIE (c=x)

INIT (vtag=Ta)

COOKIE ACK (tag=Ta)
+ optional DATAC

on
ne

ct
io

n
St

at
e

Related approaches taken for Internet Key Exchange (IKE) [RFC 4306], DCCP, DTLS.

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

41

IP

Link A Link B

A B

TCP

Application

TCB: A+X, Src+Dst Port

DNS -> IP address

IP

Link A Link B

A B

TCP

Application
DNS -> HI

TCB: H+X, Src+Dst Port

HIT H

Example: Puzzles in the Host Identity Protocol (HIP)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

42

Initiator I Responder R

I1: Trigger Message: HIP (I), HIP (R)

R1: puzzle, D-H, key, signature
Select

pre-computed R1

Check signature
Solve puzzle

I2: solution, D-H, {key}, signature

R2: signature

Check cookie
Check puzzle

Check signature

Example: Puzzles in the Host Identity Protocol (HIP)

Also being explored for use in anti-spam protocols

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

43

Puzzle example
Configurable complexity level K
(chosen depending on assumed trust level of initiator)
Responder supplies a random number I (8 bytes)
Initiator must find a matching number J (8 bytes)

Compute SHA1 (Concatenate (I, HIT (Initiator), HIT (Responder), J))
So that the lowest order K bits of the result must be zero

Can only be done by repeatedly choosing J and trying
Responder can easily check by one-time calculation upon receipt of J

CPU-bounded approach
Alternative: memory-bounded left for future study

Example: Puzzles in the Host Identity Protocol (HIP)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

44

Bad Example: HTTP Prefetching w/ MHTML
Many small end-to-end interactions (GET – 200 OK) may slow
down retrieving a web page over long delay links

Idea 1: create some “wget -p” type of GET request
Shall return all resources of a web page
Send them multipart/related body (MHTML, RFC 2557)
Causes server load upon a single request

Idea 2: Use transactional TCP (T/TCP)
T/TCP avoids initial 3-way handshake assuming that only a single message
exchange will take place
Eliminates the protection available by means of TCP SYN cookies
Allows an attacker to use an arbitrary source address

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 45

Robustness Issues
with Protocol Implementations

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

46

Implementation Robustness
Of course, your code shouldn’t crash…

But there is a deeper problem:
Most ways your code can be made to crash can be used for an attack

Denial-of-Service Attacks
Crash
Loop
Performance problem

Subversion of access control
Buffer overflows!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

47

Buffer Overflows
Most popular attack on server software

Age-old problem (known since the 1960s)

“Attack of the decade” (Bill Gates)

Most Worms use Buffer Overflows (Morris Worm, Code Red,
Blaster)

Goal: smuggle in malicious code

Based on your programming mistakes

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

48

SQL-Slammer/Sapphire

25 January 2003: Korea practically offline
UDP Packet with 376 Bytes payload

Transmitted at maximum rate towards
randomly chosen target IP addresses

Warhol worm: infected most of the
≥ 75 000 victims within 10 minutes

Doubling every 8.5 seconds
Despite bug in PRNG

Basis: Vulnerability in MSSQL server
Known since 24.07.2002
Attack targeted at MSSQL server

Remedy: Close port 1434 (MSSQL)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

49

Incorrect checks of input

char buf[42];
gets(buf);

Problem:
C function gets does not check the length of the input
(“unchecked buffer”)
For input longer than 41 characters (null termination!): some memory
around the variable “buf” is overwritten
Local Variables live on the Call Stack

Solution: fgets(buf,42,stdin)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

50

A local “unchecked buffer”

UNIX Version 6 (ca. 1975), login program:

char user[100], passwd[100], correct[100];
gets(user); getpwnam(…); strcpy(correct, …);
gets(passwd);
if (strcmp(crypt(passwd, …),correct)) …

Entering an 108 character password overwrites memory beyond
the end of passwd, replacing the comparison value correct
from the password file
Fabricated password that encrypts into its own last 8 characters
serves as master key!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

51

Call stack
Local variables of C functions live on the call
stack
Example: Function call stack of the x86 CPU
RET: return address
SFP: Stack Frame Pointer

4

4

...

local
variables
(e.g., buf)

SFP

RET

parameters

...

low

high

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

52

Overwriting the
return address

If the code can be tricked into writing beyond buf:
Supply special input string that manipulates RET in such a way
that the return jump leads into exploit code
Easiest approach: put exploit code on the stack, too:
Example for exploit code for Linux/Unix:
execl to replace the running program with a Unix shell
Shell then runs with privileges of server process and waits for
input from the network
Particularly useful if the server process had root rights

