HELSINKI UNIVERSITY OF TECHNOLOGY

Networking Laboratory
S-38.3143 Queueing Theory, II/2006

Exercise 5

5.12.2006

Virtamo / Penttinen

1. Empty taxis pass a street corner at a Poisson rate of 2 per minute and pick a passenger if one is waiting there. Passengers arrive at the street corner at rate 1 per minute and wait for a taxi only if there are fewer than four persons waiting; otherwise they leave and never return. Find the average waiting time of a passenger who joins the queue.
2. Consider an $M / M / 1$ queue with the following variation. Whenever a service is completed a departure occurs only with probability α. With probability $1-\alpha$ the customer, instead of leaving, joins the end of queue.
a) Draw the state transition diagram and solve the steady state probabilities.
b) Find the expected waiting time of a customer from the time he arrives until he enters service for the first time.
c) What is the probability that a customer enters service exactly n times?
d) What is the expected amount of time that a customer spends in service (not including the time spent waiting in line).
3. Show that for Erlang's C-function (probability that an arriving customer have to wait in $M / M / n$ system) it holds that

$$
\frac{1}{C(n, a)}=\rho+\frac{1-\rho}{E(n, a)}
$$

where n is the number of servers, $a=\lambda / \mu, \rho=a / n$ (load per server) and $E(n, a)$ is Erlang's B-function.
4. $M / M / 2$ system with heterogeneous servers. Derive the stationary distribution of an modified $M / M / 2$ system where two servers have different service rates, μ_{1} and μ_{2}. A customer that arrives when the system is empty is routed to the server 1 . Draw the state transition diagram and deduce the steady state distribution. Hint: the state where there is only one customer in the system must be split into two states depending on in which server the customer is.
5. Customers arrive at an $M / G / 1$ system according to a Poisson process with rate λ. The service of each customer comprises of k different steps (only after all these steps have been accomplished can the next customer be taken into service). Each of the steps takes independently an exponentially distributed time, $\operatorname{Exp}(\mu)$. Find the mean waiting and sojourn times of a customer in the system?
6. Consider a simplified model for TCP link. ${ }^{1}$ Assume that TCP packets arrive according to a Poisson process with arrival intensity of $\lambda=100 \mathrm{pkt} / \mathrm{s}$ to a $2 \mathrm{Mbit} / \mathrm{s}$ DSL-modem acting as a router. The packet length distribution and respective service times are the following:

length	proportion	time / ms
40	0.1	0.16
576	0.3	2.3
1500	0.6	5.9

Determine the mean waiting time of a packet in the queue, when the service discipline is,
a) FIFO
b) the shortest job first (non-preemptive)

[^0]
[^0]: ${ }^{1}$ Typically there are three peaks in TCP packet length distribution: the first peak at 40 bytes (ACK), the second peak around 552/576 bytes (the smallest possible value for MTU) and the third at 1500 bytes (the largest possible IP packet in ethernet).

