

Peer-to-Peer Media Streaming

Focus On:

How Media is Delivered ?

NOT on locating content or the bootstrapping process

P2P media streaming architecture

- Mesh-Pull
- Tree-Push
 - No infrastructure support
 - With partial support from infrastructure nodes
- CDNs: (not classified under P2P)
 - Full support from infrastructure nodes

Mesh-Pull Architecture

Strong similarity to BitTorrent

- Exchange "buffer maps" and retrieve missing chunks
- Significant difference w.r.t BitTorrent
 - Every chunk has a playback deadline
 - Video chunk scheduling algorithm indispensable
 - Peer selection algorithms:
 - Uses gossip based peer search algorithms
- Many deployed P2P IPTV services use this architecture Examples: PPLive, SopCast, CoolStreaming, TVAnts etc

Mesh-Pull: Overview

Mesh

Mesh-Pull Architecture contd..

- Pros
 - Robustness: suitable for high churn in p2p environment
 - Simple: a important selling point
- Cons
 - High initial start-up time
 - Video switching delays
 - Is the stress to the underlying network higher than Tree-Push architecture ???

Peer-to-Peer Streaming Systems

	Push/ pull	Tree/ Mesh	Buffer	Playout Delay	Startup Delay	Quality
PPLive	Pull	Mesh	2 min	1 min	20 s-2 min	kbit/s bixel
Coolstreaming	Pull	Mesh	2 min	1 min	1 min	– 350 k x 240 p
Anysee	Push	Hybrid	40 s	20-30 s	20 s	: 300 -
SopCast	Pull	Mesh	1 min	1 min	1-5 min	Rate Res

- More
 - CoopNet
 - PALS
 - PROMISE
 - SPLIT Stream
 - Bullet

Tree-Pull Architecture

- Important components
 - Distribution tree construction (ex: based on RTT)
 - Distribution tree maintenance
 - Pro-Active node re-positioning
 - Distribution tree repair (in case of churn)
- Operations related to distribution tree can be
 - Centralized (single entity performs the task) OR
 - Distributed
 - At any instant, more than on entity is trying to make decisions that optimize the distribution

Tree-Pull Architecture contd..

P2P media distribution solutions based on Tree-Pull

- (A) No infrastructure nodes
 - purely based on end users
- (B) With partial support from infrastructure nodes

(A) No Infrastructure nodes

Any Deployment Experience: ESM (End System Multicast) http://esm.cs.cmu.edu/

(B) Partial support from Infrastructure nodes

→ Infrastructure Node

Tree operations:

Interconnecting infrastructure node might use different tree algorithms from the algorithms used for build tree within normal users

Tree-Push Architecture contd..

Pros

- Start-up time is small
- Playback time lag among peers is less
- Tree construction mechanism, can optimize the tree so as to reduce stress on the underlying network

Cons

Stability

Loss of a node affects all other nodes below its hierarchy.

Tree Push Contd..

Stability Issue in Tree-Push

One proposed Solution: Using multiple trees

- Media stream is split into 'n' independent streams
- Each stream is independently decodable
- Construct distribution tree for every stream

So, instability due to churn can be minimized

Comparison: Tree vs. Mesh

	Push	Pull		
Overlay	Maintains multiple transmission trees	Defines partnership mesh and for the whole streaming session Schedules block of packets		
Sign of infeasibility	Reconnection failure	Infeasible transmission schedule		
Delay control	Tree structure	Parent selection and scheduling		
Loss control	Redundancy and retransmission	Redundancy, scheduling, including retransmission and network coding		
Bandwidth utilization	Tree construction and maintenance	Scheduling		
Performance optimization	Tree maintenance	Scheduling and parent reselection		
Resilience to churn	Tree construction and loss control	Mesh maintenance, scheduling, and loss control		
Control cost	Tree maintenance	Mesh maintenance and packet pulling		
Trades resilience for	Redundancy and control	Delay and control		

Summary..

- Many real world P2P streaming solutions use Mesh-Pull
- Tree-Pull architecture have largely been in research stage
- For large scale P2P streaming: Many open questions
 - Improving efficiency of the distribution mechanisms
 - Both in network and application perspectives
 - Avoid carrying duplicate traffic in the link
 - Scalability to large number of users
 - Self-Organizing to adapt changing node dynamics (churn)
 - Heterogeneity in user's contributing bandwidth
 - Asymmetric DSL lines
 - Copyrights: DRM issues
 - Firewalls, NAT

CDN based approach

Not classified under P2P
Use replication of data by large scale deployment of infrastructure nodes
Real World Example: Akamai Content Distribution Network (CDN)

Active Replication: Content Distribution Network (CDN)

CDN based approach contd .. Using CDNs to connect IP Multicast clouds

References & Further reading

▶ IPTV over P2P Streaming Networks: the Mesh-pull Approach, By Xiaojun Heiy, Yong Liuz and Keith W. Ross

► A Measurement Study of a Large-Scale P2P IPTV System

Xiaojun Heiy, Chao Liangz, Jian Liangy, Yong Liuz and Keith W. Ross

Opportunities and Challenges of Peer-to-Peer Internet Video Broadcast

Jiangchuan Liu, Sanjay G. Rao, Bo Li, and Hui Zhang

The Feasibility of Supporting Large-Scale Live Streaming Applications with Dynamic Application End-Points

Kunwadee Sripanidkulchai, Aditya Ganjam, Bruce Maggs, and Hui Zhang

Construction of an Efficient Overlay Multicast Infrastructure for Real-time Applications

Suman Banerjee, Christopher Kommareddy, Koushik Kar, Bobby Bhattacharjee, Samir Khuller