S-38.148 Simulation of Data Networks

CNCL Simulation Exercise

Contents

1 Introduction

2 Background for the exercise
2.1 The spatial Poisson process with randomly moving points
2.2 Simulation of the process

2.3 Modeling the process oo

3 Exercise
3.1 Practical Instructions L oo
3.2 Simulation task
3.3 Handout requirements, .
3.4 Gettinghelp.

3.5 Returning

ii

Chapter 1

Introduction

The purpose of this exercise is to make you familiar with CNCL simulation library.
You will learn how to create new simulator blocks with C++ by using the objects
and functions provided by CNCL and how to collect statistics from the simulation.

In this exercise we simulate a spatial Poisson process with moving points. The
purpose is to evaluate and verify certain stochastic properties of the process.

Chapter 2

Background for the exercise

2.1 The spatial Poisson process with randomly moving
points

A Poisson point process on a plane is a process, where the number of points in a
given area A obeys the Poisson distribution,

N4 ~ Poisson(cA),

where the intensity o denotes the expected number of points per area element.
Additionally, for two disjoint subsets (with areas A; and Ay) the number of points in
each subset are independent and obey the Poisson distribution with parameters o Ay
and o0A,. Thus, the spatial Poisson process is an extension of the one dimensional
Poisson process.

Consider the entire plane R? and let us assume that at time ¢ = 0 points have been
placed on the plane according to a Poisson process with intensity o. Assume further
that each point has been assigned a velocity v, which is constant, and a direction
of movement taken from a uniform distribution U(0, 27). The velocity of all points
remains the same for all ¢.

The following three properties hold for the process described above.

Property 1 The number of points crossing a differential line element ds obeys a
Poisson distribution with parameter 2° - ds. Thus, for any curve of length L the
number of points crossing the curve obeys a Poisson distribution with parameter
2v. L.

™

Property 2 The probability density function (pdf) of the angle 6 at which the
points are crossing a differential line element ds is given by

f(6) = %cos@, 0e|-n/2,7/2].

CHAPTER 2. BACKGROUND FOR THE EXERCISE 3

Here the angle 6 is relative to the normal vector pointing inside the area whose
perimeter is defined by the curve L, see Figure 2.1.

L

Figure 2.1: Tllustration of 6.

Property 3 Conditioned on that a point crosses a given curve L, the location of the
point on L is uniformly distributed according to U(0, L). This is a direct consequence
of the fact that the intensity of points crossing a differential line element ds is a
constant (Property 1).

Property 4 Assume that the velocity v is not a constant but also a random variable
with pdf f(v) and mean v. Then the pdf of the velocities at which points cross a
differential line segment ds is given by

F(0) = ~uf ()

Furthermore, the number of points crossing a curve L has a Poisson distribution

with intensity A\ equal to
Lov

A= —.

™

Thus, if v = v, the speed distribution does not impact the distribution of the number
of points inside the area.

Property 5: The angle distribution of the velocity vectors is isotropic, i.e., the
angle distribution obeys U(0, 27).

2.2 Simulation of the process

Based on the previous it can be concluded that the movement of the points on the
whole plane R? within a convex subset A can be analyzed, e.g., in simulations in
the following manner.

CHAPTER 2. BACKGROUND FOR THE EXERCISE 4

e From outside the area A, new points arrive into the area according to a Poisson

process with intensity
Lvo
A= —,
0
where L denotes the length of the perimeter of the area A. Thus, we simulate

this process by generating arrivals with inter-arrival times obeying Exp(\).

e Each generated arrival is randomly placed on the perimeter L (location is
uniformly distributed).

e Each point is assigned a velocity v ~ f*(v) (either constant or from a given
distribution), and a direction ¢ that has the pdf f(6) = % cosf, with § €
[—7/2,7/2] (refer to the earlier figure).

e Each point moves in a straight line across the area until it exits the area and
never returns (area A is assumed convex).

2.3 Modeling the process

The system can be seen as an infinite-server queue. The nodes represent jobs that
enter a queue according to the Poisson process introduced in the previous section.
The arriving customers stay in the system a random duration (depending on the
velocity, entry point and arrival angle) and exit the area. Thus, a simple process
model similar to the GI/GI/1 queue model is sufficient, see Figure 2.2.

EV_SAMPLE

EV_JOB
Infinite server
EV_TIMER G EV_TIMER S

Figure 2.2: Illustration of the simulation model.

However, the queue/server object is not anymore a FIFO queue but a system with
(in principle) an infinite number of servers. Thus, the server part only requires

CHAPTER 2. BACKGROUND FOR THE EXERCISE 5

some data structure to which CNCL objects representing the arriving nodes can be
stored. For example, in CNCL a simple linked list for storing any CNCL objects is
the class CNSLList. The class also provides iterator functions for going through
the objects in the list, as well as functions to insert and delete objects.

Note that for storing the necessary state information of each node arriving in the
area, the standard CNJob objects are not sufficient. Thus, you need to derive your
own “job” class for storing the state information.

