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A typical design argument:

“This does not scale…”

Why?
With respect to what?
Does it have to?
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Scalability in General
Common use (not just) in communications

Capability of a system to operate across a range of settings
As opposed to being constrained to a single operational point

Measuring change / evolution of a system property
Depending on a (set of) certain input parameter(s)

Applicability defined by the range of acceptable input parameters
(for the which the resulting system properties are workable)

Closely coupled to resource consumption (and thus fairness)

Relation to complexity theory
Classification of resource consumption of algorithms depending on the input
Complexity classes (order of): O(1), O(n), O(log n), O(nk), O(en)
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Example:
O(n), O(log n), O(n2), O(en)

Operational range
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Scale as a Measure (2)
Example:
O(n), O(log n), O(n2), O(en)
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Areas of Scalability: Network Side
Path length (number of hops, delay, delay variation)

Distance-dependent delay due to speed of light + processing/queuing delay per hop
Local link or same host vs. some 30 hops to Australia
< 1ms on a local link vs. several seconds via GPRS or satellite

vs. minutes or hours or days when talking to a spacecraft (or other remote peers)
Close to constant delay on a local link vs. several seconds jitter via satellite

Incurred by medium access protocol

Loss rate
Virtually no loss on a local wired link vs. <10% loss for Internet traffic
Unpredictable loss rate and pattern for wireless networks
Individual losses (following some distribution) vs. bursty losses

Data rate
Some 100 bit/s acoustic underwater modem vs. Tbit/s fiber optic link

Degree of multiplexing
How much influence does the own traffic have on the network?
Access link vs. backbone link
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Areas of Scalability: Network Side (2)
Particular issue: long fat pipes (“bandwidth x delay” product)

Enabling efficient and quick full utilization without knowing pipe characteristics 
and third party traffic
No problem in traditional wired networks
Example:    ISDN link @ 64 kbit/s x 10ms delay = ~800 Bytes

Delay

Data rate
(“bandwidth”)

Volume = potential data in flight

Only one packet in transit: first bits of packet are received before last bits have been sent

e.g., 1500 bytes
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Areas of Scalability: Network Side (3)
Long fat pipes (High “bandwidth x delay” product)

Many packets can be “in flight”

Delay
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Examples: DVB-S2 geostationary satellite @ 90 Mbit/s x 250ms delay = ~2.8 MB
Fiber optic transatlantic link @ 10 Gbit/s x 25ms delay = ~31 MB 

Volume = potential data in flight
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Areas of Scalability: Application Side
Update or request rate

Measured in operations per second vs. per hour vs. per day vs. per year
Convergence time vs. period between two updates

Item size
Data fitting into a single MTU or not
File size from some 10 bytes to 10 GB (and beyond)

Impact of per operation overhead

Number of entities (users, networks, systems)
How many are active (sending operations)
How must agree on common state as a result of the protocol operation
Dynamics: How does this number vary?

Number spaces
In the protocol (see above) and in the operating system
Example: C10K problem: handling 10,000(s) clients with a server

Requires enough port numbers for demuxing, local identifiers (e.g., file descriptors), …

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

10

Scalability Dynamics
Network characteristics may vary heavily and frequently

Depending on a protocol entity’s own activity
Depending on traffic generated by others
Depending on network routing changes (e.g., in response to failure)

Application characteristics may vary
Size of data items (e.g., file size)
Number of involved systems interacting with one another
(for group communications)
Number of involved systems operating in parallel
(parallel clients for a server)

Variations are usually not predictable
Example: Flash crowds
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Meta Aspect: Complexity
Protocol Complexity

MUST/SHOULD/MAY in the protocol spec, number of options
“Hard + easy = harder than hard”

State machine complexity
E.g., number of state and state transitions, synchronization requirements
# transitions (and interactions) to achieve a result, interdependence of entities

Operation complexity
E.g., parsing protocol messages

Computational complexity
E.g., crypto, routing, and lookup algorithms

Issue of backwards compatibility
Deployment considerations usually require dealing with older versions
Limits the freedom to introduce new functionality and better mechanisms
May lead to additional complexity if special treatment of “legacy nodes” is needed
Evolvability
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Example: IGMPv2 (1)
________________

|                |
|                |
|                |
|                |

--------->|   Non-Member |<---------
|          |                |          |
|          |                |          |
|          |                |          |
|          |________________|          |
|                   |                  |
| leave group | join group | leave group
| (stop timer,      |(send report,     | (send leave
|  send leave if | set flag,        |  if flag set)
|  flag set)        | start timer)     |

