S-38.3152: “NMPS”

Networked Multimedia Protocols and Services

2007–2008, 1st and 2nd period

Jörg Ott jo@netlab.tkk.fi SE 324
Jegadish Devadoss jdevadoss@cc.tkk.fi SE 325
Mikko Kiiski makiiski@netlab.tkk.fi n/a

General

- Architectures and details concerning IP-based multimedia from an Internet perspective
- Lectures: Tuesday, 8 – 10, S1 and Thursday, 10 – 12, S4
- Exercise (assignments + lectures): Wednesday, 14 – 16, S1

- Prerequisites
 - S-38.(2)188
 - Interest in protocols and their technical realization
 - Substantial coding skills (no C/C++ or Java novice)
 - Time for lectures (the slides alone won’t do)

- Suitable for master studies: 5 ECTS points
This Specific Course

- **Experimental:** option to use two terms for the course

Period 1: 18 and 20 September
- Introduction
- Coding background
- First assignment

Period 2: 30 October – 13 December
- Repetition of the above
- All the rest

- **Idea:** allow for more time for the coding assignments

Coding Assignments

- 2-3 Assignments (schedule on the web to be updated)
 - Building on top of one another
 - Create the structure of a communication application
 - Deal with socket i/o and related system calls
 - Interpret standards text and implement packet interpretation/generation
 - Support parameterization and some visualization (no GUIs!)
- C/C++ or Java code supported by us
 - You can also use other languages: **on your own and at your own risk**
 - Do the work on the Unix machines in the department (must at least work there)
 - Details to follow
- **Small groups:** 2 – 3
 - Send one email per group in exactly the following format (one line per group member)
 "Last name:First name:Student ID:email address"
- **Completion:** 3 and 4 weeks, last one until 31 December 2007
 - Send email with tgz or zip archive of source, build environment
 - Present all results interactively in 10-20 minutes per group (early January)
A Note on Group Work

- Assignments organized around small groups
 - Work together: discuss, design, code, ask, understand
 - Split the load (but understand all parts)
 - Share the same assignment results

- You and your group members depend upon each other
 - So, please carry through
 - If you cannot make, let your other group members know
 - If you lose all your other group members, talk to us right away

Exam

- Thursday, 20 December 2007, 13 – 16, S5
- 3 hours time
- Some 10 – 12 questions
- Mostly knowledge + understanding
- Possibly one small problem to solve

- Hints in the last lecture (13.12.)

- Grade based upon the assignments (~30%) and the exam (~70%)
 - But: delivering working assignment results is a must
 - Need to obtain each ≥ 50% of the exam and assignment points
Material

- Lecture slides will be online as PDF
 - SIP lecture slides will only be accessible from TKK workstations

- Primary literature: RFCs and Internet Drafts
 - You can’t read all of them (at least not before the end of next term)
 - But you SHOULD read the core ones (we will point them out)
 - Some are required for assignments (usually only parts!)

- Books (difficult to find!)
 - Colin Perkins: RTP: Audio and Video for the Internet
 - Gonzalo Camarillo and Miguel Garcia: good books on SIP & 3G
 - Henry Sinnreich, Alan Johnston: good overview; not so much detail

- Beware of many bad or outdated ones!

Relation to other Netlab Courses

- 38.(2)188: Computer Networking: prerequisite
 - Some minor overlap

- 38.(3)115: Signaling Protocols: quite some overlap
 - Can be done before or afterwards
 - We focus on IETF-style IP-based multimedia

- Protocol Design (4th period): complementary
 - Will pick up and generalize some of the protocol concepts shown here

- Special Assignment in Networking Technology
 - May be developed based upon the subject discussed here

- Theses
 - IP-based multimedia one of the major research themes
Contents 1: Multimedia in General

1. Traditional (well: partly almost historic) Multimedia Applications
 Packet Real-time Basics

2. Real-time Transport Protocol (RTP)
 RTP Payload Formats and Error Correction

3. Session Announcements (SAP), Descriptions of Multimedia
 Sessions, Media Streams (SDP, SDPng), Internet Media Guides

 Peer-to-Peer Streaming, Real Time Streaming Protocol (RTSP)
 IPTV, Speech Services Control (distributed speech synthesis)

