
Security building blocks: protocols

Markus Peuhkuri

2006-03-28

Lecture topics
� Basic security protocols

� Security protocols

� Security problems in protocols

For what are security protocols needed
� Exchanging session keys

� Authenticating

Where to locate encryption
� Link layer

– all communication protected on protected links

– intermediate nodes must be trusted

– popular on wireless links: great need, lower speeds

– problems on high-speed links: many algorithms are not suitable for a parallel process-
ing

– GSM, WEP, PPP Encryption[6]

� Network layer

– end-to-end encryption (if not a tunnel mode)

– all communication between hosts protected

– OS modifications needed, key management

– applications may work as is

– IPSec

� Transport layer

– underlying protocol provides retransmissions

– applications may need to be adapted

– faster to deploy

– transmission layer DoS

– TLS

� Application layer

– application-specific optimisation

– must be implemented for each application

– possibly protects data also when not in transit

– faster to deploy

– PGP, S/MIME

1

Generating keys
� (Session) keys must not be predictable

– Netscape 1.1 used only the time of day, the process ID, and the parent process ID to
generate SSL keys

� True randomness difficult in computers

� Pseudo-random numbers xn+1 = (1103515245xn + 12345) mod 231, x1 = seed1

� Real-world sources

– quantum physics http://www.randomnumbers.info/

– time measurements from events
� keyboard codes and intervals
� mouse movements
� interrupts (disk, network)

� Pool of randomness (in Linux)

– source for cryptographic hash function2

/dev/random does not return more than estimated amount of randomness

/dev/urandom returns as much as wanted
⇒ maybe vulnerable to hash analysis

Key exchange with symmetric ciphers
� Use of trusted third party C

1. A → C : {request for session key to Bob}KA

2. C → A : {KA,B}KA||{KA,B}KB

3. A → B : {KA,B}KB

� Problems

– B does not know with whom to talk

– replay attacks possible

Needham-Schroeder [7]

1. A → C : {A||B||rand1}

2. C → A : {A||B||rand1||KA,B||{A||KA,B}KB}KA

3. A → B : {A||KA,B}KB

4. B → A : {rand2}KA,B

5. A → B : {rand2 − 1}KA,B

� rands used to defeat replay

– must not be repeated

– nonce3

� If a session key is compromised, it is possible to masquerade using old exchange

– use timestamps T [2]
⇒ need for accurate and secure clocks

– use message numbers [8]
⇒ keep track with numbers with each party

1Not a very good generator: period of 231 and lowest bits are not very random.
2strong mixing function
3Designating a lexical item formed for use on a specific occasion.

2

http://www.randomnumbers.info/

Kerberos 5 [5]
� Uses Needham-Schroeder with timestamps

� Provides

secure passwords are not stored on a disk or transmitted over a network

single-sign-on as the user logs in only once for all resources

trusted third-party a central authentication server

mutual authentication as the services are authenticated too

� Assumptions

– denial of service attacks are not handled by Kerberos

– principals keep their keys secret

– passwords are of sufficient strength

– loosely synchronised clocks

– principal identifiers are not recycled

Messages in Kerberos 5

Components: KDC = Key Distribution Center, TGS = Ticket Granting Service

� Uses tickets TA,B = B||{A||AddressA||Tvalid||KA,B}KB

1. A → KDC : {A||TGS}

2. KDC → A : {K
A,TGS}KA||TA,TGS

3. A → TGS : {B||Auth
A,TGS||TA,TGS}

4. TGS → A : A||{KA,B}KA,TGS||TA,B

5. A → B : {AuthA,B||TA,B}
4

6. B → A : {T + 1}KA,B

The last step is optional.

2

1

3
4 5

TGSKDC
PSfrag replacements

A B

Kerberos weakness
� A need for synchronised clocks

– authenticator valid for 5 minutes

� Known plaintext attacks

– fixed fields in messages

– no “salt” used

� Consequences of compromises

– root on KDC

�
all credentials compromised

– Kerberos administrator credentials
� all credentials compromised

4Auth includes recent timestamp encrypted with session key.

3

– root on a server machine
� all services on the machine. If there is some distributed service, such as Andrew

File System (AFS) that shares service principals across multiple machines, all of
those are compromised. Note that no client credentials are exposed expect for
brute-force attack like if captured from a network.

� can impersonate as the server
� all traffic between clients and the server can be decrypted over the period that

same key has been used

– root on a client machine
� cached tickets on that machine
� passwords entered into the machine when compromised. The passwords entered

earlier are not vulnerable as they are not stored after KA,TGS is received.

– user credentials
� the tickets can be used for their lifetime
� if the password is known, then the account is compromised

Public key exchange
� Simple in principle: A → B : {KA,B}KBp

� However, A not authenticated
⇒ A → B : {{KA,B}KAs}KBp

� Where to get KAp, KBp?