________|________           |          ________|________
|                 |<--------- |                 |
|                 |                    |               |
|                 |<-------------------|                 |
|                 |   query received |                 |
| Delaying Member |    (start timer)   |   Idle Member |

---->|                 |------------------->|                 |
|     |                 |   report received |                 |
|     |                 |    (stop timer,    |                 |
|     |                 |     clear flag)    |                 |
|     |_________________|------------------->|_________________|
| query received |        timer expired
| (reset timer if |        (send report,
|  Max Resp Time    |         set flag)
|  < current timer) |
-------------------

Plain IGMPv2 state diagram
for hosts (almost complete)
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Example: IGMPv2 (2)
________________

----------------------------|                |<-----------------------
|                            |                |timer expired |
|               timer expired|                |(notify routing -,      |
|          (notify routing -)|   No Members |clear rxmt tmr)         |
|                    ------->|    Present |<------- |
|                   |        |                |       |         |
|v1 report rec'd |        |                |       |  ------------ |
|(notify routing +, |        |________________|       | | rexmt timer| |
| start timer,      |                    |            | |  expired | |
| start v1 host |  v2 report received|            | | (send g-s  | |
|  timer)           |  (notify routing +,|            | |  query,    | |
|                   |        start timer)|            | |  st rxmt | |
|         __________|______              |       _____|_|______ tmr)| |
|        |                 |<------------ |              |     | |
|        |                 |                    |              |<----- |
|        |                 | v2 report received |              |       |
|        |                 | (start timer)      |              |       |
|        | Members Present |<-------------------|    Checking |       |
|  ----->|                 | leave received |   Membership |       |
| |      |                 | (start timer*,     |              |       |
| |      |                 |  start rexmt timer,|              |       |
| |      |                 |  send g-s query)   |              |       |
| |  --->|                 |------------------->|              |       |
| | |    |_________________|                    |______________| |
| | |v2 report rec'd |  |                          |                   |
| | |(start timer)   |  |v1 report rec'd |v1 report rec'd |
| |  ---------------- |(start timer,             |(start timer,      |
| |v1 host | start v1 host timer)     | start v1 host |
| |tmr ______________V__                        | timer)            |
| |exp'd |                 |<---------------------- |
|  ------|                 |                                           |
|        |    Version 1    |timer expired |
|        | Members Present |(notify routing -)                         |
------->|                 |-------------------------------------------

|                 |<--------------------
------->|_________________| v1 report rec'd |
| v2 report rec'd |   |   (start timer,          |
| (start timer)   |   |    start v1 host timer)  |
----------------- --------------------------

IGMPv2 state diagram
considering backward
compatibility with
IGMPv1 nodes

Note:
Functionality (“fast leave”)
gets lost with presence of
just one v1 host
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Meta Aspect: Complexity (2)
Implementation complexity

CPU requirements (related to operation and computational complexity)
Memory requirements (code, data – related to state machine complexity)
Disk space requirements
Other resources…

Platform scale
Battery operated lightswitch
Tiny embedded systems (TCP stack in 4 KB)
Price-sensitive consumer widget/TV/car
Phone or PDA
Powerful desktop or laptop PC
High-end multi-CPU machines, server farm
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Implementation Scalability
C10K Problem: Examples

Frequency of interactions
Particularly expensive operations such as accepting and closing connections, security, …

Multiplexing and I/O handling
Processes vs. threads vs. single-threaded handling
Issues with system call efficiency (e.g., poll (), select ())

- Solutions: kqueue (BSD) / epoll (Linux)

Processing many events simply takes time
Data access

Seek operations on a hard drive when retrieving file blocks for many clients
- Hard drives are “fast” unless multiplexed
- Example: video-on-demand streaming

System bus bandwidth
I/O subsystem performance

- Example: file transfer from/to a Windows machine (using cygwin)
- Limited to 2–3 MB/s on 1.7 GHz laptop running MS Windows XP

Interaction with other processes on the same machine
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Implementation Scalability (2)
Load balancing

Use of server farms for load sharing
Load distribution e.g. by means of DNS, proxies
Possibly decentralized to improve access locality

And thus also avoid the impact of long paths

Issue: need for synchronizing servers in a farm?
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Operational Complexity
Networks and systems need to be run

How many parameters need to be configured?
How do they interact?
How much coordination (e.g., across different organizations) is needed?
(How) can misconfigurations be detected?
Manual vs. automated process

Monitoring, diagnostics
Which parameters?  Where?  Frequency?   …?