Contents 2: Session Initiation Protocol

5. Introduction: History, Architecture, Terminology
 Basic Signaling: Session Setup, Teardown

6. Registration and User Location
 Advanced SIP signaling, media sessions

7. Security for SIP-based Multimedia: Media Streams and Signaling

8. Issues with NATs and Firewalls
 NAT Traversal for SIP and Media Streams (STUN, TURN, ICE)

9. SIP Service Creation: interfaces, application servers, endpoints

10. SIP for Presence and Instant Messaging, location information

11. SIP für Telephony, QoS, Multimedia Conferencing

12. Real World SIP: Policies, SPAM/SPIT, Configuration, Legal
 Requirements, SIP Equipment
Further Informationen

- Course web page
- Newsgroup
 - opinnot.sahko.s-38.tietoverkkotekniikka
- Some IETF Resources
 - http://www.softarmor.com/sipwg/
 - http://www.softarmor.com/sipping/
 - http://www.softarmor.com/simple/
 - http://www.softarmor.com/xcon/
 - http://www.dmn.tzi.org/ietf/mmusic/
 - http://www.rtsp.org/

IP Multimedia Architecture

Packet Real-time (A/V) Basics
IP Multimedia Applications (1)

- Packet multimedia experiments since 1980s
 - A/V tools + protocols for A/V over IP
 - Conference control protocols

Internet broadcasting (Mbone)
- First IETF Audiocast (1992)
- Broadcasts of IETF WG sessions
 - audio + video + whiteboard (transparencies)
 - enables remote participation (even talks)
- Broadcasting special events
 - talks, concerts, NASA shuttle missions, ...
- Broadcasting “radio” and “television” programs
 - Various channels available today (there was more some time ago)

IP Multimedia Applications (2)

Teleconferences
- Traditional Internet focus: large groups
- Small groups supported as well
- Audio + video + data (whiteboards, editors, ...)
- (Multimedia gaming sessions)
- Examples:
 - seminars and lectures
 - project meetings
 - work group meetings between IETFs
- Gatewaysing where needed (PSTN, ISDN, cellular, …)
vic—Video Conferencing

[yesterday]

vat—Audio Conferencing

Vat is the original, now somewhat dated LBL tool. For audio redundancy coding, use UCL’s rat (robust audio tool).

[yesterday]
IP Multimedia Applications (3)

IP Telephony

- “Special case” of teleconferences
 - point-to-point + (centralized) conference calls

- Gateways to traditional telephony
 - PSTN / ISDN / GSM
 - Include “Intelligent Network (IN)” services
 - PBXes + supplementary services
 - also other IP telephony protocol suites: H.323, skype, …

- Expanding to cover other aspects of interpersonal interaction
 - Instant messaging + personal presence
 - Further application integration, …
Interactive Multimedia, Messaging, Presence:
SIP soft clients, skype, google talk, (mobile) phones

[and today]

IP Multimedia Applications (4)

Multimedia retrieval services

- "Video on demand"-style
 - including "VCR controls": pause/restart/cue review
 - Option: recording multimedia information

- Access to multimedia clips from web browsers
 - Commercial examples: RealAudio/RealVideo, IP/TV, Microsoft

- Often: Internet- / web-based access to live streams
 - "Big Brother", concerts, etc.

- Broadcasting
 - IPTV, TVoDSL, ...
Multimedia streaming & IPTV

- Soft clients
- Mobile phones
- “Set-top Boxes”
- Mac Mini, Dreambox, …
- Television sets?

- Server-based streaming
 - YouTube and the like
- Peer-to-Peer Streaming
 - PPLive

Excursion: IP Multimedia Buzzwords

- Triple play
 - IP access + IP telephony + IP-based television
 - For DSL, cable, …
- Quadruple play (“we need to top this…”)
 - Adds mobility
 - Plain “marketingese”
- Internet Multimedia Subsystem (IMS)
 - Developed by 3GPP/2GPP2
 - IP-based subsystem for advanced multimedia services in UMTS networks
 - “Recent grand idea of the telcos”: use IMS in the fixed access networks, too.
 - Last attempt to take their customers hostage and prevent erosion of margins
 - There is little technical justification—it’s all about customer control and charging!
- Beware of service bundles
 - At least: freedom of choice and privacy are at risk!
Common Requirements

Network infrastructure
- Multicast routing
- Real-time-capable packet forwarding
- Resource reservation or proper provisioning

Transport protocols
- Real-time information (audio / video)
- Non-real-time information (data)

Media encoding standards

Security

Specific requirements

Control protocols
- Setup / teardown of communication relationships
- Call (and conference) control
- (Messaging and presence)
- Remote control of devices (e.g. media sources)

Naming and addressing infrastructure
- User (and service) location
- Billing and accounting (and policing)
- (Legal requirements)
IETF Multimedia Conferencing

