
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 1

Protocol Encoding

Protocol Design – S-38.3157

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

2

Looking at a Packet: L2 frame (IPv4)
0000 00 a0 c5 e3 96 4e 00 0d 60 ff 7e 1a 08 00 45 00 N..`.~...E.
0010 00 30 8f 1a 40 00 80 06 65 49 c0 a8 00 05 41 72 .0..@...eI....Ar
0020 04 45 0b cd 00 50 e0 dc fd 0b 00 00 00 00 70 02 .E...P........p.
0030 ff ff 92 b5 00 00 02 04 05 b4 01 01 04 02

PADData CRCLen/
TypeSrcPreamble Dest.D

7 1 6 6 2 0 - 1,500 0-46 4

Visible in Ethereal

L2 Frame: fixed field sizes and offsets; optimized for “serial” processing

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

3

Looking at a Packet: L3 IPv4 Packet
0000 00 a0 c5 e3 96 4e 00 0d 60 ff 7e 1a 08 00 45 00 N..`.~...E.
0010 00 30 8f 1a 40 00 80 06 65 49 c0 a8 00 05 41 72 .0..@...eI....Ar
0020 04 45 0b cd 00 50 e0 dc fd 0b 00 00 00 00 70 02 .E...P........p.
0030 ff ff 92 b5 00 00 02 04 05 b4 01 01 04 02

Data

Total LengthSrvc. TypeHlen.Vers.
FlagsIdentification Fragment offset

Time to live Protocol Header checksum

Source IP Address

Destination IP Address

PaddingIP options (if any)

4 8 16 310

20 Bytes

Up to 40 bytes

Up to ~64 Kbytes

• Fixed offsets for base
IP header fields

• TLV encoding for IP
option fields

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

4

Looking at a Packet: L4 (TCP SYN)
0000 00 a0 c5 e3 96 4e 00 0d 60 ff 7e 1a 08 00 45 00 N..`.~...E.
0010 00 30 8f 1a 40 00 80 06 65 49 c0 a8 00 05 41 72 .0..@...eI....Ar
0020 04 45 0b cd 00 50 e0 dc fd 0b 00 00 00 00 70 02 .E...P........p.
0030 ff ff 92 b5 00 00 02 04 05 b4 01 01 04 02

Data

Source port

Sequence number

Acknowledgment number

Hlen

Checksum

Options

0 15 16 31
Destination port

WindowReserved Flags

Urgent pointer

Padding

Urgent data

20 bytes

• Fixed offsets for base
TCP header fields

• Fixed length options
(NOP, End of options)

• TLV encoded options

• Option types 0 and 1
need to be known

MSS = 1460 2 x NOP Sack-Permitted

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

5

Looking at another Packet: L4 (TCP Data)
0000 00 0d 60 ff 7e 1a 00 a0 c5 e3 96 4e 08 00 45 00 ..`.~......N..E.
0010 05 dc 75 09 40 00 31 06 c8 ae 41 72 04 45 c0 a8 ..u.@.1...Ar.E..
0020 00 05 00 50 0b cd 0a 39 f4 f4 e0 dc ff 1a 50 10 ...P...9......P.
0030 83 2c d7 62 00 00 48 54 54 50 2f 31 2e 31 20 32 .,.b..HTTP/1.1 2
0040 30 30 20 4f 4b 0d 0a 44 61 74 65 3a 20 53 75 6e 00 OK..Date: Sun
0050 2c 20 30 32 20 41 70 72 20 32 30 30 36 20 31 30 , 02 Apr 2006 10
0060 3a 35 38 3a 35 33 20 47 4d 54 0d 0a 53 65 72 76 :58:53 GMT..Serv
0070 65 72 3a 20 41 70 61 63 68 65 2f 31 2e 33 2e 32 er: Apache/1.3.2
0080 37 20 28 55 6e 69 78 29 20 52 65 73 69 6e 2f 32 7 (Unix) Resin/2
0090 2e 31 2e 73 30 33 30 35 30 35 20 6d 6f 64 5f 73 .1.s030505 mod_s
00a0 73 6c 2f 32 2e 38 2e 31 34 20 4f 70 65 6e 53 53 sl/2.8.14 OpenSS
00b0 4c 2f 30 2e 39 2e 37 62 0d 0a 4c 61 73 74 2d 4d L/0.9.7b..Last-M

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

6

Looking at another Packet: L7 (HTTP 200 OK)

0000 00 0d 60 ff 7e 1a 00 a0 c5 e3 96 4e 08 00 45 00 ..`.~......N..E.
0010 05 dc 75 09 40 00 31 06 c8 ae 41 72 04 45 c0 a8 ..u.@.1...Ar.E..
0020 00 05 00 50 0b cd 0a 39 f4 f4 e0 dc ff 1a 50 10 ...P...9......P.
0030 83 2c d7 62 00 00 48 54 54 50 2f 31 2e 31 20 32 .,.b..HTTP/1.1 2
0040 30 30 20 4f 4b 0d 0a 44 61 74 65 3a 20 53 75 6e 00 OK..Date: Sun
0050 2c 20 30 32 20 41 70 72 20 32 30 30 36 20 31 30 , 02 Apr 2006 10
0060 3a 35 38 3a 35 33 20 47 4d 54 0d 0a 53 65 72 76 :58:53 GMT..Serv
0070 65 72 3a 20 41 70 61 63 68 65 2f 31 2e 33 2e 32 er: Apache/1.3.2
0080 37 20 28 55 6e 69 78 29 20 52 65 73 69 6e 2f 32 7 (Unix) Resin/2
0090 2e 31 2e 73 30 33 30 35 30 35 20 6d 6f 64 5f 73 .1.s030505 mod_s
00a0 73 6c 2f 32 2e 38 2e 31 34 20 4f 70 65 6e 53 53 sl/2.8.14 OpenSS
00b0 4c 2f 30 2e 39 2e 37 62 0d 0a 4c 61 73 74 2d 4d L/0.9.7b..Last-M
...
• HTTP: Text encoding with partly fixed format, organized into lines (CRLF as separator)
• Single start line, any number of header lines, empty line, optional body
• Type “:” Value representation

