

Next Generation Session Announcements:

Internet Media Guides (IMGs)

© 2006 Jörg Ott

Observations

- SAP/SDP tied to IP-Multicast-based session model
- Only one distribution scheme: announcement
- Only one type of service: convey multimedia session information
- (Global) IP-Multicast has not prevailed as a distribution platform
- SAP rather experimental
- Was often used for debugging Mbone connectivity
- Summary
 - SAP/SDP too limited
 - Not appropriate as a general solution for distributing session information
 - Traditionally linked to IP-only (and Multicast-only)

Background: Ubiquitous Information Access

"Classic" Broadcasting & Internet Multimedia

Broadcasting has been a different world

(including customer expectations, philosophy)

- Encodings
 - Audio/Video largely compatible (but different quality expectations)
 - Image/text formats/HTML vs. Videotex, MHP, specific markups, tables
- Data transmission
 - IP + UDP/TCP + RTP/... vs. MPEG multiplex (or even analog)
- Addressing
 - IP addresses + ports vs. frequency/channel, PID, satellite position, pol., ...
- Interaction & control
 - RTSP, HTTP, SIP, ... vs. MHP
- But there is a migration towards IP in various areas
 - Content providers, transmission technologies, consumer equipment

Platform/Network-Independent Content Provision

- The same content shall be available via different networks
 - Preferably without repeated authoring
- "Content" used in a broad sense
 - Original media: Audio / video broadcasts, web pages, files, news feeds, ...
 - Supplementary information: background, statistics, subtitles, ads, ...
- Content needs to be globally (or regionally) identifiable
- Content needs to be found
 - Descriptive metadata
 - Availability (scheduling) metadata
- Alternate access methods must be possible
 - Network + network-specific address

© 2006 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY NETWORKING LABORATORY

Internet Media Guides (IMG)

Definition of an IMG (from MMUSIC Charter)

Content:

- A collection of multimedia session descriptions
- Expressed using SDP, SDPng or other metadata formats
- It is used to describe a collection of multimedia sessions (e.g. television programme schedules).

Distribution:

The IMG must be delivered to a potentially large audience (push or pull), who use it to join a subset of the sessions described, and who may need to be notified of changes to the IMG.

$\mathsf{IMG} \approx \mathsf{EPG}$

- Generalized for arbitrary...
 - Types of media
 - Types of sessions and interactions: services!
 - Classes of devices
- Plurality of access methods
 - Physical delivery
 - (Reliable) Broadcast / multicast (push)
 - Interactive retrieval (pull)
 - Provision of full IMGs and of deltas
 - Notification about changes
- Network-independent
 - For the delivery of IMGs
 - For the (request and) transmission of actual media in sessions

The same IMGs should be usable everywhere.

IMG Delivery Models / Operations

IMG Architecture

IMG Envelope: Security Requirements

- Authentication + Integrity validation of contained metadata
 - Must work for complete and delta information
 - Must work across IMG transceivers
 - Aggregation, splitting, filtering of pieces of metadata

Privacy

- Must be able to protect (parts of) contained metadata
 - User protection + access control
- Enable (limited) IMG transceiver functionality

Interdependency with metadata formats

- What to expect from metadata?
- · Granularity of embedded metadata objects
- DRM? → metadata formats

© 2006 Jörg Ott

IMG Envelope

Container for metadata

- Complete, delta, pointers
- Independent of metadata
- · Likely to become some kind of wrapper mechanism
- · Metadata itself defined by other bodies
- Generic management information
 - Identification + version + validity information
 - Content-Type: to identify metadata format
 - Support for security?
 - authentication + integrity information
 - Privacy of content

MIME vs. XML

Envelope Features (1)

- Container for metadata (independent of these)
 - Complete, delta, pointers
 - Metadata itself defined by other bodies
- Version number
 - Determine the most recent (i.e., valid) copy
 - Referenced as basis for delta encoding
- Validity time
 - Period: from, to
- Metadata URI
 - Identifies the metadata element contained in the envelope
 - Helps to deal with fragments
- Content-Type

© 2006 Jörg Ott

• Defines the type of metadata contents

HELSINKI UNIVERSITY OF TECHNOLOGY NETWORKING LABORATORY

Envelope Features (2)

- Support for digital signatures (on parts of the envelope)
- Support for encryption
 - Only partly specified so far
 - May use S/MIME
- Metadata contents:

Inline

External (via pointer)

Envelope Encoding: XML vs. MIME

- Present focus: XML (also used by 3GPP MBMS)
- Example (with SDP as metadata)

```
<?xml version="1.0" encoding="UTF-8"?>
       <metadataEnvelope
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:noNamespaceSchemaLocation="envelope.xsd"
        metadataURI="http/www.example.com/img001/session001.sdp"
        version="1"
         validFrom="2003-12-17T09:30:47-05:00"
         validUntil="2003-12-17T09:30:47-05:00"
         contentType="application/sdp">
         <metadataFragment>
          v=0
          o=jo 2890844526 2890842807 IN IP4 10.33.57.27
          s=SDP Seminar
          c=IN IP4 224.2.17.12/127
          t=2873397496 2873404696
          a=recvonly
          m=audio 49170 RTP/AVP 0
          m=video 51372 RTP/AVP 31
         </metadataFragment>
       </metadataEnvelope>
```

© 2006 Jörg Ott

IMG Metadata

- Past focus on traditional contents
 - Conveying plain TV-schedules
 - Streaming in 3GPP Release 6

Broadening the scope

- Cover services in a more general fashion
- Provide region/location information
- Support personalized inquiries
- Address issues of cost
 - Make offers automatically comparable
- Technical level: enable service discovery (and location)
- Business level: support adequate service selection

IMG URN

- IMGs need to be identified globally
 - In particular, across different networks and providers
- Motivates the use of IMG URNs
- Format

urn:img: ProviderId : DateId : IMGResourceId [: FragmentId]

- ProviderId: domain name
- DateId: Point in time when the domain name was owned by the entity
- IMGResourceld: provider-selected string
- FragmentId: some identifier for a piece of an IMG
- Examples
 - urn:img:example.org:20051021:my-img
 - urn:img:example.org:20051021:my-img:subset
- Mapping to URIs (e.g., HTTP, SIP) to be defined

© 2006 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY NETWORKING LABORATORY

IMG Transports

Need to provide mechanisms for IMG Operations

ANNOUNCE

- Reliable multicast transport protocol: FLUTE + MUPPET
- SUBSCRIBE / NOTIFY
 - Session Initiation Protocol (SIP): Extensions for Subscription/Notification
- QUERY / RESOLVE
 - HTTP
- Identify IMGs properly across protocols: IMG URN (yet tbd.)
 - Mappings to individual protocols for actual processing

IMG ANNOUNCE: Reliable Multicast

Layered Coding Transport (LCT)

- Single sender multicast transport
- Defines single or multi-object delivery across an LCT session
 - Provides identifiers for objects (TOI)
 - Provides session identification (TSI)
- LCT session comprises a group of channels
 - Each identified by the respective (multicast) transport address
- Forward Error Correction (FEC)
 - General container for various FEC schemes
 - Alows to identify payload + provides in-band signaling of FEC parameters
- Asynchronous Layered Coding (ALC)
 - Simple combination of LCT and FEC

© 2006 Jörg Ott

IMG ANNOUNCE: FLUTE Basics

- File Delivery over Unidirectional Transport
- Uses ALC (= LCT + FEC)
 - Fixed parameter sets for the protocol instantiation
- Specifies semantics of objects
 - Files
 - File Delivery Table (FDT)
- FDT
 - XML-based format to carry file attributes (name, location, size, etc.)
 - Carried as Transport Object ID = 0
 - Transmitted in a carrousel style together with files

IMG ANNOUNCE: FLUTE FDT

- XML-based structured information

© 2006 Jörg Ott

IMG ANNOUNCE: MUPPET

- Specific usage of FLUTE for carrying IMG envelopes
- Defines various lower layer parameters
- Defines usage of multiple layers

IMG QUERY / RESOLVE

- "Naturally" maps to HTTP GET + 200 OK
- HTTP URI: http://<hostname>/<resource>?param1¶m2&...
 - Parameters identify IMG version
 - type: full or delta IMG, pointer
 - version requested
 - diffVersion: base for delta IMG
- Querier response format selection
 - Accept: application/img-envelope+xml
 - Provide IMG in envelope format
 - Accept: text/plain, text/html
 - Provide a human-readable description of an IMG as optional fallback
 - Allow for directly returning the plain metadata without envelope?
- 200 OK carries response in body
- HTTP headers used accordingly