4

4

...

local
variables
(e.g., buf)

SFP

RET

...

low

high

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

53

Preparing the input string

Padding

Start End

Build a Landing Pad out of NOPs:

The exact address of the stack pointer may depend on hard-
to-predict factors (e.g., total length of environment variables)

New return
address (possibly

repeated)
NOPs

Exploit code
(e.g., shell)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

54

A little more work for the attacker

Not enough space on the stack?
Machine code is compact
Many functions can be called, or simply use existing services:

E.g., Windows: many libraries (DLLs) are already linked into the process
space of the victim server process
Can use API functions,
e.g., LoadLibrary: get the libraries needed

No data transparency in the protocol?
Just avoid characters like '\0' or '\n' — there are many ways to code the same
function

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

55

Counter measure: NX-Bit
Idea: Disallow running code on the stack

No way to do this in base x86 architecture
Extensions in current processors (AMD64: NX)
Windows: Data Execution Prevention (DEP)

Need to be careful with data areas that carry shared libraries
Need to allow code generation (JIT compilers!)
Some programs legitimately use the stack to run code

Counter-counter measure: “Return” to library
Choosing the right parameters can have the same effect as your own code on
the stack
But complex attacks get a bit harder to mount

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

56

Counter measure: Canaries
Function prologue stores a special value (Canary) immediately
besides the return address
Function epilogue checks that the canary is still intact

If not: abort! (there is nothing to save…)

Windows: Stack Cookies

Disadvantage: a couple more instructions for a procedure
call/return (may double cost)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

57

Summary: Buffer-Overflows
Main cause for buffer overflows: programming errors:
use of predefined library functions in programming languages such as C or
C++ without boundary checking:

strcpy(), strcat(), gets() in C
There are alternatives: strncpy(), strncat(), fgets().

Note:
Most OS services (Unix, Windows) are coded in C, C++.
(e.g., Windows XP: some 40 M lines of C code —
rough estimate: 5-50 bugs per 1000 lines of code!)
Almost all worms exploit buffer overflows

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

58

SQL Injection
Many web applications use a database backend to store
persistent data (login information, customer addresses, …)

Data is entered via web forms

Web application languages such as PHP provide an easy-to-use
database interface to move form input into the database

Oops, again: Attacker defines the data!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

59

... Attacker defines the data

Example:
Form field for entering an email address

PHP application might then use SQL statement:
SELECT email, passwd, login_id, name
FROM members
WHERE email='Data from the network'

Attacker enters:
bad@guy.fi'; DROP TABLE members;--

In SQL-Statement:
...WHERE email ='bad@guy.fi'; DROP TABLE members;--'

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

60

SQL injection: summary

Again: non-validated input becomes program code
Variante: PHP- oder Perl-Code

SQL injection attacks may not be easy:
Where to get the names of database relations and columns?

Error messages might have leaked those
Much easier just to create damage than to subvert access control

Nonetheless: Bugtraq has news about new SQL injection
attacks on a daily basis

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

61

Cross Site Scripting (XSS)
1. Web pages can contain scripts (e.g., JavaScript)

Scripts are executed on visitor’s browser
Can access the Cookies the Website uses for authentication

2. Web pages can also contain user-defined data
E.g., based on previous input of a different user
E.g., based on a URL parameter

Attacker can use (2) to foist a script on somebody else that is
then executed during normal web page access (1)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

62

A simple XSS attack
Example:
http://auction.example.com/filename.html returns an error
message of the form:

404 page does not exist: filename.html.
Attacker might give victim a prepared link:
http://auction.example.com/<script>alert('hello')</script>

When the link is followed, the script within the link is executed on
the browser of the victim

Script might compromise data in cookies

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

63

Summary: XSS attacks
Attacker can run JavaScript on visitor’s browser in the context of
a different site (cross-site):

Read Cookies, store them elsewhere
Simulate password entry prompt

Can be used for session hijacking

Countermeasure: Website must validate all input (don’t let
unwanted scripts go through)

Unfortunately, there is half a dozen ways to provide scripting in HTML
In the end, the website must make sure only known HTML constructs make it
from one user to another

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

64

Summary Implementation Robustness
The root cause of Buffer Overflows, SQL Injection attacks and
XSS attacks: unchecked input

So:
Check your input!
Check your input!
Don’t trust that input!
Don’t just look for the known Problems

attackers have great new ideas all the time

Only allow positively healthy input!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

65

Can we win?

Attacker needs only one security hole
Defense must find every hole and fix it

Real systems are too complex
to be free of errors
Intrusions need to be
prevented, detected, contained