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

7

Looking at another Packet: L7 (HTTP 200 OK)

0000 00 0d 60 ff 7e 1a 00 a0 c5 e3 96 4e 08 00 45 00 ..`.~......N..E.
0010 05 dc 75 09 40 00 31 06 c8 ae 41 72 04 45 c0 a8 ..u.@.1...Ar.E..
0020 00 05 00 50 0b cd 0a 39 f4 f4 e0 dc ff 1a 50 10 ...P...9......P.
0030 83 2c d7 62 00 00 48 54 54 50 2f 31 2e 31 20 32 .,.b..HTTP/1.1 2
0040 30 30 20 4f 4b 0d 0a 44 61 74 65 3a 20 53 75 6e 00 OK..Date: Sun
0050 2c 20 30 32 20 41 70 72 20 32 30 30 36 20 31 30 , 02 Apr 2006 10
0060 3a 35 38 3a 35 33 20 47 4d 54 0d 0a 53 65 72 76 :58:53 GMT..Serv
0070 65 72 3a 20 41 70 61 63 68 65 2f 31 2e 33 2e 32 er: Apache/1.3.2
0080 37 20 28 55 6e 69 78 29 20 52 65 73 69 6e 2f 32 7 (Unix) Resin/2
0090 2e 31 2e 73 30 33 30 35 30 35 20 6d 6f 64 5f 73 .1.s030505 mod_s
00a0 73 6c 2f 32 2e 38 2e 31 34 20 4f 70 65 6e 53 53 sl/2.8.14 OpenSS
00b0 4c 2f 30 2e 39 2e 37 62 0d 0a 4c 61 73 74 2d 4d L/0.9.7b..Last-M
...
• HTTP: Text encoding with partly fixed format, organized into lines (CRLF as separator)
• Single start line, any number of header lines, empty line, optional body
• Type “:” Value representation

Syntax definition by means of Augmented Back-Naur Form (ABNF):

Request = Request-Line
*((general-header
| request-header
| entity-header) CRLF)
CRLF
[message-body]

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

8

Looking at another Packet: L7 (HTTP Body: HTML)
...
0160 65 65 70 2d 41 6c 69 76 65 0d 0a 43 6f 6e 74 65 eep-Alive..Conte
0170 6e 74 2d 54 79 70 65 3a 20 74 65 78 74 2f 68 74 nt-Type: text/ht
0180 6d 6c 0d 0a 0d 0a 3c 21 44 4f 43 54 59 50 45 20 ml....<!DOCTYPE
0190 48 54 4d 4c 20 50 55 42 4c 49 43 20 22 2d 2f 2f HTML PUBLIC "-//
01a0 57 33 43 2f 2f 44 54 44 20 48 54 4d 4c 20 34 2e W3C//DTD HTML 4.
01b0 30 31 20 54 72 61 6e 73 69 74 69 6f 6e 61 6c 2f 01 Transitional/
01c0 2f 45 4e 22 3e 0a 3c 48 54 4d 4c 3e 0a 3c 48 45 /EN">.<HTML>.<HE
01d0 41 44 3e 0a 3c 6d 65 74 61 20 68 74 74 70 2d 65 AD>.<meta http-e
01e0 71 75 69 76 3d 22 43 6f 6e 74 65 6e 74 2d 54 79 quiv="Content-Ty
01f0 70 65 22 20 63 6f 6e 74 65 6e 74 3d 22 74 65 78 pe" content="tex
0200 74 2f 68 74 6d 6c 3b 20 63 68 61 72 73 65 74 3d t/html; charset=
0210 77 69 6e 64 6f 77 73 2d 31 32 35 32 22 3e 0a 3c windows-1252">.<

• HTML: Text encoding structured into nested elements; initial indicator of document type
• Elements may contain other elements, “textual” contents, and attributes
• Document validation basically possible

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

9

Looking at another Packet: L7 (HTTP Body: HTML)
...
0160 65 65 70 2d 41 6c 69 76 65 0d 0a 43 6f 6e 74 65 eep-Alive..Conte
0170 6e 74 2d 54 79 70 65 3a 20 74 65 78 74 2f 68 74 nt-Type: text/ht
0180 6d 6c 0d 0a 0d 0a 3c 21 44 4f 43 54 59 50 45 20 ml....<!DOCTYPE
0190 48 54 4d 4c 20 50 55 42 4c 49 43 20 22 2d 2f 2f HTML PUBLIC "-//
01a0 57 33 43 2f 2f 44 54 44 20 48 54 4d 4c 20 34 2e W3C//DTD HTML 4.
01b0 30 31 20 54 72 61 6e 73 69 74 69 6f 6e 61 6c 2f 01 Transitional/
01c0 2f 45 4e 22 3e 0a 3c 48 54 4d 4c 3e 0a 3c 48 45 /EN">.<HTML>.<HE
01d0 41 44 3e 0a 3c 6d 65 74 61 20 68 74 74 70 2d 65 AD>.<meta http-e
01e0 71 75 69 76 3d 22 43 6f 6e 74 65 6e 74 2d 54 79 quiv="Content-Ty
01f0 70 65 22 20 63 6f 6e 74 65 6e 74 3d 22 74 65 78 pe" content="tex
0200 74 2f 68 74 6d 6c 3b 20 63 68 61 72 73 65 74 3d t/html; charset=
0210 77 69 6e 64 6f 77 73 2d 31 32 35 32 22 3e 0a 3c windows-1252">.<

