

S-38.3150: "NMPS"

Networked Multimedia Protocols and Services

2006–2007, 2nd period

Jörg Ott	jo@netlab.tkk.fi	SE 324
Jegadish Devadoss	jegadish@netlab.tkk.fi	SE 325
Mikko Kiiski	<u>makiiski@netlab.tkk.fi</u>	n/a

© 2006 Jörg Ott

General

- Architectures and details concerning IP-based multimedia from an Internet perspective
- Lectures: Tuesday, 8 10, S1 and Thursday, 10 12, S4
- Exercise (assignments + lectures): Wednesday, 14 16, S1
- Prerequisites
 - S-38.(2)188
 - Interest in protocols and their technical realization
 - Substantial coding skills (no C/C++ or Java novice)
- Suitable for master studies: 4 ECTS points

Coding Assignments

2 Assignments

- Building on top of one another
- Create the structure of a communication application
- Deal with socket i/o and related system calls
- Interpret standards text and implement packet interpretation/generation
- Support parameterization and some visualization (no GUIs!)
- C/C++ or Java code supported by us
 - You can also use other languages: on your own and at your own risk
 - Do the work on the Unix machines in the department (must at least work there)
 - Details to follow
- Small groups: 2 3
 - Send one email per group in exactly the following format (one line per group member) "Last name:First name:Student ID:email address"
- Completion: 3 and 4 weeks, last one until 31 December 2006
 - Send email with tgz or zip archive of source, build environment
 - Present all results interactively in 10-20 minutes per group (early January)

© 2006 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY NETWORKING LABORATORY

Exam

- Friday, 15 December 2006, 13 16, S5
- 3 hours time
- Some 10 12 questions
- Mostly knowledge + understanding
- Possibly one small problem to solve
- Hints in the last lecture (13.12.)
 - No lecture on 14.12.: more time for preparation
- Grade based upon the assignments (30%) and the exam (70%)
 - But: delivering working assignment results is a must

Material

- Lecture slides will be online as PDF
 - SIP lecture slides will only be accessible from TKK workstations
- Primary literature: RFCs and Internet Drafts
 - You can't read all of them (at least not before the end of next term)
 - Will point to a few selected ones recommended for studying
 - Some are required for assignments (usually only parts!)
- Books (difficult to find!)
 - Colin Perkins: RTP: Audio and Video for the Internet
 - Gonzalo Camarillo and Miguel Garcia: good books on SIP & 3G
 - Henry Sinnreich, Alan Johnston: good overview; not so much detail

Beware of many bad or outdated ones!

© 2006 Jörg Ott 5

- 38.(2)188: Computer Networking: prerequisite
 - Some minor overlap

HELSINKI UNIVERSITY OF TECHNOLOGY NETWORKING LABORATORY

- 38.(3)115: Signaling Protocols: quite some overlap
 - Can be done before or afterwards
 - We focus on IETF-style IP-based multimedia
- Protocol Design (4th period): complementary
 - Will pick up and generalize some of the protocol concepts shown here
- Special Assignment in Networking Technology
 - May be developed based upon the subject discussed here
- Theses
 - IP-based multimedia one of the major research themes

Contents 1: Multimedia in General

- 1. Traditional (well: partly almost historic) Multimedia Applications Packet Real-time Basics
- 2. Real-time Transport Protocol (RTP) RTP Payload Formats and Error Correction
- 3. Session Announcements (SAP) and Descriptions of Multimedia Sessions and Media Streams (SDP, SDPng)
- Multimedia Streaming Applications
 Internet Media Guides, Multimedia Broadcasting + IPTV
 Real Time Streaming Protocol (RTSP)
 Speech Services Control (distributed speech synthesis)

© 2006 Jörg Ott

Contents 2: Session Initiation Protocol

- 5. Introduction: History, Architecture, Terminology Basic Signaling: Session Setup, Teardown
- 6. Registration and User Location Advanced SIP signaling, media sessions
- 7. Security for SIP-based Multimedia: Media Streams and Signaling
- 8. Issues with NATs and Firewalls NAT Traversal for SIP and Media Streams (STUN, TURN, ICE)
- 9. SIP Service Creation: interfaces, application servers, endpoints
- 10. SIP for Presence and Instant Messaging, location information
- 11. SIP für Telephony, QoS, Multimedia Conferencing
- 12. Real World SIP Configuration, Legal Requirements, SIP Equipment

