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TIME REVERSAL AND REVERSIBLE PROCESSES

Reversed process

Consider a irreducible stationary stochastic process Xt.

To this process one can associate so called reversed process X∗
t , where the process Xt is

considered in the reversed time (“ the film is run backwards”).

X∗
t = Xτ−t

Time reversal (mirroring) with respect to time τ .

The parameter τ is unimportant; it only defines where in the

reversed process the origin of time is located.

Why do we study the reversed process

• It turns out that with the aid of it one can get more insight on the properties of the

process.

• By considering the reversed process, one can often very simply and elegantly derive results,

a direct derivation of which might be quite complicated.

• For instance, the balance equations of a complex system can be derived by “guessing”

the reversed process.

• The departure process (output) of a queue can often most simply be analyzed by studying

the reversed process.
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Reversed process (continued)

In general, the reversed process X∗
t is a different process from the original one.

Example: Cyclic (periodical) process.

In the process Xt, the states appear in the order 1→ 2→ 3→ 1.

In the reversed process, the sequence is 1→ 3→ 2→ 1. Obviously

these must be two different processes.

1 2

3

The equilibrium distribution of the reversed process

Assume that the process Xt has the equilibrium distribution πi = P{Xt = i}.

Then also the reversed process X∗
t has an equilibrium distribution π∗

i = P{X∗
t = i} and this

distribution is the same as for the original process

π∗
i = πi ∀i

Proof. πi and π∗
i represent the proportions of time the processes Xt and X∗

t spend in state i.

This proportion of time is independent of in which direction of time we consider the process.
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Reversible process

If the reversed process X∗
t and the original process Xt are statistically indistinguishable, one

says that the process Xt is time reversible.

More precisely, the reversibility means that

(Xt1, Xt2, . . . , Xtn) ∼ (Xτ−t1, Xτ−t2, . . . , Xτ−tn) for all t1, t2, . . . , tn and τ and n

i.e. the shown sets of values of random variables have the same joint distributions.

• Intuitively, the reversibility of the process Xt means that an outside observer cannot tell

whether the film is run in forward or backward direction.
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Markov chain in reversed time

Proposition. The reversed chain . . . , Xn+1, Xn, Xn−1, . . . of a Markov stationary chain

. . . , Xn−1, Xn, Xn+1, . . . constitutes a stationary Markov chain.

Proof. Consider the probability of the value Xm = j conditioned on the following values

Xm+1 = i, Xm+2 = i2, . . . , Xm+k in the chain, which in the reversed time are previous values:

P{Xm = j |Xm+1 = i, Xm+2 = i2, . . . , Xm+k = ik}

=
P{Xm = j, Xm+1 = i, Xm+2 = i2, . . . , Xm+k = ik}

P{Xm+1 = i, Xm+2 = i2, . . . , Xm+k = ik}

=
P{Xm = j, Xm+1 = i}P{Xm+2 = i2, . . . , Xm+k = ik |

doesn’t depend on

this, Markov!
︷ ︸︸ ︷

Xm = j , Xm+1 = i}
P{Xm+1 = i}P{Xm+2 = i2, . . . , Xm+k = ik |Xm+1 = i}

=
P{Xm = j, Xm+1 = i}

P{Xm+1 = i}

=
P{Xm = j}P{Xm+1 = i |Xm = j}

P{Xm+1 = i}
=

πjpj,i
πi

does not depend on the values of

Xm+2 . . .Xm+k, i2, . . . , ik

The transition probabilities of the reversed process are

p∗i,j = P{Xm = j |Xm+1 = i} =
πjpj,i

πi
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Markov process in reversed time (continued)

Proposition. Let Xt be a stationary (continuous time) Markov process with state transition

rates qi,j and equilibrium probabilities πi. Then the reversed process X∗
t is a stationary Markov

process and its transition rates are

q∗i,j =
πjqj,i

πi

Proof. Similar to that for the Markov chains.

Note. These propositions establish only that the reversed process is also Markovian, and not

that it were identical to the original one. Reversibility in an additional property.
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Solving equilibrium probabilities with the aid of the reversed process

Proposition. Let Xt be a Markov process with the transition rates qi,j. If there are numbers

q∗i,j and πi such that

∑

j 6=i

qi,j =
∑

j 6=i

q∗i,j ∀i and πiq
∗
i,j = πjqj,i ∀i, j and

∑

i
πi = 1

then the πi are the common equilibrium probabilities of the processes Xt and X∗
t and the q∗i,j

are the transition rates of the process X∗
t .

Proof:

∑

j 6=i

πjqj,i =
∑

j 6=i

πiq
∗
i,j = πi

∑

j 6=i

q∗i,j = πi

∑

j 6=i

qi,j =
∑

j 6=i

πiqi,j ∀i

Thus the πi satisfy the global balance equations of the process Xt. Moreover, q∗i,j = πjqi,j/πi

i.e. the transition rate of the process X∗
t .

• This result can (somewhat surprisingly) been used to prove that a guessed distribution

πi indeed is the equilibrium distribution, by additionally guessing the transition rates q∗i,j
of the reversed process.