• HTML: Text encoding structured into nested elements; initial indicator of document type
• Elements may contain other elements, “textual” contents, and attributes
• Document validation basically possible

Syntax definition by means of HTML DTD:

<!ENTITY % html.content "HEAD, BODY">

<!ELEMENT HTML O O (%html.content;)
-- document root element -->

<!ATTLIST HTML
%i18n; -- lang, dir --
%version;

>

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

10

Your Encodings: UDP File Transfer

Examples from some theoretical outlines

Box notation with 16-bit word width

Box notation with 32-bit word width

Box notation with unknown word width

Line-oriented text protocol (a bit FTP-style)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

11

Protocol Encoding
Objectives

Represent information on the wire so that it is equally understood by all peers
Typically requires conversion into some local data representation and language
“Marshalling”, “encoding”, “coding”, “serialization”

Deal with different machine-dependent or otherwise possible representations
Binary representation: big endian vs. little endian, floating point representation, …
Text representation: EBCDIC vs. ASCII, UTF-8 vs. ISO 8859-1

Meta goals
Debuggability
Diagnostic support
Principle of least surprise
Extensibility, evolvability
Efficiency
Robustness

Sample non-objective: replicating a programming language or paradigm “on the
wire”

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

12

Protocol Encoding – Why Bother?
Yes, we finally need some representation on the medium in the
end – but this comes last…

True: Concepts, semantics, design decisions, etc. should not be
guided by encoding

And from this perspective, you should really not bother too early
In particular, get agreement on the protocol goals and requirements first
Text or binary encoding is not a requirement per se

But: Need to write down messages using some notation during
the discussion

Even strawman notations may govern thinking about and acceptance of a
protocol

Worse: bad encoding choice may ruin (acceptance of) a protocol

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

13

Simple Example: Box Notation
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
+-+

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

14

Simple Example: Box Notation
Some thirty years of ASCII-based protocol specs
Few common rules

Alignment on natural boundaries (32 bit, 16 bit values)
Exception: 128 bit IPv6 addresses (64 bit alignment)

Good for use of fixed offsets

Intuitive! Little room for misunderstandings. No learning curve.

Requires – and encourages! – modesty
What you can’t write down, you won’t get interoperable anyway ;-)

Implicit conventions assumed
E.g., network byte order encoding, 2’s-complement for signed numbers, …
Consistent: most significant bit first numbering in legend above packet box

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

15

But: TCP Options
Variable number of variable
length options

Explicit encoding of type and
length

Length found in fixed position
Receivers are able to skip unknown
options

Exception: well-known options of
kind 0 and 1

“NOP” / “End of options” to pad
TCP header to a 32-bit boundary

End of Option List

+--------+
|00000000|
+--------+
Kind=0

No-Operation

+--------+
|00000001|
+--------+
Kind=1

Maximum Segment Size

+--------+--------+---------+--------+
|00000010|00000100| max seg size |
+--------+--------+---------+--------+
Kind=2 Length=4

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

16

TLV: Type Length Value

Questions
What is the optimal length of “type” and “length”?
When does the list of TLV items end?
What does length include? (value, length+value, all, …)
Who manages the type space?

Issue: implied “length” information from type
Skipping unknown values should be possible with minimal knowledge / parsing effort

Simple for TCP options: almost arbitrary combinations possible
Some options restricted to SYN packets for feature negotiation

General questions
How to define which combinations of (TLV-encoded) values are possible?
In which order may they occur?
Does the ordering mean anything?

Type Length Value

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

17

Schema vs. Encoding Rules
Schema

What are the top-level information units exchanged?
Messages, PDUs, packets, documents, streams, …

How are they structured
Which items are allowed?
How often may they occur?
Is their ordering meaningful?

- Within a single type?
- Across types?

Encoding rules
Mapping the abstract syntax onto bits

Implementation: Transformation of the local into the transfer encoding and vice versa
How to represent individual items on the “wire”
How to aggregate them to form a larger information unit
How to delineate different information units

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

18

XDR: External Data Representation (RFC 1832)

Encoding for Sun RPC mechanism
NFS (RFC 3530)

Schema language
Pseudo C-style notation for function calls and data structures

Encoding rules
Types implied from sequence
Exception: choices identified by “switch ()” statement
32-bit alignment of all length and value fields

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

19

Schema Example: NFS OPEN
enum nfs_opnum4 {

...
OP_OPEN = 18,
...

};

union nfs_argop4 switch (nfs_opnum4 argop) {
...
case OP_OPEN: OPEN4args opopen;
...