Further Informationen

- Course web page
 - http://www.netlab.tkk.fi/opetus/s383150/2006/index.html
- Newsgroup
 - opinnot.sahko.s-38.tietoverkkotekniikka
- Some IETF Resources
 - http://www.ietf.org/charters.html/mmusic-charter.html
 - http://www.ietf.org/charters.html/avt-charter.html
 - http://www.ietf.org/charters.html/sip-charter.html
 - http://www.ietf.org/charters.html/sipping-charter.html
 - http://www.ietf.org/charters.html/simple-charter.html
 - <u>http://www.ietf.org/charters.html/xcon-charter.html</u>
 - http://www.softarmor.com/sipwg/
 - http://www.softarmor.com/sipping/
 - http://www.softarmor.com/simple/
 - http://www.softarmor.com/xcon/
 - http://www.dmn.tzi.org/ietf/mmusic/
 - http://www.rtsp.org/

© 2006 Jörg Ott

IP Multimedia Architecture

Packet Real-time (A/V) Basics

IP Multimedia Applications (1)

- Packet multimedia experiments since 1980s
 - A/V tools + protocols for A/V over IP
 - Conference control protocols

Internet broadcasting (Mbone)

- First IETF Audiocast (1992)
- Broadcasts of IETF WG sessions
 - audio + video + whiteboard (transparencies)
 - enables remote participation (even talks)
- Broadcasting special events
 - talks, concerts, NASA shuttle missions, ...

Broadcasting "radio" and "television" programs

• Various channels available today (there was more some time ago)

© 2006 Jörg Ott

IP Multimedia Applications (2)

Teleconferences

- Traditional Internet focus: large groups
- Small groups supported as well
- Audio + video + data (whiteboards, editors, ...)
- (Multimedia gaming sessions)
- Examples:
 - seminars and lectures
 - project meetings
 - work group meetings between IETFs
- Gatewaying where needed (PSTN, ISDN, cellular, ...)

vic—Video Conferencing

© 2006 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY NETWORKING LABORATORY

vat—Audio Conferencing

Vat is the original, now somewhat dated LBL tool. For audio redundancy coding, use UCL's *rat* (robust audio tool).

🚮 *cisco: Multicast Folks		- 🗆 ×
Alex Bochannek	📕 listen	🔲 talk
Beau Williamson (cisco)	_ 10	
🔲 Beau Williamson (cisco-pc)	¬ "	A.
Bruce Pinsky		
Daniel Alvarez (cisco)		
🗌 Dino @ cisco		
🗌 Dino @ home		
🗌 John Zwiebel		
Liming Wei (cisco)		
Liming Wei (cisco/home)		
🗆 Manoj		
Steven Lin		
	💷 Kee	p Audio
LBL Visual Audio Tool v4.0b2	enu Helj	Quit

© 2006 Jörg Ott

IP Multimedia Applications (3)

IP Telephony

- "Special case" of teleconferences
 - point-to-point + (centralized) conference calls
- Gatewaying to traditional telephony
 - PSTN / ISDN / GSM
 - Include "Intelligent Network (IN)" services
 - PBXes + supplementary services
 - also other IP telephony protocol suites: H.323, skype, ...
- Expanding to cover other aspects of interpersonal interaction
 - Instant messaging + personal presence
 - Further application integration, ...

Interactive Multimedia, Messaging, Presence: SIP soft clients, skype, google talk, (mobile) phones

IP Multimedia Applications (4)

Multimedia retrieval services

- "Video on demand"-style
 - including "VCR controls": pause/restart/cue/review
 - Option: recording multimedia information
- Access to multimedia clips from web browsers
 - Commercial examples: RealAudio/RealVideo, IP/TV, Microsoft
- Often: Internet- / web-based access to live streams
 - "Big Brother", concerts, etc.
- Broadcasting
 - IPTV: "TV broadcast" using IP underneath

Multimedia streaming & IPTV

- Soft clients
- Mobile phones
- "Set-top Boxes"
- Television sets?