To get information about the various classes in CNCL, consult the CNCL documen-
tation available on the course web page:

http://www.netlab.tkk.fi/opetus/s383148 /doc/cncl/

Chapter 3

Exercise

3.1 Practical Instructions

CNCL is installed in all workstations in computer class B215. Remote login to the
workstations is also possible, see the list of workstations from

http://www.ee.hut.fi/unix/hardware.shtml.
CNCL also works in the machine
moukari.ee.hut.fi.

In order to be able to do the simulation exercise, you have to go through the following
steps:

1. Copy the necessary files (cnclexer.c and Makefile) from the course webpage to
your working directory.

2. If your default shell is tcsh, write a shell script including the following lines:

setenv LD_LIBRARY _PATH /usr/lib:/usr/local/lib:$LD_LIBRARY _PATH
setenv PATH /opt/csw/gcc2/bin:$SPATH

If your default shell is bash, write a shell script with the following:

LD _LIBRARY PATH=S$SLD _LIBRARY _PATH: /usr/lib:/usr/local/lib
export LD_LIBRARY _PATH
PATH=/opt/csw/gcc2/bin:$PATH

CHAPTER 3. EXERCISE 7

export PATH

Execute the script with the command “source usefile”, where usefile is the
name of your shell script. By default your shell should be tcsh and these com-

mands should work (you can check your shell type with the command “echo
$SHELL”)

3. Edit the source file cnclexer.c: Implement the required methods and the main
program.

4. When you want to compile your program, create first a .depend file with the
command “touch .depend”.

5. Compile the program by “make”.
6. Execute the program with the command “./cnclexer”.

If you need to look at the *.h or *.c files of CNCL classes, the CNCL library is
installed at:

/p/gen/courses/S38/S38.148 /cncl /src/cncl-2.1/

The *.h files are under include-directory and *.c files under lib-directory.

3.2 Simulation task

The purpose of the exercise is to examine certain properties of the spatial Poisson
process with moving points including the influence of velocity distributions. In
summary your task is to:

e Define a suitable model for your simulations, i.e., define the objects and their
roles that will act as the processes sending and receving events (event han-
dlers).

e Implement the objects in CNCL, i.e., the event_handler() methods in the
classes that send event between each other.

e Implement routines for statistics collection for the various metrics to be de-
fined later. The statistics collection requires that you are able to sample the
state of the system at fixed time intervals. Hint: It may be helpful to use
CNMoments objects for statistics collection.

e Implement the main method for controlling the simulation.

CHAPTER 3. EXERCISE 8

We simulate the process in a unit square, i.e., in an area with (z,y) € [0, 1] x [0, 1].
On the average there are 100 nodes in the area, i.e., the intensity per area element
o = 100. Also, two velocity distributions are used:

Constant: v =1

Random: v ~ U(0.25,1.75), i.e., v = 1. Thus,

ff(w) =vf(v) = %v, v € [0.25,175).

The detailed simulation tasks are as follows:

Task 1

Task 2

Task 3

Divide the area [0, 1] x [0,1] in 4 smaller squares (i.e., each with dimensions
0.5 x 0.5). Simulate the system and show that the number of nodes in each
sub-area obeys a Poisson distribution with parameter o A;, where A; is area
of the sub-area, A; = 0.25. In this task it is sufficient to just simulate using a
constant velocity.

Hint: To show that number of points has a Poisson distribution sample the
system at fixed intervals A = 0.5 and compute the number of nodes. From
the statistics compute the mean and the variance (for Poisson distribution
they should be the same). Perform a few independent repeated simulations to
obtain confidence intervals for your estimates.

Now consider the whole area A, i.e., the unit square. Sample the number of
nodes in the area at fixed intervals A = 0.1 (or at even smaller intervals).
Study the correlation between the samples for the two velocity distributions.
In the simulation, remember that the speed of the node crossing into A is drawn
from the density f*(v). What is the time when samples become independent
in both cases? How does the velocity distribution affect this? Can you explain
the observed behavior?

In Task 2 you have obtained an estimate for the sampling interval to ob-
tain independent samples. The final task concerns the the stationary velocity
distribution of the moving points inside A when the velocities are random.
Draw the velocities from f*(v), estimate the stationary velocity distribution
and verify that the distribution of the velocities obeys U(0.25,1.75). To do
this sample the system at the estimated interval between independence, and
collect statistics about the velocity of the nodes. Based on this compute a
histogram (with at least 5 bins or so). Also, indicate confidence intervals for
the histogram values.

Note! All tasks above relate to stationary simulations. Therefore, remember to
implement a warmup period in the beginning before you start the data collection.

CHAPTER 3. EXERCISE 9
3.3 Handout requirements
The following items should be included in your final report:

e All source code with comments
e Graphs/tables of the simulation results

e Brief analysis of the results

3.4 Getting help

Two sessions will be organized, where students will be able to get personal help from
the exercise assistant. Help is also available to English speaking students. The time
and place of the sessions are:

e Session 1: Fri, Oct 20 (week 42), at 10-12 o’clock in B215

e Session 2: Tue, Oct 31 (week 44), at 14-16 o’clock in B215

You can additionally send e-mail to the assistant responsible for the project work
Tuomas Tirronen (email: tuomas@netlab.hut.fi).

3.5 Returning
The deadline of the exercise is
e Mon, November 6, at 12 o’clock.

Return your report and codes via e-mail to tuomas@netlab.hut.fi