};

struct OPEN4args {
seqid4 seqid;
uint32_t share_access;
uint32_t share_deny;
open_owner4 owner;
openflag4 openhow;
open_claim4 claim;

};

enum createmode4 {
UNCHECKED4 = 0,
GUARDED4 = 1,
EXCLUSIVE4 = 2

};

union createhow4 switch (createmode4 mode) {
case UNCHECKED4:
case GUARDED4:

fattr4 createattrs;
case EXCLUSIVE4:

verifier4 createverf;
};

enum opentype4 {
OPEN4_NOCREATE = 0,
OPEN4_CREATE = 1

};

union openflag4 switch (opentype4 opentype) {
case OPEN4_CREATE:

createhow4 how;
default:

void;
};

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

20

Encoding Example: NFS OPEN
Operation ID (OPEN): 18

Sequence ID: 65542
share_access (READ|WRITE): 3

share_deny (NONE): 0
open_owner: …

open_how: …

open_claim: …

… client-id …

0 0 0 18
0 1 0 6
0 0 0 3
0 0 0 0

0 0 0 30
… owner …

0 0
0 0 0 x

… createhow …

0 0 0 y

… openclaim …

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

21

ASN.1
Abstract Syntax Notation One (X.68[0-3], X.69[0-4])

Formal ITU-T language for describing abstract protocol syntax
Originally extracted from X.400 (email the OSI way) (X.409)

X.208 (schema) + X.209 (Basic Encoding Rules)

Countless revisions and extensions since (superseding X.208/9)
Many different encoding rules: Basic, Packed, XML

Variants: Distinguished, Canonical

RFC 3641: Generic String Encoding Rules (GSER)

Data type definitions and constraints
Basic types: Integer, Boolean, enumeration, many string types, ANY
Compound types: SEQUENCE, SET, SEQUENCE OF, SET OF, CHOICE
Notation also carries encoding-rule-specific information (“tags”, “IMPLICIT”)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

22

ASN.1 Schema Example: X.509 Certificate
Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING

}

TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
extensions [3] EXPLICIT Extensions OPTIONAL

}

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

23

ASN.1 Schema Example: X.509 Certificate
<30 82 02 BB> 0 699: SEQUENCE {
<30 82 02 7B> 4 635: SEQUENCE {
<A0 03> 8 3: [0] {
<02 01> 10 1: INTEGER 2

: }
<02 01> 13 1: INTEGER 17
<30 09> 16 9: SEQUENCE {
<06 07> 18 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)

: }
<30 2A> 27 42: SEQUENCE {
<31 0B> 29 11: SET {
<30 09> 31 9: SEQUENCE {
<06 03> 33 3: OBJECT IDENTIFIER countryName (2 5 4 6)
<13 02> 38 2: PrintableString 'US'

: }
: }

<31 0C> 42 12: SET {
<30 0A> 44 10: SEQUENCE {
<06 03> 46 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
<13 03> 51 3: PrintableString 'gov'

: }
: }

<31 0D> 56 13: SET {
<30 0B> 58 11: SEQUENCE {
<06 03> 60 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4 11)
<13 04> 65 4: PrintableString 'NIST'

: }
: }
: }

<30 1E> 71 30: SEQUENCE {
<17 0D> 73 13: UTCTime 30/06/1997 00:00:00 GMT
<17 0D> 88 13: UTCTime 31/12/1997 00:00:00 GMT

: } and so on…

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

24

“Example”: SNMP
ASN.1 was a moving target, so this was simplified to an IETF specification
"Structure of Management Information" (SMIv2, RFC 2578)

Reduce base types to INTEGER, OCTET STRING, OBJECT IDENTIFIER
Build MIB from:

Scalars, identified by ASN.1 OIDs (address, name, uptime, ...)
Tables, where the cells are indexed by composite ASN.1 OIDs of the form:

OID-prefix.column.index-val

Where OID-prefix usually is, and index-val can be, a sequence of OID nodes.

Using GET-NEXT, an entire table (or the whole MIB) can be accessed
sequentially.

Result: Solved the problem for SNMP at the time.
Very limited means for expressing structure
SNMP would have been better off with a language tailored to the problem

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

25

ASN.1 Packed Encoding Rules (PER)
“Perceived” issue with BER: lengthy encoding

Provide more bit-efficient encoding (not just) for low speed links
One motivation: PSTN

PER removes all explicit encodings and redundancies
Minimize the number of bits required per item
Octet alignment only for strings larger than two octets (aligned encoding)
Different length encodings to match the most common (short) case
Bit maps for OPTIONALs and one bit as extension indicator

Protocol definitions need to be known to be parseable
Basic extension mechanism introduced into the notation
Extensions again encoded in BER
(otherwise they could not be skipped)

Adds by far too much complexity
How to kill a standard: H.323, H.245, …

Fr
om

 to
ol

ve
nd

or
s

fo
r t

oo
l v

en
do

rs

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

26

ASN.1 Example 2: A Bit of H.323 / H.225.0
H323-UU-PDU ::= SEQUENCE {

h323-message-body CHOICE {
setup Setup-UUIE,
callProceeding CallProceeding-UUIE,
connect Connect-UUIE,
alerting Alerting-UUIE,
userInformation UI-UUIE,
releaseComplete ReleaseComplete-UUIE,
facility Facility-UUIE,
...

},
nonStandardData NonStandardParameter OPTIONAL,
...,
h4501SupplementaryService SEQUENCE OF OCTET STRING OPTIONAL

}

AliasAddress ::= CHOICE
{

e164 IA5String (SIZE (1..128)) (FROM ("0123456789#*,")),
h323-ID BMPString (SIZE (1..256)),
...