• There are indeed problems (some complex systems), where the πi can be guessed and the

reversed process is rather obvious, and where the direct check of the balance condition

would require a lot of work.
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Reversible Markov process

The reversed Markov process X∗
t behaves as the original one if it has the same transition

rates. Thus, the condition for the reversibility is

q∗i,j = qi,j ∀i, j

By the expression given earlier for q∗i,j the condition is equivalent to the following property

πiqi,j = πjqj,i ∀i, j
Detailed balance

condition for reversibility

• The detailed balance says that the probability flows between any two states are in balance.

• Detail balance implies immediately the global balance, i.e. the total probability flow out

of a state,
∑

j πiqi,j, equals the total flow into the state,
∑

j πjqj,i.

• Further, it follows that if there exist numbers πi such that the detailed balance conditions

are satisfied, then the πi are the equilibrium probabilities of the system (normalized
∑

i πi = 1).

• The converse is not true, global balance does not imply detailed balance; all Markov

processes are not reversible.
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Detailed balance






πiqi,j = frequence of transitions i → j

πjqj,i = frequence of transitions j → i ji

tasapaino

The detailed balance says that in the processes Xt the transition frequencies between the

states i and j are the same in both directions.

• In a reversible process this must be true, since by reversing the time the transition i → j

becomes the transition j → i and vice versa. In order for the reversed process look the

same as the original one, the transition frequencies in both directions must be equal.
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Trees are reversible

Proposition: If the state transition diagram of

a Markov process is a tree, then the process is

time reversible.

Proof. By making a cut between any two states

the tree is divided into two separate parts. From

the global balance condition applied on these

two sets of states it follows that the probability

flows across the cut, i.e. between the two states,

satisfy the detailed balance.

Corollary: All Markov processes of the birth-death type are time reversible.

Example. M/M/1, M/M/n, M/M/∞, M/M/m/m, . . .
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Kolmogorov criterion

The reversibility condition expressed in the form of the detailed balance condition can be

applied only when both the transition rates qi,j and the equilibrium probabilities πi are known.

The equilibrium probabilities can always be solved when the qi,j are given, and thus in order

to check the validity of the detailed balance it is sufficient to know the transition rates qi,j.

One may wonder whether the reversibility (detailed balance) can be inferred more directly

from the transition rates qi,j without first solving the equilibrium probabilities. The answer is

yes, and is more specifically given by:

Kolmogorov criterion

Let i1, i2, . . . , im, i1 be a closed cycle in the transition diagram. The Kolmogorov criterion is

satisfied if for every such cycle the following holds

qi1,i2 · qi2,i3 · · · qim,i1 = qi1,im · qim,im−1
· · · qi2,i1

i.e. the product of the transition rates round the cycle are the same in both directions.

One can show that the Kolmogorov criterion is equivalent with the detailed balance conditions

and thus gives a necessary and sufficient condition for the reversibility of the process.

Corollary: Since a tree-structured transition diagram does not have any cycles, the Kolmogorov

criterion is always satisfied and it follows again that the Markov process represented by a tree

is time reversible.
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Burke’s theorem

The result known as Burke’s theorem states:

In an M/M/1 system, with Poisson arrival rate λ,

a) the departure instants of the customers constitute a Poisson process with intensity λ,

b) for all t the number of customers in the system, Nt, is independent of the output process

before time t.

Proof.

a) The M/M/1 queue is time reversible.

The reversed system behaves exactly as

an M/M/1 queue. The departure pro-

cess of the original queue is the same as

the arrival process of the reversed sys-

tem, which being identical with the ar-

rival process of the original system is a

Poisson process with intensity λ.

poistumiset
saapumiset

saapumiset
poistumiset

b) The departure epochs of the reversed process before time t are arrival epochs of the

original system after time t. Since the arrival instants constitute a Poisson process, its

development after time t is independent of anything that has happended before t, and,

in particular, of the current value of Nt.
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Burke’s theorem (continued)

Corollary 1

By observing the departure process of an M/M/1 queue one cannot conclude anything about

the current number of customers in the system.

• If one has observed a burst in the output process, this is an indication that in the queue

there probably has been more customers than usual, but one does not get any information

about the current number in system.

• By observing the output process, it is not either possible to get any information about

the average service time 1/µ.

Corollary 2

In an open queueing network, which additionally is acyclic (does not contain any feedback

loops) all the queues are independent M/M/1 queues.

• The arrival processes to each of the queues are indeed Poisson processes by the theorem.

• The current states of the feeding queues are independent of their output processes prior

to the current time; the state of the receiving queue, on the other hand depend, only on

this prior output process.

Remark

Burke’s theorem holds also for the M/M/m and M/M/∞ systems.
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Example: Tandem queue

• Independent exponentially distributed service

times.

• The first queue is an ordinary M/M/1 queue.

• By Burke’s theorem its output process is a Pois-

son process.

• Thus, also queue 2 is an M/M/1 queue.

l l l
m1 m2

Exp( )m1 Exp( )m2

• The state of queue 2, N2, at time t depends solely on the arrivals before time t.

• By Burke’s theorem this arrival process (= the departure process of queue 1) before time

t is independent of the state of queue 1 at time t.

