
Security building blocks: cryptology

Markus Peuhkuri

2006-03-21

Lecture topics
� Cryptology

� Encryption

� Secure hash

Security and cryptology
� Information security = crypto?

� A significant art by itself
⇒ not something average M.Sc (Eng) must master

� Cryptography only a part of solution

� One need to know

– which cryptographic methods to select

– how to use those (and how not to use)

� Significant development in last 30, 10 years

What we like to do?

1. Conceal information

2. Verify information integrity

3. Make sure that we have access to information

� The first two are (somewhat) served with cryptology

� For the third one cryptography may help — and may harm

– because of how many security protocols are designed, DoS with cryptographic methods
can be easy: for example in initial handshake the server may need to do complex
calculations to determine that the other party is not authorised.

Terminology

Plaintext M is information we want to protect

Ciphertext C is protected form of M

Enciphering transforms plaintext to ciphertext

Deciphering transforms ciphertext to plaintext

Key K is used to decipher ciphertext

Public key Kp anyone can have access to

1

Secret key Ks only owner may have access to

Initialisation Vector IV is known parameter

Message digest H = h(M), fixed length value

Attacks to defeat cryptography

ciphertext only is known, and one tries to find the corresponding plaintext (and the key)

known plaintext and corresponding ciphertext is known: one tries to find the key

chosen plaintext attack: attacker can feed plaintexts of one’s choice to the system and
learn corresponding ciphertexts

Kerckhoffs’ six design principles

1. The system must be practically, if not mathematically, indecipherable;

2. It must not be required to be secret, and it must be able to fall into the hands of the enemy
without inconvenience;

3. Its key must be communicable and retainable without the help of written notes, and change-
able or modifiable at the will of the correspondents;

4. It must be applicable to telegraphic correspondence;

5. It must be portable, and its usage and function must not require the concourse of several
people;

6. Finally, it is necessary, given the circumstances that command its application, that the
system be easy to use, requiring neither mental strain nor the knowledge of a long series of
rules to observe.

The more secrets the system has, the more brittle it is. A key is the easiest component to change.
This principle is also known as Shannon’s Maxim [3].

Design principles
� Confusion

– complex relationship between K and C

– e.g. substitution

� Diffusion

– no statistical relationship between M and C

– one-bit change in M results change in every bit in C with P = 1

2

– avalanche effect

– e.g. transposition

Ciphers
� Substitution cipher

– plaintext M enciphers always to C with key K

– Caesar cipher: C = (M + K) mod 26, K = 3

– modern block ciphers (block size 64 bits(8 bytes: 1.8 ∗ 1019 different blocks) or more)

� One-time pad

– unbreakable cipher (Vernam cipher)

– if K used only once

– K as long as M

2

– stream ciphers emulate

� Message digests

– take arbitrary long M producing fixed-length digest D

Block ciphers
� Few basic types

– SP-networks (substitution-permutation networks)

– Feistel ciphers
� data halved, halves mixed with round function

� Operation modes

electronic code book (ECB) used as substitution cipher

– same M encrypts to the same C with same K

– vulnerable to cut-and-splice

cipher block chaining (CBC) uses previous ciphertext Ci−1 ⊕Mi

– initialisation vector IV1

⇒ randomises first block IV ⊕M1

– still possible to defeat integrity

output feedback (OFB) used as stream cipher K1 = {IV}k, Ki = {Ki−1}k

counter encryption Ki = {IV + i}k

– possible to parallelise for high-speed processing

cipher feedback C is encrypted with K and XOR with plaintext

– recovers from transmission errors

message authentication code (MAC) to verify integrity

– CBC mode, all but latest block discarded: keyed hash function

Data Encryption Standard (DES)
� Feistel cipher

� Developed by IBM in 1970s, modified by NSA, federal standard (FIPS-46) 1976

� Key length 56 bits
⇒ too short nowadays

– 1998 EFF “Deep Crack” (cost USD250,000) broke DES challenge in 56 hours with
brute force

� Four weak and 16 semi-weak keys

� Still usable as Triple DES (3DES)

– C = DESK3
(DES−1

K2
(DESK1

(M)))

– efficient key length 112 bits, while some advertise 168 bit key The second step could be
also DES encryption, but on some hardware-based systems decrypting gives a better
performance.

1Can be embedded into message

3

Advanced Encryption Standard (AES)
� SP-network

� Subset of Rijndael (fixed block length 128 bits)

� Efficient also on small systems (smartcards etc.)

– AES-128 about as fast as DES2

⇒ 3 times faster than Triple DES

� Key length 128, 196 or 256, the shortest not for Top Secret in US

� FIPS-197

Stream ciphers
� Cryptographic secure pseudo-random number generator

� XOR by bit or by byte (synchronous stream cipher)

� Popular in communications

– byte-sized: no need to pad blocks

– simple implementation on hardware: for example A5/1 needs only three shift registers
(19, 22, and 23 bits) and some XOR ports

� Vulnerable to bit-fiddling: if one knows that an interesting bit at position N should be
inverted, one can just change it from the bit stream. On the other hand this provides some
protection from transmission errors: with block ciphers one will end with a large block of
invalid data.

� RC4 used in SSL, WEP

� A5/1 and A5/2 in GSM

� Both have security problems, A5/2 very weak

Asymmetric ciphers
� Symmetric ciphers provides secrecy only if one can communicate the key to other party

secretly
⇒ key management becomes problem

� Use a problem that is

– easy to construct

– hard solve without

– specific knowledge (= private key)

� NP-complete problems are good candidates. However, not every NP-complete problem is
suitable for asymmetric cipher. For example, knapsack problems were thought to be good
algorithms, but they have been broken.