}

EXT = 1
OPT = 1

EXT = 0
0

Choice:
(0 – 6)

Choice
value

Non-Std
Parameter

Value
Type

Length

Value

Size encoded in 7, 8 bits fixed Each char encoded in 4 bits:
“#”→0000, “*”→0001, “0”→0011

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

27

Schema Example: H.263

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

28

Encoding Example: H.263 (Huffman)
Excerpt from motion vector coding
table in H.263

Huffman coding: most likely values
are coded in shorter code words

Predefined coding table
No dynamic calculation based upon
actual frequencies

Synchronization words (containing
many ‘0’s) for “locating” larger
structures

For skipping without decoding
For recovery after (bit) errors or
erasures

0000 0100 1010542

0000 0101 00104.541

0000 0101 1010440

0000 011083.539

0000 10008338

0000 101082.537

0000 1107236

0001 051.535

00104134

01030.533

11032

0113-0.531

00114-130

0001 15-1.529

0000 1117-228

0000 10118-2.527

0000 10018-326

0000 01118-3.525

0000 0101 1110-424

0000 0101 0110-4.523

0000 0100 1110-522

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

29

DVB / MPEG: Multi-Protocol Encapsulation
Syntax No. of bits Mnemonic

PES_data_packet () {
data_identifier 8 uimsbf
sub_stream_id 8 uimsbf
PTS_extension_flag 1 bslbf
output_data_rate_flag 1 bslbf
Reserved 2 bslbf
PES_data_packet_header_length 4 uimsbf
if (PTS_extension_flag=="1") {

Reserved 7 bslbf
PTS_extension 9 bslbf

}
if (output_data_rate_flag=="1") {

Reserved 4 bslbf
output_data_rate 28 uimsbf

}
for (i=0;i<N1;i++) {

PES_data_private_data_byte 8 bslbf
}
for (i=0;i<N2;i++) {

PES_data_byte 8 bslbf
}

}

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

30

General Aspects of Binary Encodings
Field lengths

Fixed vs. variable length (BER integer encoding, length of length)
Efficient access vs. efficient representation

Implementation issues with unconstrained field sizes
Calls for constraints whenever they are known

Avoid “impossible” encodings
To avoid confusion, need for error handling, core dumps
Side effect: increases expressible range
Violators: IPv4 header length, TCP options

Extensibility
Keep your reserved “bit” to signal extensions

Type assignment and registration of types in constrained spaces
Unconstrained “object type” fields are variable length (e.g., ASN.1 OBJECT IDENTIFIER)

Also: OIDs bear the risk of uncontrolled allocation of identifiers

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 31

Text-based Encodings

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

32

RFC (2)822
Header consists of zero or more header fields

HTTP (SIP, RTSP, MSRP, …) request/status lines don’t belong here

Each header field consists of “Type: Value”
Followed by CRLF
Typically, one header field per line
Header folding possible (header continued on next line)

Sequence generally not relevant
Headers of different types may appear in arbitrary order
Header of same type may imply ordering
Canonical encoding to be defined, e.g. for signing

Beware of “char line [512];”
Subtle differences across protocols

SMTP defines upper limit for line length! (998 chars + CRLF)
HTTP, RTSP, SIP, and others do not

Header-body delimiter: <empty line> CRLF

To: cabo@tzi.org
From: jo@netlab.tkk.fi
Subject: PD course

Via: host-a, host-b, host-c
==

Via: host-a
Via: host-b
Via: host-c

Subject: Protocol Design course
≈

Subject: Protocol Design
course

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

33

Getting Formal: ABNF (RFC 2234, 4234)
Integrates schema and encoding rules

Standard notation format for text-based encodings in the IETF
Examples: HTTP, SIP, RTSP, SDP, URI

(would work for IPv4 header, too, but restricted to characters)

Based upon Backus-Naur Form (BNF)
Syntax to express context-free grammars
Define a language by means of production rules using terminal and non-terminal
symbols
Semi-example: <tcp-packet> ::= <header> <data> | <header>

Augmented BNF
Different from the one your CS neighborhood would expect
Examples: [k]*[n]<expr>, “[“ <expr> “]”, “/” instead of “|”, case-insensitive

Programmers often work by example rather than by (A)BNF

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

34

ABNF Example: URIs
URI = scheme ":" hier-part ["?" query] ["#" fragment]
hier-part = "//" authority path-abempty

/ path-absolute
/ path-rootless
/ path-empty

path-absolute = "/" [segment-nz *("/" segment)]

segment = *pchar
segment-nz = 1*pchar
segment-nz-nc = 1*(unreserved / pct-encoded / sub-delims / "@")

; non-zero-length segment without any colon ":"

pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

35

ABNF Example: URIs
URI = scheme ":" hier-part ["?" query] ["#" fragment]
hier-part = "//" authority path-abempty

/ path-absolute
/ path-rootless
/ path-empty

path-absolute = "/" [segment-nz *("/" segment)]

segment = *pchar
segment-nz = 1*pchar
segment-nz-nc = 1*(unreserved / pct-encoded / sub-delims / "@")