© 2006 Jörg Ott

IMG SUBSCRIBE / NOTIFY

- Based upon the Session Initiation Protocol (SIP)
 - Particularly its SUBSCRIBE / NOTIFY mechanism
 - Details to be discussed

SUBSCRIBE / NOTIFY

- Register interest in (part of) an IMG
- Receive an immediate response and updates upon changes
- Soft-state based: subscription times out and needs refreshing

IMG usage of SIP SUBSCRIBE / NOTIFY

- Define SIP event package: img
- Presently suggests a MIME-based IMG envelope
 - Natural choice for SIP
- Content-Type:, Content-Location:
- Content-ID: major.minor, Expires: valid-until

Regionalization & Personalization with IMGs

© 2006 Jörg Ott

IMGs: "Final" Remarks

- In use in 3GPP MBMS
- Stalled in the IETF
- TV industry going various other ways
 - Specific EPGs in DVB
 - TV Anytime forum
 - Web/RSS-based program pages of TV magazines and broadcasters
 - Open source platforms use yet other formats
 - XMLTV

© 2006 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY NETWORKING LABORATORY

Media Streaming in the Internet

- Introduction to Media Streaming
- Real-time Streaming Protocol (RTSP)
- HTTP-based Streaming

Real-time Media Streaming

Retrieving content from a source where

- the content is continuous in nature (e.g. audio, video),
- the content is (potentially) presented to the user before it has been downloaded entirely, and
- there is no human-to-human interaction involved (i.e. latencies are acceptable to a certain degree).

Contrast: interactive, interpersonal communications

© 2006 Jörg Ott	29
HELSINKI UNIVERSITY OF TECHNOLOGY NETWORKING LABORATORY	
Two Types of Streaming	

- Broadcast streaming (non-interactive)
 - Sender transmits media stream according to its own schedule
 - Receivers "tune into a media stream" of interested
 - Receivers have no means to influence the transmission
 - Suitable for multicast / broadcast networks

Interactive streaming

- Sender provides media stream to receivers "on demand"
- Receivers may start / stop transmission
- Receivers may invoke further operations
 Fast forward, search, play offset, ...
- Suitable for P2P sessions or coordinated small groups

Architectural Components

- Content Description
 - Describe type of content, format, access methods, ...
 - SDP, SDPng, ...
- Content Description Delivery / Access Protocol
 - Delivers Content Description
 - HTTP, SMTP, NNTP, SAP, ...
- Content Access (= Media Streaming) Protocol
 - Initiates, controls, and terminates media streams
 - RTSP, proprietary protocols, ...
- Content Delivery (= Media Transport) Protocol
 - Carries the actual content
 - RTP/RTCP, proprietary protocols, ...

Conceptual Overview

Real-Time Streaming Protocol (RTSP)

- RFC 2326 ("buggy", "underspecified")
- draft-ietf-mmusic-rfc2326bis-13.txt
- Interactive streaming control in the Internet
 - Media servers provide media streams to users on demand
 - Content described by presentation descriptions
- "Network Remote Control" of a media server
 - PLAY [and RECORD]
 - Numerous options for media control
 - PAUSE, faster / slower playback, selection of ranges from a stream, ...

© 2006 Jörg Ott

Protocol Characteristics

- Borrows heavily from HTTP
 - Syntax, quite a bit of semantics, parts of the architecture
- Important differences
 - Servers may issue requests, too!
 - Symmetric communication
 - Servers are stateful
 - Different methods
 - Different headers
 - But many HTTP headers re-used
 - Entities (=request/response bodies) only describe content
 - Content itself (=media) is carried out of band
 - e.g. in RTP; also support for interleaving of media with RTSP connection
- Transport: TCP [or UDP]
 - Reliability handled at the RTSP level

rtsp://media-server.tkk.fi/movies/matrix/audio/en

© 2006 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY NETWORKING LABORATORY

RTSP URIs

Schemes:

- rtsp: reliable, connection-oriented (TCP)
- rtspu: potentially unreliable, connectionless (UDP)
- rtsps: secure, reliable, connection-oriented (TLS)
- General scheme:
 - rtsp:// host / local identifier
- Host
 - Should be DNS name
 - Support for IPv4; IPv6 now being added
- Local Identifier
 - Opaque; may be used for aggregate / non-aggregate control

