
16.10.2006 1

S-38.3148 Simulation of data networks / ns2

NS2: Contents

• NS2 – Introduction to NS2 simulator

• Some NS2 examples

– RED example

– Enhanced RED example

• NS2 project work instructions

16.10.2006 2

S-38.3148 Simulation of data networks / ns2

Example 1

• Task

– simulate a queue operating under RED control

• using elementary topology

• traffic is a superposition of greedy TCP sources

– measure instantaneous queue length

– file: redtcp.tcl

16.10.2006 3

S-38.3148 Simulation of data networks / ns2

Running the tcl-scripts (1)

• Ns2 is not installed in the machines of B215

• Ns2 can be found on the Linux machines in Maarintalo (maintained by
Computing Center)

– rooms Maari A and Maari C

• Take a remote connection to one of the Linux machines in Maari A/C
– E.g., listing of the machines in Maari A can be found from

http://www.hut.fi/atk/luokat/Maari-A.html

• Save the example ns2/tcl files from course homepage in your directory
– Example 1: redtcp.tcl
– Example 2: redtcpmain.tcl and redtcpsub.tcl

16.10.2006 4

S-38.3148 Simulation of data networks / ns2

Running the tcl-scripts (2)

• In order to be able to use ns2, you first have to do the following
– Type in your shell

source /p/edu/s-38.180/usens2.csh

– This file contains the required settings for environment variables
– Give this command each time you start an ns2 session in a shell

• After that you can use ns2 simply by writing in your shell

ns my_script.tcl

• Top directory where ns2 source files are is:
– /p/edu/s-38.180/src/ns-2.1b9a_standard/

16.10.2006 5

S-38.3148 Simulation of data networks / ns2

TCP

• Provides reliable file transfer over Internet

• Includes functionality for congestion control
– contains many sophisticated algorithms for realizing congestion control
– Basic idea: increase rate slowly, but decrease quickly when facing congestion
– Congestion detected from packet losses (i.e., TCP only reacts to losses)
– Example of ideal TCP rate behavior shown below

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30

40

50

10

10.0

16.10.2006 6

S-38.3148 Simulation of data networks / ns2

RED

• RED (Random Early Detection/Drop)
– Active Queue Management (AQM) method proposed by S. Floyd
– designed to cooperate with TCP-friendly congestion control
– tries to prevent buffer overflows by discarding packets prior to the buffer becoming full

• TCP friendly rate control reacts to packet losses and (some) sources slow down
their sending rates ÿ serious congestion is avoided

• packet dropping probability depends on load

• RED algorithm (approximately)
– for each arriving packet, compute exponentially

averaged queue length (≈ load), sn

– drop packet with probability

snTmin Tmax

p(sn)

pmax

1

0

() nnn qss ββ +−= −11

()

�
�
�

��
�

�

>

≤≤
−

−
<

=

max

maxmin
minmax

minmax

min

,1

,

,0

Ts

TsT
TT

Tsp
Ts

p

n

n
n

n

n

16.10.2006 7

S-38.3148 Simulation of data networks / ns2

• Traffic sources
– greedy TCP Reno sources (constantly sends traffic)
– need to create a TCP connection and attach an FTP agent to the TCP source
– parameters

• nof of sources
• maximum window size
• segment size

• Bottleneck link
– finite buffer with RED queue
– parameters

• queue size
• RED parameters

• Required traffic objects (topology)
– 2 nodes
– 1 link (with RED queue)
– N TCP sources (source/sink)

Simulator objects for example 1

n0 n1

TCP_n

TCP_0

sink_n

sink_0

16.10.2006 8

S-38.3148 Simulation of data networks / ns2

Tracing for example 1

• Aim:
– trace the variable that represents instantaneous queue length

• See red.h (in /ns-allinone-2.1b9a/ns-2.1b9a/)
– variables with type TracedInt (or TracedDouble, etc.) are variables defined in the C++

class that are also visible at the OTcl level
– to find out what traced variables are defined for RED queue (run in above directory)

fgrep Traced red.h

– variable “TracedInt cur_” represents instantaneous queue length (as seen by an
arriving packet)

• Creating a trace object
– create file for output and create a trace object ($redobj represents a RED queue object)

set outfile [open data.txt w]
$redobj trace cur_
$redobj attach $outfile

– tracing started after warm-up time

16.10.2006 9

S-38.3148 Simulation of data networks / ns2

Plotting the queue length process

• One can plot the realization of the queue length process
– can experiment with RED parameters to examine stability, e.g., play with the averaging

parameter q_weight_ and linterm_

– example shows scenario where number of flows changes over time

• The output file contains rows with following entries:
Q 20.0041 11

Q 20.0151 9

Q 20.0225 10 ...

• Remove extra ‘Q’ from beginning of each line by:
– from command line: awk '{print $2, $3}' qlen.dat > qq1.dat

– from ns2-tcl script: exec awk {{print $2, $3}} qlen.dat > qq1.dat

• Plot the data in qq1.dat using xgraph
– from command line: xgraph qq1.dat

– from n2-tcl script: exec xgraph qq1.dat

16.10.2006 10

S-38.3148 Simulation of data networks / ns2

NS2: Contents

• NS2 – Introduction to NS2 simulator

• Some NS2 examples

– RED example

– Enhanced RED example

• NS2 project work instructions

16.10.2006 11

S-38.3148 Simulation of data networks / ns2

Example 2

• Task

– measure the steady state mean of the instantaneous queue length as a function of
offered load

• We need to …

– be able to run consecutive independent simulations, and

– compute steady state mean from the measured data

– files: redtcpmain.tcl and redtcpsub.tcl

16.10.2006 12

S-38.3148 Simulation of data networks / ns2

Running independent simulations

• To run independent simulations, we must either be able to …
– re-initialize all simulator objects (simulation clock, event scheduler, all traffic objects,

etc.), or somehow re-execute simulation scripts

– re-initializing in ns2 is difficult ÿ we need to make repeated executions of ns2 scripts

• In Unix, the operating system executes each
Tcl/ns2 script as a process

• For repeated simulations we need …
– a main program that controls and parametrizes

simulations, and a sub-program that executes
each simulation run

– in unix terminology, we need a main process that
spawns a child process for execution of the actual
simulation runs

– in Tcl (and most script languages), the command
for this is ”exec …”

exec ns myscript.tcl command_line_args

Main
process

Child
process

- parameterization
- processing

- simulation
- output results to file

exec …

16.10.2006 13

S-38.3148 Simulation of data networks / ns2

Measuring time averages

• Post-processing
– read data from output file and process it
– in our case, output consists of tuples <Q, time, queue_len>

• Reading from file
– open file for reading and read a line from the file

set $outfile [open data.txt r]
gets $outfile tmp

• To compute time average of the data, use Integrator class
– creating and adding points

set integ [new Integrator]
$integ newpoint $time $value

– variable sum_ contains cumulative sum