; non-zero-length segment without any colon ":"

pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

Examples for URIs

ftp://ftp.is.co.za/rfc/rfc1808.txt
http://www.ietf.org/rfc/rfc2396.txt
ldap://[2001:db8::7]/c=GB?objectClass?one
mailto:John.Doe@example.com
news:comp.infosystems.www.servers.unix
tel:+1-816-555-1212
telnet://192.0.2.16:80/
urn:oasis:names:specification:docbook:dtd:xml:4.1.2

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

36

MIME
Multipurpose Internet Mail Extensions

Not just mail: used with HTTP, SIP, and many other application protocols

Traditional: plain text follows RFC(2)822-style headers
No identification of contents possible
Transfer (and content) encoding limited to ASCII
Remember: uudecode (“begin 644 filename … end”)

Define the purpose of a piece of content (in a message body)
Type, encodings
Intended interpretation
Specify additional parameters
Allow for references

Allow for multipart contents
Arbitrarily nested pieces of contents
Specify the above for each part individually

Image text

Image

Sound

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

37

MIME
Multipurpose Internet Mail Extensions

Not just mail: used with HTTP, SIP, and many other application protocols

Traditional: plain text follows RFC(2)822-style headers
No identification of contents possible
Transfer (and content) encoding limited to ASCII
Remember: uudecode (“begin 644 filename … end”)

Define the purpose of a piece of content (in a message body)
Type, encodings
Intended interpretation
Specify additional parameters
Allow for references

Allow for multipart contents
Arbitrarily nested pieces of contents
Specify the above for each part individually

Image text

Image

Sound

Content-Type: image/jpeg
Content-Length: 5489
Content-Transfer-Encoding: base64
Content-ID: 42
Content-Description: an image of a tree
Content-Disposition: attachment; ...

Content-Type: multipart/alternative
Content-Type: multipart/mixed
Context-Type: multipart/related

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

38

What does MIME bring to the table?
Internet-wide scheme to identify different types of coded objects

Registry
Reaches into operating systems today...

Instead of “.txt” vs. “.doc” vs. “.pdf”

Provide for multiple Transfer-Encodings of combinations of such
coded objects allowing to carry binary in text etc.

Combination rules (multipart-mixed, multipart-alternative)

Container for more complex domain-specific techniques
(multipart-signed)

Does not quite obviate ZIP...

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

39

Text Encoding Gone Terribly Wrong: SDP
Original intention: announcing parameters of a simple mc session

Session level: when, who, what about?
Media level: which codecs, addresses, and other parameters

Bent and extended over time
Moving from one-way announcements to two-way negotiation
Demand for richer expressiveness

Neither is supported by the trivial syntax
Encoding all additional semantics as attributes (a=)

Lesson to be learned: beware of too much “simplicity”
No evolution path
But change is perceived to hurt

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

40

Text Encoding Gone Terribly Wrong: SDP
Original intention: announcing parameters of a simple mc session

Session level: when, who, what about?
Media level: which codecs, addresses, and other parameters

Bent and extended over time
Moving from one-way announcements to two-way negotiation
Demand for richer expressiveness

Neither is supported by the trivial syntax
Encoding all additional semantics as attributes (a=)

Lesson to be learned: beware of too much “simplicity”
No evolution path
But change is perceived to hurt

v=0
o=Laura 289083124 289083124 IN IP4 one.example.com
t=0 0
c=IN IP4 224.2.17.12/127
a=group:LS 1 2
m=audio 30000 RTP/AVP 0
a=mid:1
m=video 30002 RTP/AVP 31
a=mid:2
m=audio 30004 RTP/AVP 0
c=IN IP4 224.2.17.13/127
i=This media stream contains the Spanish translation
a=mid:3

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

41

XML
XML: Text-based notation derived from SGML

Adapted to current thinking (e.g., uses UTF-8 by default)

Elements, Attributes
Content of elements can be further elements and/or text

Markup: Start/End Tags (and Empty Tags)
Start tag contains attributes, if any

Three widely used Schema Notations:
DTD (inherited from SGML)
W3C Schema (“XSD”)
RELAX-NG, often in compact format (“RNC”)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

42

DTD
Focused on element structure of document

Attributes can choose form a small set of types
Legacy: Does not address XML namespaces

Syntax: designed for inclusion
in SGML documents

(needed special syntax to set
it apart from document itself)

Verdict: The old way of doing it, limited expressiveness

<!ELEMENT book (page)+>
<!ATTLIST book
authors-blog CDATA #IMPLIED>

<!ELEMENT page (#PCDATA)>

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

43

W3C Schema ("XSD", "WXS", ...)
Increase expressiveness greatly

Influenced by database schema definition requirements
Full control over both elements and attributes
Large predefined set of datatypes

Syntax: Attempt to use the power of XML itself
(at the cost of limited readability)

Verdict:

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

44

W3C Schema ("XSD", "WXS", ...)
Increase expressiveness greatly

Influenced by database schema definition requirements
Full control over both elements and attributes
Large predefined set of datatypes

Syntax: Attempt to use the power of XML itself
(at the cost of limited readability)

Verdict:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="book">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="page"/>

</xs:sequence>
<xs:attribute name="authors-blog" type="xs:anyURI"/>

</xs:complexType>
</xs:element>
<xs:element name="page" type="xs:string"/>

</xs:schema>

Fr
om

 to
ol

ve
nd

or
s

fo
r t

oo
l v

en
do

rs

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

45

RELAX-NG
Focus on simplicity

re-uses W3C Schema datatype collection
eschews PSVI (Post-Schema Validation Instance)
(no default values that need to be obtained outside the document
itself -- all documents are "standalone")

