
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

© 2008 Mikko Kiiski 1

Introduction to
Network Programming
Using Java

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

2

Java starting point
 Development platform

Unix/Linux/Windows available in the department or computing centre
 More information http://www.tkk.fi/cc/computers/
 Using Sun JDK

 Working with development tools
Using IDE (Eclipse, NetBeans, JCreator ...)

Use existing libraries (Apache Commons ...)
 Use of existing protocol implementations is forbidden

Automate compiling (Apache Ant) and testing (JUnit)
 Both programs are available in TKK linux machines

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

3

Java starting point (cont)
 Information sources

Today’s slides and examples

Sun Java Documentation

Examples and tutorials available via search engines

Send mail to assistants (if everything else has failed)

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

4

Some basic things
 ... concerning Java programming in general

Environment
Handling Streams
Handling Channels
Handling byte arrays

 ... concerning network programming
Resolving hostname
Handling address information
Creating Sockets
Sending and receiving data using blocking / non-blocking methods

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

5

Parse Command Line in Java
public static void main(String[] args)

// String array containing the program arguments
// Example iterating through array
for (int i = 0; i < args.length; i++) {

String type = args[i++];
String value = args[i];
if(type.equalsIgnoreCase("-l")){

// use value
setExampleParameter(value);

}
}

Or use the existing packages like:
 - args4j, see https://args4j.dev.java.net/
 - Apache Commons CLI, see http://commons.apache.org/cli/

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

6

Resolve hostname

 Transform a symbolic name into a protocol-specific address
 Select the most suitable implementation for the specific task
 InetAddress class for 32-bit and 128-bit IP addresses used for

unicast or multicast
 InetSocketAddress class is an implementation for the IP address

and port number pair used by sockets for binding and connecting
 API classes

java.net.InetAddress
java.net.InetSocketAddress

 J2SE API Documentation
http://java.sun.com/j2se/1.4.2/docs/api/java/net/InetAddress.htmll

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

7

Socket Creation (blocking)
java.net.Socket
java.net.ServerSocket
java.net.DatagramSocket
java.net.MulticastSocket

java.net.Socket()
 Creates an unconnected socket, with the system-default type of SocketImpl.
java.net.Socket(InetAddress address, int port)
 Creates a stream socket and connects it to the specified port number

at the specified IP address.

java.net.ServerSocket()
 Creates an unbound server socket.
java.net.ServerSocket(int port)
 Creates a server socket, bound to the specified port.

 Opening a socket and using a stream for communication

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

8

Socket Creation (non-blocking)

 Opening a socket and using a channel for communication

java.nio.channels.SocketChannel
java.nio.channels.ServerSocketChannel

InetSocketAddress isa
 = new InetSocketAddress(targetAddrs, targetPort);

// Connect
SocketChannel sChannel

= SocketChannel.open();
sChannel.configureBlocking(false);
boolean connected = sChannel.connect(isa);

if(connected == false){
 sChannel.finishConnect();
}

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

9

Sending data using a blocking
implementation

 Connection-oriented (TCP)
 java.net.Socket(InetAddress address, int port)
 Creates a stream socket and connects it to the
 specified port number at the specified IP address.

 java.net.Socket.getOutputStream()
 Write into OutputStream using suitable classes

 Connectionless (UDP)
 java.net.DatagramSocket(int port)
 Constructs a datagram socket and binds it to the
 specified port on the local host machine.

 java.net.DatagramPacket(byte[] buf, int length, InetAddress
address, int port)
 Constructs a datagram packet for sending packets of
length to the specified port number on the specified
host.

 java.net.DatagramSocket.send(DatagramPacket p)
 Sends a datagram packet from this socket.

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

10

Receiving data using a blocking
implementation

 Data reception (TCP) using Socket
 InputStream Socket.getInputStream()
 Read InputStream using suitable classes

 Data reception (UDP) using DatagramSocket
DatagramSocket.receive(DatagramPacket pPacket)

 Receives a datagram packet from this socket. The DatagramPacket
contains the bytes transmitted.

 To modify socket behaviour check the setter methods of the
specified implementation

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

11

Sending data using a non-blocking
implementation

//
// SocketChannel sChannel

try {
String message = "PD course";
ByteBuffer buf = ByteBuffer.wrap(message.getBytes());
sChannel.write(content);

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

12

Receiving data using a non-blocking
implementation

//
// SocketChannel sChannel
// CharsetDecoder decoder

ByteBuffer dbuf = ByteBuffer.allocateDirect(1024);
CharBuffer cb = null;
int readCount = -1;
try {

dbuf.clear();
readCount = sChannel.read(dbuf);
dbuf.flip();
cb = decoder.decode(dbuf);
dbuf.flip();

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

13

Byte array operations

 Or use existing libraries like
Apache Commons IO http://commons.apache.org/io/api-release/index.html

// array operations
byte[] array = new byte[64];
int arrayLength = array.lenght;
byte[] content = new byte[arrayLength];
System.arraycopy(array, 0, content, 0, arrayLength);

// ByteBuffer
String example = “Hello”;
ByteBuffer buffer = ByteBuffer.wrap(example.getBytes());
ByteBuffer buffer2 = buffer.dublicate();
buffer2.order(ByteOrder.BIG_ENDIAN);
byte[] array2 = buffer2.array();

 Using byte array or java.nio.ByteBuffer

http://commons.apache.org/io/api-release/index.html

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

14

Concurrency
 Event Based (Single Thread Handling many connections)

Event based solution using a java.nio.channels package

 Threads

 For the beginners read tutorials like
http://java.sun.com/docs/books/tutorial/essential/concurrency/
http://java.sun.com/j2se/1.5.0/docs/guide/concurrency/index.html
http://www.ibm.com/developerworks/edu/j-dw-javathread-i.html

//
// ReceiverThread implements Runnable interface
ReceiverThread reveicerConnection = new ReceiverThread();

receiver = new Thread(reveicerConnection);
receiver.start();

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

15

Concurrency using threads (cont.)
 Use worker threads to receive multiple connections for a single

server socket
 while(serverIsRunning){

 // ConnectionHandler is own class implementing the Runnable interface
 ConnectionHandler worker;
 try{

//server.accept() returns a client connection
worker = new ConnectionHandler(server.accept());
Thread t = new Thread(worker);

 t.start();
 } catch (IOException e) {
 // handle the exceptions
 }
 }

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

16

Others (1)

 Try to keep your classes as simply as possible
group a certain set of functionalities into a specified class

 Use design patterns to get a controlled structure for your program
For example Observer – Observable pattern can be used to deliver the

received data for multiple users

© 2008 Mikko Kiiski

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking

17

Others (2)

 Remember always to terminate program and release resources
To handle shutdown signal use addShutdownHook() method for Runtime

class
Runtime.getRuntime().addShutdownHook(new Thread() {

 public void run() {

 System.out.println ("Called at shutdown.");

 }

 });

Other alternative is to use handle() method in sun.misc.Signal class to
catch signals
public static void main(String[] args) throws Exception {
 Signal.handle(new Signal("INT"), new SignalHandler () {
 public void handle(Signal sig) {
 System.out.println(
 "Received a interrupt!!");
 }
 });
 //
 }

