Security building blocks — cryptology

TkL Markus Peuhkuri

2008-04-08

Lecture topics

- Cryptology
- Encryption
- Secure hash
- After this lecture, you should know
 - principles of cryptography
 - basic cryptographic algorithms and principles
 - to avoid made mistakes

Security and cryptology

- Information security = crypto?
- A significant art by itself
 ⇒ not something average M.Sc (Eng) must master
- Cryptography only a part of solution
- One need to know
 - which cryptographic methods to select
 - how to use those (and how not to use)
- Significant development in last 30, 10 years

What we like to do?

- 1. Conceal information
- 2. Verify information integrity
- 3. Make sure that we have access to information
- The first two are (somewhat) served with cryptology
- For the third one cryptography may help and may harm
 - because of how many security protocols are designed, DoS with cryptographic methods can be easy: for example in initial handshake the server may need to do complex calculations to determine that the other party is not authorised.

Terminology

Plaintext \mathcal{M} is information we want to protect Ciphertext \mathcal{C} is protected form of \mathcal{M} Enciphering transforms plaintext to ciphertext Deciphering transforms ciphertext to plaintext Key \mathcal{K} is used to decipher ciphertext Public key \mathcal{K}_p anyone can have access to Secret key \mathcal{K}_s only owner may have access to Initialisation Vector \mathcal{IV} is known parameter Message digest $\mathcal{H} = h(\mathcal{M})$, fixed length value

Terminology: Attacks

Attacks to defeat cryptography

Ciphertext only is known, and one tries to find the corresponding plaintext (and the key)

Known plaintext and corresponding ciphertext is known: one tries to find the key

Chosen plaintext attack: attacker can feed plaintexts of one's choice to the system and learn corresponding ciphertexts

Kerckhoffs' six design principles

- 1. The system must be practically, if not mathematically, indecipherable;
- 2. It must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience;
- 3. Its key must be communicable and retainable without the help of written notes, and changeable or modifiable at the will of the correspondents;
- 4. It must be applicable to telegraphic correspondence;
- 5. It must be portable, and its usage and function must not require the concourse of several people;
- 6. Finally, it is necessary, given the circumstances that command its application, that the system be easy to use, requiring neither mental strain nor the knowledge of a long series of rules to observe.

The more secrets the system has, the more brittle it is. A key is the easiest component to change. This principle is also known as Shannon's Maxim [3].

Design principles

- Confusion
 - complex relationship between \mathcal{K} and \mathcal{C}
 - e.g. substitution
- Diffusion
 - no statistical relationship between ${\mathcal M}$ and ${\mathcal C}$
 - one-bit change in \mathcal{M} results change in every bit in \mathcal{C} with $P = \frac{1}{2}$
 - -avalanche effect
 - e.g. transposition

Ciphers

- Substitution cipher
 - plaintext \mathcal{M} enciphers always to \mathcal{C} with key \mathcal{K}
 - Caesar cipher: $\mathcal{C} = (\mathcal{M} + \mathcal{K}) \mod 26, \, \mathcal{K} = 3$
 - modern block ciphers (block size 64 bits (8 bytes: 1.8×10^{19} different blocks) or more)
- One-time pad
 - unbreakable cipher (Vernam cipher)
 - if \mathcal{K} used only once
 - \mathcal{K} as many bytes as \mathcal{M}
 - stream ciphers emulate
- Message digests
 - take arbitrary long \mathcal{M} producing fixed-length digest \mathcal{D}

Block ciphers

- Few basic types
 - SP-networks (substitution-permutation networks)
 - Feistel ciphers
 - * data halved, halves mixed with round function

Block ciphers: operatation modes

Electronic code book (ECB) used as substitution cipher

- same \mathcal{M} encrypts to the same \mathcal{C} with same \mathcal{K}
- vulnerable to cut-and-splice

Cipher block chaining (CBC) uses previous ciphertext $C_{i-1} \oplus M_i$

- initialisation vector \mathcal{IV}^1 \Rightarrow randomises first block $\mathcal{IV} \oplus \mathcal{M}_1$
- still possible to defeat integrity

Output feedback (OFB) used as stream cipher $\mathcal{K}_1 = \{\mathcal{IV}\}_k, \, \mathcal{K}_i = \{\mathcal{K}_{i-1}\}_k$

Counter encryption $\mathcal{K}_i = \{\mathcal{IV} + i\}_k$

• possible to parallelise for high-speed processing

 $\mathbf{Cipher}\ \mathbf{feedback}\ \mathcal{C}$ is encrypted with $\mathcal K$ and XOR with plaintext