- Packet multimedia experiments since the 1980s
 - Audio/video tools + protocols for A/V over IP
 - Conference announcement and control protocols
- First IETF Audiocast (1992)
 - Mbone-based audio transmission from selected IETF working groups
- Since then: IETF sessions on the Mbone
 - Audio + video (+ sometimes slides)
 - Enabling remote participation (even talks)
- Other uses of Mbone conferencing
 - Broadcasting NASA missions, concerts, …
 - Lectures, seminars, project meetings, …

Traditional IETF Conferencing Concept

- Multicast-based
- Loosely-coupled conferences
 - no membership control
 - inexact information about participants
 - provided on a voluntary basis
 - security by encryption
- Public announcements and invitations
 - Convey session parameters, then get out of the way
 - Session Announcement Protocol (SAP), Internet Media Guides (IMG)
 - Session Initiation Protocol (SIP), Real-Time Streaming Protocol (RTSP)
- Conference control
 - Some need perceived; limited success over many years
Conference Establishment & Control

Session Description

1. Create
 - Workshop
 - Descr.: Multimedia Protocols
 - Orig.: J.Ott jo@acm.org 327689113
 - Info: http://www.netlab.tkk.fi/~jo/
 - Start: 02.11.2006 / 10:00
 - End: 02.11.2006 / 12:00
 - Media: Audio PCM 234.5.6.7/39000
 - Media: Video H.264 234.5.6.8/29000

2a. Announcement
 - Announcement Protocol
 - Netnews
 - WWW

2b. Invitation
 - E-Mail
 - Invitation Protocol

2c. Inquiry
 - Streaming Protocol

3a. Join

4. Media streams

IETF Multimedia (Conferencing) Architecture

- Resource Control
- Audio Video
- Session Directory
- Streaming
- Telephony
- Conferencing
- RSVP
- RTP
- SAP
- FLUTE
- RTSP
- SIP
- HTTP
- BFCP
- UDP
- SCTP
- TCP / TLS
- IP / IP Multicast
- Integrated / Differentiated Services Forwarding
Real-time Media over Packets

- Audio / Video are continuous media

- Packet networks transport discrete units
 - digitize media
 - compression
 - packetization

- No additional multiplex (beyond UDP/IP) needed:
 - no separate lines, bit allocations, etc.
 - transport different media in different packets
 - can give different quality of service to different media streams
 - allows different sites to receive different subsets

Real-time Media over Packets (2)

1) analog input signal

2) sampled input signal (implicit compression)
Real-time Media over Packets (3)

3) Quantization (another step of implicit compression)

4) Digital data stream

Real-time Media over Packets (4)

5) optional further compression yields small discrete frames

6) multiple frames or samples are collected to form packets
Real-time Media over Packets (5)

Variation in Transmission Delay

Buffering prior to playout

Playout Delay

× Discontinuous media reproduction

Real-time Media over Packets (6)

Little help needed from transport protocol:

- Retransmission may take too long (interactivity!)

End systems must buffer before playout!

- Jitter in transmission delay due to queueing
- Packet A/V rule #1:
 - jitter is never a problem,
 - worst-case delay is!
- Need a timestamp in packet to be able to play at right time
 - intra-stream timing
 - optionally correlate for inter-stream timing (e.g. lip-sync)
Sources of Delay

- **Sender**
 - Capturing / digitizing delay (+ operating system)
 - Encoding / compression delay
 - Packetization delay

- **Network (potentially highly variable!)*
 - Link propagation delay (order of speed of light)
 - Serialization delay
 - Queuing delay

- **Receiver**
 - buffering delay + potential delay for repair
 - decoding / decompression delay
 - rendering / replay delay (+ operating system)

Jitter vs. Delay

[Diagram showing Jitter vs. Delay with curves and labels for Packet Arrival Probability and Transmission Delay]

Worst Case Delay

© 2007 Jörg Ott
Artificial Upper Bound on Delay

Transmission Delay

Worst Case Delay

Packet Arrival Probability

Reduced overall delay

“Artificial” Packet Loss

T

Dealing with Delay and Jitter

- Dejittering buffer
 - Receive packets and store them
 - Determine playout point
 - Reorder (if necessary)
 - Determine packets lost
 - Related: Error/loss concealment mechanisms of the codec

- Determining playout point: non-trivial
 - Don’t want to be too early (artificial loss increases) nor too late (quality)
 - Make some initial guess
 - Permanently monitor jitter of incoming packets and buffer contents
 - Monitor late packets (“artificial loss”)
 - Voice: adapt (reduce) delay during speech pauses