– a directory would be mother of all targets
⇒ something not depending integrity of a large, public access database

� Certificate: a token that binds an identity to a key

– tree structure: root is known out-of-band, like information about root certificates are
installed with browser or operating system

– free-form chain: a different trust is placed depending on chain members

X.509 — the Directory authentication Framework
� ITU X.509v3 issued 1993

� Certificate has following components

1. version (=3)

2. serial number that is unique for issuer

3. signature algorithm

4. issuer’s distinguished name

5. validity interval

6. subject’s distinguished name

7. public key information

8. issuer’s unique identifier

9. subject’s unique identifier

10. extensions

11. signature (calculated over other components)

4

Ideal certificate/PKI world
� A certificate for each

– web site

– email sender

– citizen

– corporation, society, community

� Each transaction would become verifiable

� All certificates could be verified using certificate tree

Who do you trust

Obstacles in Certificates
� Bootstrap information needed

– which CAs to select?

– one with USD 1000 / year / server or USD 25 / year: the first with 100% browser
compatibility, the other with 95 – 99% compatibility.

� Transferring trust

� Certificate revocation list (CRL)

– similar to credit card blacklists

– often not used

� Naming identities

– how about namesakes

– identities may not be unique across certificate registries

– implement or rely on a existing registry, such as domain name system but this creates
yet further trust issues.
⇒ complicates implementation

� Certificate information does not give enough information to build trust

� Keeping root secret key really secret

5

OpenPGP [1]
� Based on original PGP developed 1991 by Philip Zimmerman

� Web of trust

– different trust levels

undefined nothing is known

marginal maybe valid

complete key is valid

– keys self-signed

– multiple signatures, with different levels of trust on signatures

unknown nothing is known

none improperly signing one

marginal understands implications and validates keys

full as good as you

� Multiple signatures

Transport Layer Security [3]
� Provides data privacy and confidentiality

– protocol-independent

– supports a large selection of cryptographic algorithms

� TLS Record protocol

– symmetric cryptology for privacy

– reliable connection

– runs top on a reliable byte stream (TCP)

– encapsulates other protocols

� TLS Handshake protocol

– peer identity can be authenticated: optional, but in normal case at least one of the
peers is authenticated using asymmetric cryptography.

– a shared secret negotiated in a secure way, protecting also from man-in-middle attack

– reliable negotiation

TLS handshake

1. C → S : ServerHello,

2. S → C : Sertificate, ServerKeyExchange, CertifacateRequestServerHelloDone

3. C → S : Sertificate, ClientKeyExchangeCertificateVerity, ChangeCiperSpec,Finished

4. S → C : ChangeCiperSpec,Finished

5. C ↔ S : Application Data

6

Internet Key Exchange
� Used for IPSec key exchange (IKE)[4, ?]

� Security association established

– encryption algorithm

– hash algorithm

– authentication method

– Diffie-Hellman modulus

� Main and aggressive mode (IKEv1)

� Maintains security association descriptions

Key storage
� Computer memory

– superuser can read

– other processes by the same user

– may end to a hard disk as a result from paging

� Special hardware on a computer

– may provide key functions

– no access to key

� External token

– can be removed from the system when not in use

– becomes a protected asset

� Smart card

– can keep secret keys internal

– a small system easy to evaluate for security

Summary
� Use encryption and integrity checks on right level

� Avoid protocols that need central point

� Securing one location is easier than securing multiple locations, however

References

[1] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. OpenPGP Message Format. Request for
Comments RFC 2440, Internet Engineering Task Force, November 1998. (Internet Proposed
Standard). URL:http://www.ietf.org/rfc/rfc2440.txt.

[2] Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in key distribution protocols.
Commun. ACM, 24(8):533–536, 1981.

[3] T. Dierks and C. Allen. The TLS Protocol Version 1.0. Request for Comments RFC 2246,
Internet Engineering Task Force, January 1999. (Internet Proposed Standard) (Updated by
RFC3546). URL:http://www.ietf.org/rfc/rfc2246.txt.

[4] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). Request for Comments
RFC 2409, Internet Engineering Task Force, November 1998. (Internet Proposed Standard).
URL:http://www.ietf.org/rfc/rfc2409.txt.

7

http://www.ietf.org/rfc/rfc2440.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2409.txt

[5] J. Kohl and C. Neuman. The Kerberos Network Authentication Service (V5). Request for
Comments RFC 1510, Internet Engineering Task Force, September 1993. (Internet Proposed
Standard). URL:http://www.ietf.org/rfc/rfc1510.txt.

[6] G. Meyer. The PPP Encryption Control Protocol (ECP). Request for Comments
RFC 1968, Internet Engineering Task Force, June 1996. (Internet Proposed Standard).
URL:http://www.ietf.org/rfc/rfc1968.txt.

[7] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, 1978.

[8] Dave Otway and Owen Rees. Efficient and timely mutual authentication. SIGOPS Oper.

Syst. Rev., 21(1):8–10, 1987.

8

http://www.ietf.org/rfc/rfc1510.txt
http://www.ietf.org/rfc/rfc1968.txt