• recovers from transmission errors

Message authentication code (MAC) to verify integrity

• CBC mode, all but latest block discarded: keyed hash function

¹Can be embedded into message

Data Encryption Standard (DES)

- Feistel cipher
- Developed by IBM in 1970s, modified by NSA, federal standard (FIPS-46) 1976
- Key length 56 bits
 ⇒ too short nowadays
 - 1998 EFF "Deep Crack" (cost USD250,000) broke DES challenge in 56 hours with brute force
- Four weak and 16 semi-weak keys
- Still usable as Triple DES (3DES)
 - $\mathcal{C} = \mathrm{DES}_{\mathcal{K}_3}(\mathrm{DES}_{\mathcal{K}_2}^{-1}(\mathrm{DES}_{\mathcal{K}_1}(\mathcal{M})))$
 - efficient key length 112 bits, while some advertise 168 bit key The second step could be also DES encryption, but on some hardware-based systems decrypting gives a better performance.

Advanced Encryption Standard (AES)

- $\bullet~{\rm SP}{\operatorname{-network}}$
- Subset of Rijndael (fixed block length 128 bits)
- Efficient also on small systems (smartcards etc.)
 - AES-128 about as fast as DES^2 \Rightarrow 3 times faster than Triple DES
- Key length 128, 196 or 256, the shortest not for Top Secret in US
- FIPS-197

Stream ciphers

- Cryptographic secure pseudo-random number generator
- XOR by bit or by byte (synchronous stream cipher)
- Popular in communications
 - byte-sized: no need to pad blocks
 - simple implementation on hardware: for example A5/1 needs only three shift registers (19, 22, and 23 bits) and some XOR ports
 - fast: RC4 about 5 times faster than AES-128 on software
- Vulnerable to bit-fiddling: if one knows that an interesting bit at position N should be inverted, one can just change it from the bit stream. On the other hand this provides some protection from transmission errors: with block ciphers one will end with a large block of invalid data.
- RC4 used in SSL, WEP
- A5/1 and A5/2 in GSM
- Both have security problems, A5/2 very weak

²On modern 32-bit computer.

Asymmetric ciphers

- Symmetric ciphers provides secrecy only if one can communicate the key to other party secretly
 - \Rightarrow key management becomes problem
- Use a problem that is
 - easy to construct
 - hard solve without
 - specific knowledge (= private key)
- NP-complete problems are good candidates. However, not every NP-complete problem is suitable for asymmetric cipher. For example, knapsack problems were thought to be good algorithms, but they have been broken.
- Can be used to provide a digital signature without third party

RSA

3

- Factoring large numbers is hard
- Public key:
 - -n = pq, p and q large primes
 - e relatively prime for (p-1)(q-1)
- Private key:
 - $d = e^{-1} \mod ((p-1)(q-1))$
- Encrypting: $c = m^e \mod n$
- Decrypting: $m = c^d \mod n$

ElGamal

- Discrete logarithm in a finite field
- $y = g^x \mod p$, prime p, random numbers g < p, x < p
- Public key: y, g, and p
- Private key: x
- Signature: random k (relatively prime for p-1, must be kept secret)
 - $-a = g^k \mod p$, solve b from $M = (xa + kb) \mod (p-1)$
 - verify: $y^a a^b \mod = g^M \mod p$
- Encrypting: $a = g^k \mod p, \ b = y^k M \mod p$
- Decrypting: $M = b/a^x \mod p$

³Ron Rivest, Adi Shamir and Len Adleman

Message digest functions

- Calculating a signature for a long document
 - time-consuming
 - as large (or larger) than the original document
- Verifying document integrity
 - signed digest
 - digest stored or communicated securely. For example, there can be a list of hashes of all system files on read-only media. If any of those is modified, it may be detected by comparing hashes.
- Cryptographic checksum function
 - 1. $\mathcal{H} = h(\mathcal{M})$ easy to compute
 - 2. infeasible to find \mathcal{M} for given \mathcal{H}
 - 3. infeasible to find $\mathcal{M}, \mathcal{M}'$ such that $h(\mathcal{M}) = h(\mathcal{M}')$
 - 4. an one-bit change in \mathcal{M} should result every bit in \mathcal{H} to change with $P = \frac{1}{2}$
- Birthday attack: $2^{\frac{n}{2}}$