Time in RTSP

SMPTE Timestamps

- SMPTE = Society of Motion Picture Television Engineers
- Measured in hours, minutes, seconds, frames, fractions (subframes)
 29.97 or 25 frames per second (default: 29.97)
- Human readable HHH:MM:SS:FF.ff 3:47:09:10.25

▶ Normal Play Time (NPT ≠ NTP)

- Relative to beginning of stream
- In seconds: SS.fff 10.74
- In human readable time: HHH:MM:SS.fff 3:47:09.314159
- Absolute Time
 - Using ISO 8601 format
 - 20021211T101435.89Z
- (RTP Media Time)
 - Media-specific clock for the RTP timestamp
 - Synchronized with absolute time via RTCP

RTSP Sessions

- Shared state between RTSP client and server
- Establish by SETUP message
- Removed by TEARDOWN
 - Or due to some timeout
- Independent of underlying TCP connections
 - TCP connections may be closed and re-opened during a single RTSP session
- Typically bound to a single presentation
 - in case of SDP, valid for one SDP session (description)
- May contain several RTP sessions
 - e.g. one per media stream

RTSP Request Message

SETUP rtsp://ms.tkk.fi/movies/matrix RTSP/1.0 CSeq: 302 Date: 10 Dec 2002 15:35:06 GMT Session: 47112344 Transport: RTP/AVP;unicast; client_port=4588-4589 <CRLF> [Optional Message Body]

© 2006 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY NETWORKING LABORATORY

RTSP Response Message

RTSP/1.0 200 OK CSeq: 302 Date: 10 Dec 2002 15:35:07 GMT Server: Matrix-Server 0.4.2 Session: 47112344 Transport: RTP/AVP;unicast; client_port=4588-4589;server_port=6256-6257 <CRLF> [Optional Message Body]

RTSP Protocol Operation: ANNOUNCE

- Updates the presentation description actively from the server
 - e.g. add or remove media streams
- May be issued at any time

RTSP Protocol Operation: SETUP

- Initiate an RTSP session
- Reserve resources at the server
 - Server may redirect to other servers (e.g. if busy)
- Convey transport parameters for media sessions
 - Negotiate transport protocol
 - e.g. RTP/UDP vs. tunneling
 - Enable firewalls to open holes

© 2006 Jörg Ott

RTSP Protocol Operation: PLAY

- Start streaming
- Allows to specify a variety of streaming operations
 - Range(s) to play
 - = seek operation
 - E.g. 10-20s; 30-45s; 60s-
 - Forward / backward
 - Speed
 - +3.0
 - 2.5

- Interrupt streaming
 - But keep resources allocated
- May take effect
 - Immediately or
 - At a specified point in time
- PLAY may be used to resume streaming

© 2006 Jörg Ott

RTSP Protocol Operation: TEARDOWN

- Stop streaming
- Terminate RTSP session
 - Free resources
- Takes effect immediately

RTSP Methods

- OPTIONS
- DESCRIBE, ANNOUNCE
- SETUP, TEARDOWN
- PLAY, PAUSE
- REDIRECT
 - May be used by a server to refer a client to a different location
- GET_PARAMETER
 - Retrieve parameter value specified in the header (in the Session: context)
 Returned in 200 OK response body as "Name: value" pairs
 - May be used for keep-alive purposes
- SET_PARAMETER
 - Set value of parameter(s) per response body ("Name: value" pairs)
- [RECORD]

© 2006 Jörg Ott

- Record a media stream at a server
- Underspecified, not really suppored, now removed from base spec

RTSP General Header Fields

(For reference only)

- Cache-Control:
- Connection:
- CSeq:
- Date:
- Timestamp:
- Via:

RTSP Request Header Fields

(For reference only)

- Accept:, Accept-Encoding:, Accept-Language:
- Authorization:
- Bandwidth:
- Blocksize:
- From:
- If-Modified-Since:
- Require:, Proxy-Require:, Supported:
- Referer:
- Scale:, Speed:, Range:
- Session:
- Transport:
- User-Agent:

© 2006 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY NETWORKING LABORATORY

Some Response Status Codes

- 100 Continue
- 200 OK / 201 Created
- 300 Multiple Choices
- 301 Moved Permanently / 302 Moved Temporarily
- 304 Not Modified
- 305 Use Proxy
- 400 Bad Request
- 401 Unauthorized / 407 Proxy Authentication Required
- 403 Forbidden
- 404 Not Found
- 405 Method Not Allowed / 406 Not Acceptable / 408 Request Timeout
- 451 Parameter Not Understood
- 454 Session Not Found
- 455 Method vot valid in this State / 457 Invalid Range
- 461 Unsupported Transport
- 500 Internal Server Error / 501 Not Implemented / 551 Option not Supported