Syntax
There is an XML syntax
Most designers use more readable
compact syntax ("RNC") today

(there is a one-to-one transformation between both syntaxes)

Verdict: What XML schema designers use today
(Compilers can generate XSD and DTD from RNC)

start = element book {
attribute authors-blog { xsd:anyURI }?,
page+

}
page = element page { text }

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

46

When to use XML?
Default choice! (At least at L7)
Excels most as interchange format for complex structures

Namespaces facilitate extensions by multiple groups in different places

Stable toolset (innovation ≠ mucking around)
User driven, not toolset vendor driven
Open source available (and there is a second source for most anything)
Available for the strangest programming environments

When not to use XML?
Problem is extremely unlikely to get more complicated over time
Needs to run on a toaster (i.e., carrying an XML library to the target is way too
heavy) — or has to be implemented directly in silicon…
Has to be handled at 10 Gbit/s by a washing machine processor

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

47

Simple non-XML example: Bencoding
Strings: length (base 10); a colon; the string. 4:spam ⇔ 'spam'
Integers: an 'i’; the number in base 10; an 'e'. i3e ⇔ 3, i-3e ⇔ -3.
Integers have no size limitation. i-0e is invalid. All encodings with a leading
zero, such as i03e, are invalid, other than i0e, which of course corresponds to 0.

Lists: an 'l’; the elements; an 'e'.
l4:spam4:eggse ⇔ ['spam', 'eggs']
Dictionaries: a 'd’; alternating keys and their corresponding
values; an 'e'. Keys must be strings and appear sorted (as raw strings).
d3:cow3:moo4:spam4:eggse ⇔ {'cow': 'moo', 'spam': 'eggs'}
d4:spaml1:a1:bee ⇔ {'spam': ['a', 'b']}

In use as the protocol encoding for Bittorrent.

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

48

Another non-XML example: JSON
JavaScript Object Notation

draft-crockford-jsonorg-json-04.txt,
MIME type: text/json
null, true/false, Number, String, Array, Hash (“Object”)

Originally intended for feeding data into
JavaScript programs (e.g., in a Browser
environment)

Used e.g. in JSON-RPC

Has become popular as a more data-oriented
alternative to XML

Cf. Apple PLIST format, Bencoding, YAML
All these have no Schema languages!

[
{
"Latitude": 37.7668,
"Longitude": -122.3959,
"City": "San Francisco",
"State": "CA",
"Zip": "94107",
"Country": "US"

},
{
"Latitude": 37.371991,
"Longitude": -122.02602,
"City": "Sunnyvale",
"State": "CA",
"Zip": "94085",
"Country": "US"

}
]

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

49

General Issues with Representation of Text
In the beginning, there was NVT (ASCII + CRLF)

OS-specific variants (Unix: LF, Mac: CR)

Zillions of character codes
Pre-ASCII: TELEX (Baudot), EBCDIC
ASCII variants: DIN 66003 et al. †
ASCII extensions: ISO 8859-1 et al., Windows 1252, ISO-2022-JP, …
Unicode in its transfer encodings: UTF-8, UTF-16

Gateways
Often (believe they have to) transcode and lose some information

Data transparency

Binary contents: Base64 as transfer encoding

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

50

Summarizing 45 Years of Pain

Just use UTF-8!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

51

General Issues with Text-based Encoding
Obviously: character set issue (for user-visible text)

Often ignored so that things just work by chance (or don’t)

Perceived (and sometimes real) message size
Text encoding can be less efficient than binary
Longer identifiers for types, longer value representations (except for strings),
delimiters

Not that great to carry binary blobs around (base64)
Mixtures: e.g., SMTP allows transparent 8 bit encoding
FTP, RTSP, SIP use separate transports for data

Illusion of well-defined semantics
Implied from “human readability”
Tendency for underspecification, may lead to false implied semantics

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

52

Some Further Aspects
Canonical Encoding

Example: Comparison of URIs
Example: Security (digital signatures)

Encoding & Security
S/MIME
OpenPGP
XML DSig

Encoding and Evolvability
Organizational framework
Protocol numbers & registry
Need to carry at least one bit indicating “base line” (i.e. not yet evolved)
Tradeoff: …

Performance
Implementation complexity (incl. code size)
Computational requirements
Bits on the wire

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 53

Short Cases Studies

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

54

Case Study: MSRP
Message Session Relay Protocol

A text-based transport protocol to
carry instant messages (of arbitrary
size) between two endpoints
RFC822-style encoding
Significant overhead

Why not just TCP?
Need to be able to work through relays (because of NATs)
Want to support multiplexing of multiple conversations
(Can easily incorporate MIME types)

Why not use BEEP?
Good question: need to be able to work through relays…
“Not invented here” (real aspect: change control of the protocol)

Notes on the historic evolution
Today: Base MSRP does no longer support relays
Tomorrow: ICE TCP will eliminate the need for them
All the time: Multiplexing could have done more efficiently with STCP
But since we got that far, MSRP stays the way it is…

MSRP bla4711 SEND
To-path:msrp://b.dom.org:9876/abc;tcp
From-path:msrp://a.dom.org:8888/xyz;tcp
Message-ID: 123
Content-Type: text/plain
Success-Report: yes

Hi! How are you doing?
-------bla4711$

“Record Marking”