Secure hash algorithms in use

 ${\bf MD5}$ designed in 1991

- 128-bit
- some weakness found, maybe insecure for demanding applications
- ${\bf SHA-1}\,$ federal standard 180-2
 - 160-bit
 - original SHA (1993, SHA-0) vulnerable to 2^{39}
 - SHA-1 vulnerable to a collision at 2^{63}
 - longer versions (SHA-2) to 512 bits; not analysed in depth
 - NIST soliciting new proposals to replace

 $\mathbf{RIPEMD-160}$ European algorithm

• 160-bit, also longer ones

HMAC: keyed hash

- Used for authentication with shared secret[2]
- $h(\mathcal{K} \oplus opad||h(\mathcal{K} \oplus ipad||\mathcal{M}))$
 - ipad and opad select different bits 4 from ${\cal K}$
- Protects \mathcal{K} from eavesdropping

What cipher to choice

- How to distribute keys
- What trust model one has
- Any performance constrains
- Using public algorithms gives comfort, as if there is a weakness, it will be publicly known with good probability.
- Beware snake oil: unbreakable, certified, technobabble, secret, military grade, ... [1]

 $^{^4}ipad=0x36..., opad=0x5c...$

Failures on ciphers

- Even if you take a good algorithm, wrong use may result bad security
- A bad algorithm is always bad security
- *Do not modify* a cryptographic algorithm: adding rounds or increasing the key length may result in a weaker algorithm.
- Check that you use cryptographic as planned
 - stream ciphers: use different \mathcal{IV} each time
 - MS Office uses same \mathcal{IV} for all saves of same document

WEP: Wired Equivalent Privacy

- Use of encryption optional
 ⇒ system administration failures
- No key management: use of shared key
- CRC-32 used for integrity check
 - linear algorithm: possible to fix changes with stream cipher bit-fiddling
- \mathcal{IV} only 24 bit
 - wraps around in a day (or faster: 5-10 GiB of typical network data)
 - shared key \Rightarrow same \mathcal{IV} by multiple hosts
 - birthday paradox results same \mathcal{IV} overy few thousand packets
 - 40,000 ARP packets needeed for 50 % break probability

Attacks on WEP

- Statistical analysis for packets with the same \mathcal{IV}
- Injecting known traffic e.g. from the Internet enables decrypting packets with the same \mathcal{IV}
- Using replay attacks to generate traffic, for example ARP packets
- If the RC4 stream for one packet is known, it is possible to send encrypted packets with the same \mathcal{IV}
- Bit-fiddling attacks to change the content or the destination of packets
- Bad software key generators: key space may be 2^{21} , not 2^{64}
- Dictionary attack on keys, like for passwords. You can make attack passively just by capturing a number of packets and trying different passphrases to find out the key.

Key lengths: how long is safe

- How long time the information must stay secret
- Longer key results in more computational load: limits available communication speed or increases energy consumption on mobile devices.
- Symmetric ciphers
 - risk: a fundamental weakness will be found or advances in computing
 - -~64 bit cipher broken: RSA RC5 challenge
 - 128 bits should be OK
 - 196–256 bit AES key for Top Secret

- Asymmetric ciphers
 - risk: advances in mathematics or in computing
 - 576-bit key factored
 - RSA key lengths and same-level symmetric keys prime bits symmetric

Symmoure	10 0100
80	1024
112	2048
128	3072
256	15360

- elliptic curves: double to symmetric keys
- Message digests
 - SHA-1 currently used, retried by 2010
 - SHA-2 algorithms unsure

Some performance figures for 1 KiB blocks

Algorithm	relative speed
DES CBC	1000
RC4	3638
AES 128	921
AES 196	796
AES 256	705
RSA 1024 sign	7 / 1000
RSA 1024 verify	132 / 1000
RSA 4096 sign	0.2 / 1000
RSA 4096 verify	12 / 1000
MD5	4992
SHA-1	3360

Summary

- Bits do not matter (much)
- Important
 - to select the right algorithm for the right use
 - to use algorithm in the right way
- Hardware used may impose some limitations
- For many uses, the performance is not the real problem
 - this may change with multi-core processors: crypto algorithms are hard to make parallel

References

- [1] Matt Curtin. Snake Encryption softoil warning signs: Web referred 2006-03-18, April 1998. ware to avoid. page, URL:http://www.interhack.net/people/cmcurtin/snake-oil-faq.html.
- H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentication, February 1997. RFC 2104. URL:http://www.ietf.org/rfc/rfc2104.txt.
- [3] C.E. Shannon. Communication theory of secrecy systems. Bell Sys. Tech. Journal, 28:656– 715, 1949.