Failures
Graceful degradation vs. complete breakdown
How to track and debug failures?
How much action is needed for recovery?
How long does this take?
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Meta Aspect: Economics
Cost may be associated with data transmission

Rate, volume, packets, QoS, …

Cost is directly associated with implementation complexity
Manpower for system design, implementation, and testing
Devices requirements

Benefit is indirectly associated with protocol complexity
Successful deployments require working and interoperable products
Metcalfe’s law
Complexity creates adoption hurdles

Financial scaling

(cf. Social scaling)
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Limiting Scalability
Scalability is usually another design tradeoff, per parameter

Scalability vs. protocol and implementation complexity, resource utilization, …
Quick results vs. longer term perspectives

Limiting applicability may be dangerous
Protocols may often be used outside their intended areas of application
Exceptions: e.g., intra-system communications in contained environments

Dealing with scaling beyond expectation
Graceful degradation (of quality or functionality)
Clean failure
Make sure the protocol does not run havoc / create damage
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Scalability Mechanisms by Example
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Mechanisms: Timeouts
Path length

Primary impact on delay and delay variation
Packet loss and degree of multiplexing covered below

Issue: Protocols require timers and timeouts
Any statically selected value is likely to wrong in some environment

Limiting factor for efficiency: too large ones may keep the network idle
Cause of unnecessary overhead: too small ones may lead to early retransmissions

Example: NFS used 500 ms

Solution: Adaptive timers
Measure observed RTT and adjust timers accordingly
Use moving averages to avoid oscillation to short-term changes
Take a sufficiently conservative initial values that will not cause harm
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Example: TCP RTO Calculation
TCP Retransmission Timeout (RTO)

Used to determine that a packet got lost and needs retransmission
Typically an indication of network congestion

Side effect: return to slow start operation
Underestimating worse than overestimating

Premature RTO will harm performance seriously (spurious retransmits, slow start!)
Late RTO will delay repair and hence also harm performance

Algorithm
RTTVAR (RTT variation) and SRTT (smoothed RTT); G: clock granularity

Initial RTO = 3s
Upon first RTT measurement (R)

SRTT = R RTTVAR = R/2
RTO = SRTT + max (G, K x RTTVAR)    [K=4]

For each subsequent RTT measurement (R’)
RTTVAR = (1 – β) x RTTVAR + β x | SRTT – R’ | [β = 1/4]
SRTT      = (1 – α) x SRTT + α x R’ [α = 1/8]
RTO        = SRTT + max (G, K x RTTVAR)    [K=4]
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TCP Timeout Example
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Packet loss rate
Loss rate

Example: Go-Back-N vs. SACK
Partially dependent on the degree of multiplexing

Issue: distinguishing congestion losses and corruption losses
E.g., observing RTO as one hint for congestion likelihood

General: congestion control
Reduction of data rate
Reduction of packet frequency

Losses due to bit errors
Forward error correction (bit or packet-based)
Adaptive retransmission schemes
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Mechanisms: Congestion Control
Data rate

Obviously bounded by the slowest link in the path (upper bound)
Dependent on the current network load (and thus variable)
Other factors: delay and packet losses

Issue:  fair resource sharing vs. maximizing resource utilization
Protocol entities operate in unknown and changing environments
Again, no initial value for a data rate can be assumed

Pessimistic assumptions (low rate) may result in underutilization
Optimistic assumptions (high rate) may result in overload and lead to congestion

Solution: dynamic adaptation of data rate 
Many different options for rate adaptation

Not too conservative (to avoid wasting resources)
Not too aggressive (to avoid congestion)
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Example: Simplified TCP Operation