© 2006 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY NETWORKING LABORATORY

IP Multimedia Buzzwords

- Triple play
 - IP access + IP telephony + IP-based television
 - For DSL, cable, ...
- Quadruple play ("we need to top this...")
 - Adds mobility
 - Plain "marketingese"
- Internet Multimedia Subsystem (IMS)
 - Developed by 3GPP/2GPP2
 - IP-based subsystem for advanced multimedia services in UMTS networks
 - "Recent grand idea of the telcos": use IMS in the fixed access networks, too.
 - Last attempt to take their customers hostage and prevent erosion of margins
 - There is little technical justification—it's all about customer control and charging!
- Beware of service bundles
 - At least: freedom of choice and privacy are at risk!

Common Requirements

Network infrastructure

- Multicast routing
- Real-time-capable packet forwarding
- Resource reservation or proper provisioning

Transport protocols

- Real-time information (audio / video)
- Non-real-time information (data)

Media encoding standards

Security

© 2006 Jörg Ott

Specific requirements

Control protocols

- Setup / teardown of communication relationships
- Call (and conference) control
- (Messaging and presence)
- Remote control of devices (e.g. media sources)

Naming and addressing infrastructure

User (and service) location

Billing and accounting (and policing)

```
(Legal requirements)
```


IETF Multimedia Conferencing

- Packet multimedia experiments since the 1980s
 - Audio/video tools + protocols for A/V over IP
 - Conference announcement and control protocols
- First IETF Audiocast (1992)
 - Mbone-based audio transmission from selected IETF working groups
- Since then: IETF sessions on the Mbone
 - Audio + video (+ sometimes slides)
 - Enabling remote participation (even talks)
- Other uses of Mbone conferencing
 - Broadcasting NASA missions, concerts, …
 - Lectures, seminars, project meetings, ...

© 2006 Jörg Ott

Traditional IETF Conferencing Concept

Multicast-based

Loosely-coupled conferences

- no membership control
- inexact information about participants
 - provided on a voluntary basis
- security by encryption
- Public announcements and invitations
 - Convey session parameters, then get out of the way
 - Session Announcement Protocol (SAP), Internet Media Guides (IMG)
 - Session Initiation Protocol (SIP), Real-Time Streaming Protocol (RTSP)
- Conference control
 - Some need perceived; limited success over many years

Conference Establishment & Control

Real-time Media over Packets

- Audio / Video are continuous media
- Packet networks transport discrete units
 - digitize media
 - compression
 - packetization
- No additional multiplex (beyond UDP/IP) needed:
 - no separate lines, bit allocations, etc.
 - transport different media in different packets
 - · can give different quality of service to different media streams
 - allows different sites to receive different subsets

© 2006 Jörg Ott

27

HELSINKI UNIVERSITY OF TECHNOLOGY NETWORKING LABORATORY

Real-time Media over Packets (2)

Real-time Media over Packets (3)

© 2006 Jörg Ott

Real-time Media over Packets (6)

Little help needed from transport protocol:

Retransmission may take too long (interactivity!)

End systems must buffer before playout!

- Jitter in transmission delay due to queueing
- Packet A/V rule #1:
 - jitter is never a problem,
 - worst-case delay is!
- Need a timestamp in packet to be able to play at right time
 - intra-stream timing
 - optionally correlate for inter-stream timing (e.g. lip-sync)

Sources of Delay

Sender

- Capturing / digitizing delay (+ operating system)
- Encoding / compression delay
- Packetization delay
- Network (potentially highly variable!)
 - Link propagation delay (order of speed of light)
 - Serialization delay
 - Queuing delay
- Receiver

© 2006 Jörg Ott

- buffering delay + potential delay for repair
- decoding / decompression delay
- rendering / replay delay (+ operating system)

Transmission Delay

Dealing with Delay and Jitter

Dejittering buffer

- Receive packets and store them
- Determine playout point
- Reorder (if necessary)
- Determine packets lost
- Related: Error/loss concealment mechanisms of the codec

Determining playout point: non-trivial

- Don't want to be too early (artificial loss increases) nor too late (quality)
- Make some initial guess
- Permanently monitor jitter of incoming packets and buffer contents
 - Monitor late packets ("artificial loss")
- Voice: adapt (reduce) delay during speech pauses