Response Header Fields

(For reference only)

- Accept-Ranges:
- Proxy-Authenticate: / WWW-Authenticate:
- Public:
- Location:
- Range: / Scale: / Speed:
- Retry-After:
- RTP-Info:
- Transport:
- Unsupported:
- Vary:
- Session:

© 2006 Jörg Ott

Entities

- Entities contained in RTSP messages are typically presentation descriptions
 - e.g. an SDP message (Content-Type: application/sdp)
 - Should always fully specify the media stream(s)
- Header fields:
 - Content-Length:, Content-Type:, Content-Encoding:, Content-Base:, Content-Location:, Content-Language:
 - Allow:
 - Last-Modified:, Expires:

Interleaving

- RTSP should use RTP/UDP for media streaming
 - Not always feasible (e.g. firewall, see next slide)

Interleaving of RTSP and media data

- Escape binary data ("\$")
- Define multiple "channels"
- Specify packet length in binary
- Yields a four byte header:
 - Interleaved with RTSP messages
 - Starts right after previous message
 - Length used to determine how many bytes to skip / pass

\$

ch

length

RTSP 2.0

- Presently under development (well advanced)
- draft-ietf-mmusic-rfc2326bis-13.txt
- Tons of editorial changes (readability, coherence, ...!)
- Better state machine descriptions
- Updated (more coherent) semantics for various header fields
 - Significant alignment with SIP based upon experience gained there
- RECORD disappeared from base spec
 - Was underspecified anyway
- Support for NAT traversal upcoming
 - draft-ietf-mmusic-rtsp-nat-04.txt

Firewall Friendliness

- Several means to support RTSP across firewalls
 - Interleaving support
 - Transport: header indicates port numbers, IP addresses, …
 - Firewall logic does not need to parse SDP format
 - SOCKS support
- Still may be insufficient
 - Firewalls may block RTSP in the first place
 - "Last resort": HTTP tunneling
 - Really bad (dubious!)
 - Boils down to a competition between firewall vendors and application developers
 - Defeats the purpose of a firewall in the first place
 - Nevertheless: widely deployed ("HTTP streaming")
 - Apple, Microsoft, …

© 2006 Jörg Ott

RTSP: Implications for Session Descriptions

- Session Announcements (SAP)
 - Session Descriptions (SDP) specifies fixed parameter set
 - May be updated by the server later on
- HTTP-based retrieval of session information
 - SDP specifies fixed parameter set or alternatives
 - Client gets to choose one of these
- RTSP-based session initiation
 - SDP from server describes set of alternatives
 - Clients may choose which one to use
 - · Both sides may update their offering / choice later
- Need for negotiating session parameters
 - Both side may provide suggestions, make choices, and update these
 - Particularly relevant for interactive communications
- Generalized Offer/Answer model for SDP + negotiation with SDPng

"HTTP Streaming"

Tunneling media and control in an HTTP connection

Simplest case

- Start replay before download is complete
- No extensions needed
- Mainly client-side operation
- But: server needs to use appropriate media file format

Alternative: add additional headers (MS)

• Preserve packetization of media within a TCP connection

Old(?) MS HTTP Streaming Format

	0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
	+-
+00	Type Chunk Length
	+-
+04	Sequence Number
	+-
+08	Flags (Unknown) Chunk Length (again?)
	+-
+12	1
	: Chunk Data Block :
	I I
	+ +
	1
	+-

Sample Request Header (1/2)

GET test.asf HTTP/1.0

Accept: */*

User-Agent: NSPlayer/4.1.0.3856"

Host: media_host

Pragma: no-cache,rate=1.000000,stream-time=0,stream-offset=0:0, request-context=1,max-duration=0

Pragma: xClientGUID={c77e7400-738a-11d2-9add-0020af0a3278} Connection: Close

Sample Request Header (2/2)

GET test.asf HTTP/1.0 Accept: */* User-Agent: NSPlayer/4.1.0.3856 Host: media_host Pragma: no-cache,rate=1.000000,stream-time=0, stream-offset=0:0,request-context=2,max-duration=40" Pragma: xPlayStrm=1 Pragma: xClientGUID={c77e7400-738a-11d2-9add-0020af0a3278} Pragma: stream-switch-count=1 Pragma: stream-switch-entry=ffff:1:0 Connection: Close