Link
Capacity

Throughput

Time

Slow Start Slow Start Cong. Avoid.Congestion Avoidance

Timeout
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Dealing with Long Fat Pipes
Networks with large delay x bandwidth product

Sufficient bandwidth available
Yet limited communication performance

Issue: peers cannot utilize available capacity
Limitations due to protocol parameters

Example: TCP Window size limited the amount of data in flight to 64 KB
Limitations due to protocol interactions

Examples: Lock-step operation of SMTP initial handshake, of HTTP when downloading 
web pages, of POP3 when downloading emails, of SMB when accessing files

Some solutions
Sufficiently dimensioned parameters (expect the unexpected)

TCP: Window scaling option to multiply advertised window size by 2x

Minimize the number of end-to-end interactions
SMTP, HTTP: pipelining of requests to avoid RTT penalty 
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Real-world Examples: X11 and SMB in LFNs
X11 Protocol

Designed for LANs
Frequent request-response interaction between client and server

Often lock step operation required: operation n+1 depends on result of operation n

Many small successive operations cause poor performance
Link capacity is not the bottleneck

Server Message Block (SMB)
Resource (e.g., file and printer) access in LANs
RPC-style abstraction leads to horrible implementations

Synchronous function calls, apparently assumed to complete in virtually no time
Repeated invocation of the same methods

Extremely poor performance over long delay links (e.g., satellites)
Example: complete file transfer (~15 MB) takes 2.5s in LAN @ RTT=1ms

but requires ~6 minutes @ RTT=1s

General solution: Performance Enhancing Proxies (PEPs) for applications 
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Lock-step Protocols hit an RTT Ceiling
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Impact of Data Rate
Complexity of protocol and algorithmic operations may be limited
by data rate

Different scaling of data rate and processing power
Processing is one potential bottleneck

Examples
Plain packet forwarding vs. policy-based routing

The former works across all wire speeds
The latter is limited to “slower” links (no per packet route calculation possible)

Tradeoff across different crypto algorithms
Public key cryptography operations expensive to compute: limited to small amounts of 
data and occasional use
Symmetric crypto algorithms suitable for higher data rates
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Scaling to large Numbers (1)
…of items, users, systems
Decentralized operation

Also helps with load sharing for implementations

Passive: Caching
Web caches, DNS

Active: Content replication
Streaming servers for media on demand content
Web servers for news agencies

Tradeoff: keeping content current (and synchronized)
How well can applications deal with (slightly) out-of-date data?
Update frequency from server side only (web and streaming servers)
May incur significant complexity with update operations from client
(e.g., distributed databases)
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Example: DNS
Key features

Distributed model: cooperation between servers
Redundant servers: avoid single point of failure in zone

one primary and one or more secondary servers

Hierarchical structure of domain names
For decentralized administration and operation
Straightforward delegation of responsibility

General purpose: not restricted to IP addresses
Could map anything
Stores additional information about domains

Scalability mechanisms
Bottom-up search: exploit locality of requests
Efficiency through caching
Active replication of partial information (DNS servers for domains vs. contents)
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Example: DNS (2)
Decentralization, delegation, locality

Dynamic Delegation Discovery System (DDDS)

netlab.tkk.fi dmn.tzi.org

tkk.fi tzi.org

Root servers
…

.fi .org
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Limits to Caching
Diversity of item access must be limited relative to cache size

Working set must fit
Locality helps

Sufficient number of requests relative to lifetime of cached items

Example: Route caching
Works for AS router with small number of entries in forwarding information base
Does not work for backbone router with large FIB
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Scaling to Large Numbers (2): Deferring Operations

Late binding
Resolve bindings (e.g. name to address mapping) as late as possible
Allows operation with partial knowledge – no global synchronization needed
Example: IP telephony

SIP User Agents may defer address resolution to their local server
- Saves complexity in the endpoint
- Saves communication overhead (as the server may perform efficient caching)

User location is only performed at the called user’s server

Counter-example: DNS
IP address needed for any communication
Name to address resolution carried out by the endpoint

- Requires globally connected naming infrastructure
- Exception (counter-counter-example): HTTP proxies resolve names for their clients

Lazy Evaluation
Do not calculate a result before it is known to be really needed
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Tuesday Summary
Scalability: constant, logarithmic, linear, 
polynomial, exponential relationships
Relative to multiple parameters: (sizes, 
rates, numbers, …)
“Protocol designer’s toolkit”

