
16.10.2006 1

S-38.3148 Simulation of data networks / ns2

NS2: Contents

• NS2 – Introduction to NS2 simulator

• Some NS2 examples

• NS2 project work instructions

16.10.2006 2

S-38.3148 Simulation of data networks / ns2

Internet and TCP

• Internet (currently) offers only best effort service

– packets are delayed

– packets are lost

– packets are misordered

• TCP: end-to-end reliable byte stream

– window based flow control

• each received packet is acknowledged

• lost packets are retransmitted

– window size, w, defines an upper bound on number of unacknowledged packets

• during one round trip time, RTT, at most w packets can be sent

• thus, sending rate ~ w/RTT

NET
1

NET
2

NET
n

HTTPFTP

TCP UDP

IP

NV TFTP

L1

L2

L3

L4

16.10.2006 3

S-38.3148 Simulation of data networks / ns2

Internet congestion control

• Original TCP

– sender starts sending immediately with max window size that receiver’s buffers allow

– works as long as network only lightly loaded (users not able to overload network)

– early 1980’s: series of “congestion collapses”

• during overload network is only carrying retransmitted packets and (almost) no

fresh offered traffic ⇒ need for congestion control

• TCP congestion control principles

– idea: modify window size adaptively based on “available capacity”

• assumption: packet losses caused by congested buffers (not bit errors)

– TCP is an adaptive system with feedback in form of packet losses

• losses interpreted as indications of congestion and are detected through timeouts

(slow response) and so called duplicate ACKs

• delayed feedback due to RTTs

– congestion control implemented by following algorithms

• slow start, additive increase-multiplicative decrease (AIMD), fast retransmit, fast

recovery

16.10.2006 4

S-38.3148 Simulation of data networks / ns2

• Slow start

– window increased exponentially until packet loss occurs (loss event means that

network capacity has been reached) or to reach congestion avoidance threshold

• AIMD

– after reaching threshold (window size just before loss/2) switch to linear increase

(congestion avoidance)

• Fast retransmit

– detect loss from duplicate ACKs, eliminates TO periods

TCP Tahoe

TO loss

time

s
e
n
d
in
g
 r
a
te

ACK loss

TO loss
ACK loss

TO period TO period

16.10.2006 5

S-38.3148 Simulation of data networks / ns2

TCP Reno

• Fast recovery

– assume large window sizes and a large bandwidth-delay product

– if one packet is lost, other ACKs are still received ⇒ use these to resend lost packet

(fast recovery) and new packets

– after loss, start directly from AIMD threshold, i.e., w/2 (multiplicative decrease), and

continue with linear increase (AIMD, congestion avoidance)

– ⇒ eliminates slow starts for duplicate ACK losses

TO loss

time

s
e
n
d
in
g
 r
a
te

3 x ACK loss

TO loss
3 x ACK loss

TO period TO period

16.10.2006 6

S-38.3148 Simulation of data networks / ns2

TCP performance: greedy flows

• TCP throughput influenced by packet loss and RTT, but how?

• Simple models:

– Floyd’s deterministic model

• window grows linearly from w/2 to w and after reaching w, packet is lost

packets sent / lost packet

– Doing the analysis more carefully ⇒ Padhye’s equation

• Includes impact of timeouts

pRTTRTT

w
rate

w
p

ww
ww

⋅

⋅==⇒=⇒

≈++++⇒

1

3

8

3

8

8

3
)1

2
(

2

2

2
L

()



















+









+

≈
2

0

max

321
8

3
3,1min

3

2

1
,min)(

pp
bp

T
bp

RTT
RTT

W
pT

16.10.2006 7

S-38.3148 Simulation of data networks / ns2

TCP performance: flow level model (1)

• In reality TCP flows come and go randomly…

• DPS (Discriminatory Processor Sharing)

– consider a processor sharing system where we have M classes of jobs

– class-k jobs arrive according to a Poisson process with rate λ
k

– class-k jobs require an exponentially distributed amount of time with mean 1/µ
k

– class-k jobs have a weight g
k
and jobs share the processor in a weighted manner such

that the fraction of the processor allocated to class-k jobs equals

– then the mean class-k delay can be solved from the system of linear equations

Mk

g

g

W

g

g
W

k

M

j

j

k

kj

jj
M

j

j

k

kj

j

k ,...,2,1,
1

1
11

==

+

−



















+

− ∑∑
==

µ
µµ

λ

µµ

λ

∑
=

M

j

jj

k

Ng

g

1

16.10.2006 8

S-38.3148 Simulation of data networks / ns2

TCP performance: flow level model (2)

• Assuming that throughput of a TCP flow in class k can be approximated by

, the ratio gi/gj becomes

• Observe that for a given TCP sender, the RTTs are random

– simplest approximation for class-k RTT is to assume it consists of only the propagation

delays (remember that RTT means by definition the total delay in both directions)

– this is more accurate the less the random queuing delays impact the RTT

• Other parameters

– flow arrival rate equals λ
k
and the parameter 1/µ

k
equals B/C, where B is the mean file

size (file sizes are assumed to be exponentially distributed) and C is the bottleneck bw

• Throughput of a class-k flow, denoted by Tk, is by definition the mean file size

divided by the average class-k transfer time, i.e.,

()pRTTc
k
*/

i

j

j

i

RTT

RTT

g

g
=

k

k

W

B
T =

16.10.2006 9

S-38.3148 Simulation of data networks / ns2

The ns2 assignment

• We perform flow level simulations of TCP

– event scheduling handled from Otcl level

– scheduling concerns arrival and departure of flows

– a skeleton code for handling this is given

• Your task is to…

– create the topology,

– implement the main program for controlling the simulation,

– implement the final computation of performance statistics

• We consider two scenarios

– Task1 & Task2

16.10.2006 10

S-38.3148 Simulation of data networks / ns2

Some hints for programming (1)

• Creating an array of TCPs

– you can create an array in TCL without declaring it first

– example: creating 10 TCPs, configuring them and storing them in the array tcp()

for {set nn 0} {$nn < 10} {incr nn} {

set tcp_s($nn) [new Agent/TCP/Reno]

$tcp_s($nn) set packetSize_ 1460

$tcp_s($nn) set window_ 1000

$tcp_s($nn) set fid_ $nn

. . .

}

– multidimensional arrays: for example, $tcp_s(2,3) = tcp-agent in class 2 and id 3

16.10.2006 11

S-38.3148 Simulation of data networks / ns2

Some hints for programming (2)

• Accessing lists

– lists can be initialized easily

– operations for lists:

• llength : length of the list

• lindex : pick element at given index from the list

• lappend : insert element

• lreplace : search and replace

– Example:

set a {1 2 3 4}

set b [lindex $a 1] (=> b = 2, indexing starts from 0)

lappend $a 5 (=> a = {1 2 3 4 5})