Sample Response Header

HTTP/1.1 200 OK Content-Type: application/octet-stream Server: Cougar 4.1.0.3920 Cache-Control: no-cache Pragma: no-cache Pragma: features="broadcast"

© 2006 Jörg Ott

Media Resource Control Protocol (MRCPv2)

- Another protocol to control media resources
 - Based upon a proprietary version by Cisco et al. (MRCPv1, RFC 4443)
- Enable a client to task a third entity to perform on its behalf
 - Media stream generation (basic and advanced speech synthesis)
 - Media processing (recording, DTMF/speech recognition, speaker verification)

MRCPv2 Overview (1)

MRCPv2 defines a common framework for rather different application classes

- Commonalities
 - Media stream consumption or generation by a media resource server
 - Control of the media stream generation or processing by the client
 - Report on media stream contents, characteristics, and resource server status
- Text-based protocol
 - Start line + headers + message body
 - Borrows heavily from HTTP and RTSP
 - Yet, subtle differences (later)
 - Message bodies identified by entity headers (using MIME types, etc.)

Symmetric operation

- Both peers can initiate actions: Methods (client->server), Events (server->client)
- Headers + contents to parameterize operations or deliver results

© 2006 Jörg Ott

MRCPv2 Overview (2)

Uses TCP as underlying transport (+ optional TLS)

- Reliability required; limited real-time interaction requirements only (true?)
 - Or do we assume sufficiently well interconnected clients and media resources
- One of more TCP connections multiplexed
 - Concept of logical channels

Uses RTP for media streams

- Explicit correlation to TCP control channels in SDP using new grouping
- Relies on SDP offer/answer (using SIP) for session setup
 - Connection-oriented media (TCP, TLS) as well as RTP sessions

MRCP Packages

Different command sets defined for different packets

- · Building upon a small common subset of protocol elements
- · Otherwise largely independent of one another
- Methods and events, response codes
- Header fields
- Content types (references to externally defined content formats)

One package type per application

- Speech Recognition
- DTMF Recognition
- Basic synthesis
- Speech synthesis
- Speaker verification
- Recording
- Highly specialized for the specific application domain
 - You wonder why all this stuff goes into a single spec

Simple Example: Recording (1)

Methods

- RECORD
- STOP

- start recording
 - stop recording
- START-INPUT-TIMERS
- configuration

Events

- START-OF-INPUT
- RECORD-COMPLETE
- media stream recording has begun
 recording done

- for silence suppression

- where to store recording

- Some useful headers
 - Sensitivity-Level
 - Media-Type
 - Record-URI
 - Trim-Length

Capture-on-Speech

— limit length of recording
 — wait for speech

- what to record

- Various timeouts for input sensing, end of recording, ...
- Message bodies
 - Captured recording (unless stored at a URI)

© 2006 Jörg Ott

Simple Example: Recording (2)

- C->S: MRCP/2.0 386 RECORD 543257 Channel-Identifier:32AECB23433802@recorder Record-URI:<file://mediaserver/recordings/myfile.wav> Capture-On-Speech:true Final-Silence:300 Max-Time:6000
 - S->C: MRCP/2.0 48 456234 200 IN-PROGRESS Channel-Identifier:32AECB23433802@recorder
 - S->C: MRCP/2/0 49 START-OF-INPUT 456234 IN-PROGRESS Channel-Identifier:32AECB23433802@recorder
 - S->C: MRCP/2.0 54 RECORD-COMPLETE 456234 COMPLETE Channel-Identifier:32AECB23433802@recorder Completion-Cause:000 success-silence Record-URI:<file://mediaserver/recordings/myfile.wav>; size=242552;duration=25645

More Media Control

- Media Gateway Control Protocol (MEGACOP)
 - Configuring (PSTN) media gateways for IP telephony
 - Controlling media resource functions in 3GPP
- Media Server Control Markup Language and Protocol
 - Controlling conference servers
 - Controlling Interactive Voice Response (IVR) systems
- MEDIACTL WG in the IETF (newly created last week)
- Lots of non-IETF work (e.g., W3C)
- Gains importance in the context of service creation for interpersonal communications (using SIP)

© 2006 Jörg Ott