� Can be used to provide a digital signature without third party

2On modern 32-bit computer.

4

RSA

3

� Factoring large numbers is hard

� Public key:

– n = pq, p and q large primes

– e relatively prime for (p − 1)(q − 1)

� Private key:

– d = e−1 mod ((p − 1)(q − 1))

� Encrypting: c = me mod n

� Decrypting: m = cd mod n

ElGamal
� Discrete logarithm in a finite field

� y = gx mod p, prime p, random numbers g < p, x < p

� Public key: y, g, and p

� Private key: x

� Signature: random k (relatively prime for p − 1, must be kept secret)

– a = gk mod p, solve b from M = (xa + kb) mod (p − 1)

– verify: yaabmod = gM mod p

� Encrypting: a = gk mod p, b = ykM mod p

� Decrypting: M = b/ax mod p

Message digest functions
� Calculating a signature for a long document

– time-consuming

– as large (or larger) than the original document

� Verifying document integrity

– signed digest

– digest stored or communicated securely. For example, there can be a list of hashes of
all system files on read-only media. If any of those is modified, it may be detected by
comparing hashes.

� Cryptographic checksum function

1. H = h(M) easy to compute

2. infeasible to find M for given H

3. infeasible to find M, M′ such that h(M) = h(M′)

4. an one-bit change in M should result every bit in H to change with P = 1

2

� Birthday attack: 2
n

2

3Ron Rivest, Adi Shamir and Len Adleman

5

Secure hash algorithms in use

MD5 designed in 1991

� 128-bit
� some weakness found, maybe insecure for demanding applications

SHA-1 federal standard 180-2

� 160-bit
� original SHA (1993, SHA-0) vulnerable to 239

� SHA-1 vulnerable to a collision at 263

� longer versions (SHA-2) to 512 bits; not analysed in depth

RIPEMD-160 European algorithm

� 160-bit, also longer ones

HMAC: keyed hash
� Used for authentication with shared secret[2]

� h(K ⊕ opad||h(K ⊕ ipad||M))

– ipad and opad select different bits4 from K

� Protects K from eavesdropping

What cipher to choice
� How to distribute keys

� What trust model one has

� Any performance constrains

� Using public algorithms gives comfort, as if there is a weakness, it will be publicly known
with good probability.

� Beware snake oil: unbreakable, certified, technobabble, secret, military grade, . . . [1]

Failures on ciphers
� Even if you take a good algorithm, wrong use may result bad security

� A bad algorithm is always bad security

�
Do not modify a cryptographic algorithm: adding rounds or increasing the key length may
result in a weaker algorithm.

� Check that you use cryptographic as planned

– stream ciphers: use different IV each time

– MS Office uses same IV for all saves of same document

4ipad=0x36. . . , opad=0x5c. . .

6

WEP: Wired Equivalent Privacy
� Use of encryption optional
⇒ system administration failures

� No key management: use of shared key

� CRC-32 used for integrity check

– linear algorithm: possible to fix changes with stream cipher bit-fiddling

� IV only 24 bit

– wraps around in a day (or faster)

– shared key ⇒same IV by multiple hosts

� Attacks

– statistical analysis for packets with the same IV

– injecting known traffic e.g. from the Internet enables decrypting packets with the same
IV

– if the RC4 stream for one packet is known, it is possible to send encrypted packets
with the same IV

– bit-fiddling attacks to change the content or the destination of packets

– bad software key generators: key space may be 221, not 264

– dictionary attack on keys, like for passwords. You can make attack passively just by
capturing a number of packets and trying different passphrases to find out the key.

Key lengths: how long is safe
� How long time the information must stay secret

� Longer key results in more computational load: limits available communication speed or
increases power consumption on mobile devices.

� Symmetric ciphers

– risk: a fundamental weakness will be found or advances in computing

– 64 bit cipher broken: RSA RC5 challenge

– 128 bits should be OK

– 196 – 256 bit AES key for Top Secret

� Asymmetric ciphers

– risk: advances in mathematics or in computing

– 576-bit key factored

– RSA key lengths and same-level symmetric keys

prime bits symmetric
1024 80
2048 112
3072 128

15360 256

– elliptic curves: double to symmetric keys

� Message digests

– SHA-1 currently used, retried by 2010

– SHA-2 algorithms unsure

7

Some performance figures for 1 KiB blocks

Algorithm relative speed
DES CBC 1000
RC4 3638
AES 128 921
AES 196 796
AES 256 705
RSA 1024 sign 7 / 1000
RSA 1024 verify 132 / 1000
RSA 4096 sign 0.2 / 1000
RSA 4096 verify 12 / 1000
MD5 4992
SHA-1 3360

Summary
� Bits do not matter (much)

� Important

– to select the right algorithm for the right use

– to use algorithm in the right way

� Hardware used may impose some limitations

� For many uses, the performance is not a real problem

References

[1] Matt Curtin. Snake oil warning signs: Encryption soft-
ware to avoid. Web page, referred 2006-03-18, April 1998.
URL:http://www.interhack.net/people/cmcurtin/snake-oil-faq.html.

[2] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentica-
tion. Request for Comments RFC 2104, Internet Engineering Task Force, February 1997.
(Informational). URL:http://www.ietf.org/rfc/rfc2104.txt.

[3] C.E. Shannon. Communication theory of secrecy systems. Bell Sys. Tech. Journal, 28:656–
715, 1949.

8

http://www.interhack.net/people/cmcurtin/snake-oil-faq.html
http://www.ietf.org/rfc/rfc2104.txt