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

55

Case Study: H.323
Original idea: Extending ISDN-based video conferencing into LANs
Combination of slightly modified Q.931 PDUs

Encoding in some octet-oriented TLV-style variant (relatively light processing)
Re-using and profiling readily defined Q.931 and related PDUs

and User-to-User Information Elements (UUIE)
Encoding in ASN.1 PER to carry all the information that do not fit the ISDN-
tailored Q.931 aspects

Internet use gained importance: UUIE’s role grew
Virtually all relevant information now encoded in ASN.1

Partially redundant to Q.931 IEs (what takes precedence?)
Q.931 primarily overhead that also needs to be done
Seemed a good idea at the time – if you were a company in the ISDN and
conferencing business and wanted to re-use code and knowledge

Probably also helped acceptance in the ITU-T back in 1995/1996

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

56

Case Study: Binary Floor Control Protocol (BFCP)
Developed in the IETF for use with SIP

Request-response + asynchronous notifications
Binary TLV encoding

Usage with SIP — Why is BFCP binary rather than text?
Strong motivation from 3GPP: must work for mobile nodes with minimal overhead
Simple protocol without much extension requirements

Designed to the task at hand
Straightforward data structures, limited degree of nesting

Historical notes
First protocol that actually got done in XCON WG

Benefits from “straight-to-the-point” design (well: and simple tasks)
All other protocols caught in endless modeling, design, and encoding discussions

Now considered as one possible base for general conference control protocol
As are several text-based proposals: fierce discussions to come
Past arguments circle both around concepts and also to a significant degree about text vs. binary

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

57

Excursion: Turning Text into Binary
Compression

Reduce redundancy in encoding after message creation
If optional: need to distinguish uncompressed from compressed from random
messages

Simple application-specific example: DNS
Typical general example: DEFLATE (RFC 1951)

Often little is known about the payload
→ content/application-specific compression needed

Header compression to address common part of (text) protocols
Specific compression schemes: VJ TCP HC, IP/UDP/RTP header compression
Compression framework: ROHC

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

58

Early Header Compression (HC)
TCP/IP Header Compression was pioneered in 1990

Van Jacobson, RFC 1144
TELNET access over very low bandwidth vs. 40 bytes header overhead

Little advantage for Web traffic (large packets)
Renewed interest with IPv6 (RFC2507: IP Header Compression)

Can compress IP header chains

Real-time, conversational traffic (VoIP): small packets
RFC 2508: Compressed RTP

1990s: delta coding technology

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

59

Robust Header Compression
The problem with delta coding: error propagation

No errors on wired links
RFC 2507/2508: Errors can be repaired in one RTT

Significant performance impairment with wireless links
High loss rate
High RTT (interleaving!) in 2G/3G

1999/2000:
LSB encoding instead of delta encoding
Optimistic compression, enhanced by checksum checks

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

60

RFC 3095
Published in July 2001

Robust header compression
for IP/UDP/RTP, IP/ESP,
IP/UDP
Part of 3GPP since Release 4

Typically reduces 40 bytes
of IP/UDP/RTP header to
one byte

Zero-byte variant possible
with link-layer assist
(LLA, RFC 3242)

Recently complemented by
IP-only and UDP-lite variants

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

61

Requirements and Issues
Requirements

Transparency — HC is hop-by-hop; hosts don‘t get to know
Performance — within design bracket
Error Tolerance — does not break when used outside design bracket

Issues
Header compression is “organized layer violation”

Need to track L3-L7 protocols

Headers get bigger (IPv4 IPv6)
New headers are introduced (IPsec, tunneling/mobility, ...)
New options are invented for existing protocols (e.g., for TCP)
New protocols (e.g., DCCP)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

62

HC: Current Work
Complement UDP/RTP ROHC by a TCP ROHC
TCP has changed since RFC 1144 (and RFC 2507)

Large Windows, Timestamps; SACK; ECN

Assumption: Lower error rates (see RFC 3819!)

Various approaches for combining header compression and
lower-layer protocols (e.g., MPLS)

New protocols are being designed with HC in mind
New transport protocol DCCP was reviewed for compressibility
SRTP security scheme was designed to allow compressibility
Self-describing packets are desirable!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

63

Syntax = Bikeshed Color
Everybody can join a discussion about the color of a
bikeshed to be built

Everyone has an opinion
The decision is pretty much inconsequential, so it’s not dangerous to voice it
There is no good way to terminate the discussion

Bikeshed issues can consume a significant part of the decision
making bandwidth
Bikeshed issues tend to be revisited even after decision making

Cf. Megaco (H.248): A coin was tossed to decide “Text or Binary”
The result was “Text”
The Binary faction raised a stink
The final standard says “Binary mandatory, Text optional”
Actual interoperation uses Text

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

64

This is often Religion!
Many people have previous experience in situations where there
were indeed reasons that, e.g., made Text a better choice than
Binary
It is only human to try to re-use this experience in new situations
But the people on a committee don’t share the same experience!

Religious issues

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

65

Concluding Remarks: Rules of Thumb
There are rich resources to choose from…

And there is usually not a single “best choice” identifiable

Cultural compatibility to group
The group of people developing a protocol
The target group of implementers, operational people, …

In non-trivial cases, formal notations can help, if
The notation is stable
The actual designers are familiar (and productive) with it
It is not taken as license to introduce rampant complexity
Tools don’t get in the way (e.g., are readily available and do work right)

Even better if the tools actually contribute, e.g., consistency checks