⇒ N1 and N2 are independent







P{N1 = i} = (1 − ρ1)ρ
i
1, ρ1 = λ/µ1

P{N2 = j} = (1 − ρ2)ρ
j
2, ρ2 = λ/µ2

P{N1 = i, N2 = j} = (1 − ρ1)(1 − ρ2)ρ
i
1ρ

j
2
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Truncation of a reversible process

Let Xt be a reversible Markov process with the state

space S and with equilibrium probabilities πi. Re-

versibility means that the detailed balance conditions

hold.

Let S ′ be a subset of the state space. Consider the

truncated process X ′
t, for which

q′i,j =







qi,j, i, j ∈ S ′

0, otherwise

Assume further that X ′
t is irreducible. Then the process X ′

t is reversible and its equilibrium

distribution is

π′
i =

πi
∑

j∈S ′
πj

ts. P{X ′ = i} = P{X = i |X ∈ S ′}

Proof: Substitute πi as a trial to the global balance conditions of the process X ′
t. One sees

immediately that these are satisfied for all states i ∈ S ′ since the net probability flow to any

state due to the transitions that have been removed was zero. The equilibrium distribution is

obtained by (re)normalizing the distribution over the states j ∈ S ′.

Remark. This truncation principle is very important in practical applications.
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Truncation of a reversible process (continued)

Example 1. Before have seen seen that the truncation of a birth-death process (reversible!)

with an infinite state space to a finite number of states only implies the truncation and

renormalization of the distribution:

M/M/1/K queue
︸ ︷︷ ︸

Truncated geom.

distribution

, M/M/m/m
︸ ︷︷ ︸

Erlang, truncated

Poisson ditr.

, M/M/m/m/n
︸ ︷︷ ︸

Engset, truncated

binomial distr.

Example 2. Two M/M/1 queues which share

the common buffer space (waiting room)

Assume first that the buffer space is infinite.

Then the queues are completely independent.






P{N1 = i} = (1 − ρ1)ρ
i
1

P{N2 = j} = (1 − ρ2)ρ
j
2

P{N1 = i, N2 = j} = (1 − ρ1)ρ
i
1(1 − ρ2)ρ

j
2

l2

l1

m2

m1

The processes N1 and N2 separately are re-

versible. It is easy to show that then also the

joint process (N1, N2) is reversible (left as an

exercise), i.e. that the above joint distribution

satisfies the detailed balance conditions.
n1

n2

l1

l2

l2

l1

m2

m1m1

m2

(1- )r r1 1
n1

(1- )r r2 2
n2
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Truncation of a reversible process (continued)

Example 2. continues. . .

In an infinite capacity system the state probabilities are

of product form (product of the marginal distributions of

queues 1 and 2)

When the buffer has a finite capacity C, the state space is

truncated as shown in the picture.

In the truncated state space S ′ the state probabilities are

of the same form as before.

n1

n2

C

C

S'

P{N1 = i, N2 = j} =







a · ρi
1 · ρ

j
2, i + j ≤ C

0, otherwise

where a is the normalization constant

a =
1

∑

i

∑

j
i+j≤C

ρi
1 · ρ

j
2

Note. Although the solution is of product form in S ′, it is not of that form for all i, j =

0, 1, 2, . . .. The queues are no longer independent but depend via the capacity constraint.



J. Virtamo 38.3143 Queueing Theory / Time reversal 17

The use of the reversed process for the solution of a queueing problem

Example. Finished work in an M/M/1 queue

In an M/M/1 queue the unfinished time of a customer in service is, due the memoryless

property of the exponential distribution, distributed as Exp(µ) and independent of the queue

length.

The finished work Z of a customer, in contrast, correlates with the queue length: if the service

has taken a long time, it is likely that a long queue has been formed.

By a time reversal argument one can easily derive the conditional distribution of Z given that

N = n.

The picture shows the development of the queue length

• Starting from the instant (time 0) when the customer

being served entered the server, Nt is a non-decreasing

function of time; since the service continues there have

been no departures from the system. í îì

Z

N

n

t
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Example. Finished work in an M/M/1 queue (continued)

There are two cases with regard to the arrival instant:

a) The customer arrived at an empty system.

In the reversed time the instant Z is the time when all n

customers in the system have departed

Z ∼ X1 + X2 + · · · + Xn

Xi ∼ Exp(µ), i = 1, 2, . . . , n

⇒ Z ∼ Erlang(n, µ)

í îì

Z

N

n

t

b) The customer arrived at a queue: the instant of the start

of the service −Z is the time when the previous customer

departed from the system.

In the reversed time, the time Z is the arrival instant of

the first customer

Z ∼ Exp(λ)

í îì

Z

N

n

t

In the reversed time, starting from the initial state N = n, departures occur from the system

at intervals distributed as Exp(µ) and arrivals with Exp(λ) distributed intervals. Either the

system first empties or there is a new arrival to the system. Which one of these two events

occurs first determines the instant Z:

Z ∼ min(X, Y ), X ∼ Erlang(n, µ) Y ∼ Exp(λ); X and Y are independent