Adaptiveness (measure and react)
Decentralization, caching, …

Scalability also is about economics
Throw more hardware vs. better design
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Scaling to Large Numbers (3): Hierarchies
“Divide and conquer”

Subdivide the large problem into more manageable pieces

Example: Directory services
E.g., DNS hierarchy

Example: Routing protocols
Autonomous systems
Distinction between Inter-domain and intra-domain routing

Only network prefixes are known outside a domain, internal structure is “hidden”
Network prefixes may be further aggregated

CIDR: Classless inter-domain routing
Aggregation of class C addresses

IP forwarding operation
Across networks based upon IP addresses
Within networks based upon link layer addresses
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Example: Routing Information Protocol (RIP)
Protocol-inherent problems for Distance Vector routing

Limit the applicability to larger networks

Datagram-based route reporting
# items to report vs. MTU size
Incremental reporting: all routes need to be sent once every 30s

Impact on convergence: impossible to tell the absence of an entry

Bandwidth requirements for updating

Instability during routing changes
Convergence to a new consistent view of the network takes a while
Temporary path unavailability or loops observable from the endpoints

Counting to infinity
Need to define infinity so that converging does not take too long
Choice: 16!
Hard limit on network diameter
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Scaling to Large Number (4): Degradation
Accuracy requirements may change depending on the number of 
involved entities

Phone conversation vs. small group discussion vs. lecture vs. concert
But: distributed database transactions

Possible tradeoffs 
Completeness: not all information (state) may need to be known

Select representatives
Allow for incomplete views

Timeliness: state changes may not need to be communicated immediately
Allow temporary inaccuracies

Functionality: not all operations make sense for all group sizes
Example: Repairing packet losses in a TV broadcast with 1 M receivers

vs. repairing packet losses in a three party conference

“Loose coupling”
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Example: RTCP
Provides group membership and reception quality information for RTP sessions

Must scale with the number of group members
Must not take up too much network capacity (rate-limited!)

Overall “RTP session bandwidth”

Default: 5% of the session bandwidth for RTCP
Takes role (sender or receiver) into account
Up to 25% of session members are senders: 3.75% for receivers, 1.25% for senders
More than 25% of session members are senders: share data rate proportionally

Scalable RTCP transmission interval
Based upon the group size, RTCP data rate, average RTCP packet size
Independently observed by all receivers → calculate their own rate

Randomization to avoid synchronization over time
Timer reconsideration in case many nodes enter or leave in parallel

Default minimum: 5s (2.5 seconds for initial packet)
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Scaling to Small and Large Numbers (5)
Careful choice of field sizes and constants required

Avoid fixing if possible
If necessary, use foresight (tradeoff: overhead vs. longevity)

Examples for limiting field sizes and structure
32 bit IPv4 address and its initial (wasteful) address classes
IPv4 option space
TCP window size (see above)
TCP header extension space
Port number size (16 bits) and the range allocation (only 16 K dynamic ports)

Examples for constants
16 = infinity in RIP
Initial RTCP timer, minimal RTCP interval
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Delegation and Roles
Distinct roles with different responsibilities for protocol entities

Motivated by system/network design, efficient protocol operation, robustness
Explicitly assigned (by configuration) vs. self-organizing (inside the protocol)

Supports division of tasks and helps limiting complexity

Examples
OSPF: Designated Router and Backup Designated Router for stub networks

Only one router is responsible for forwarding packets
Similar concepts for multicasting

IGMP: Designated Querier for IGMP membership polling
Peer-to-Peer systems: supernodes vs. regular nodes
Reliable Multicasting: Repair heads, DLRs, Repetitors for local repair (packet 
retransmission) in subgroups or subtrees
Multicast Congestion Control: Current Limiting Receiver (CLR) or Selected 
ACKer to determine acceptable transmission rate
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Concluding Remarks
Scalability means adaptivity

“Optimization” problem for multiple input and output parameters
Adaptation works only in the order of RTT
Beware of oscillation
Tradeoff in various dimensions
But: Don’t let your protocol get too complex

Must be implemented after all

Scale as you need!
But be aware of your requirements

When you don’t know what to expect: be conservative


