PS queue (Processor Sharing)

- In a single server PS queue the capacity C of the server is equally shared between the customers in system,
 - if there are n customers in system each receives service at the rate C/n
 - customers don’t have to wait at all; the service starts immediately upon arrival

- PS queue has become an important tool, e.g., in the flow level modelling of the Internet
 - roughly speaking, TCP shares the resources of the network equally between the flows in progress (that is, transfers of web pages or other documents)

- PS queue is an idealized model, since in general the capacity of the server cannot be divided in continuous (real valued) parts, if at all. PS is, however, a good approximation
 - for the round robin (RR) discipline where the customers are served in turn, each for a small time slice (for instance, time sharing operating systems)
 - for document or file transfer, when these are divided in small packets served in turn or whose transmission rates from the sources have been equalized

- PS queue is theoretically interesting because its average properties are insensitive to the distribution of the service demands of the customers (unlike those of a FIFO queue).
M/M/1-PS queue

- The arrival process is Poisson with intensity λ and the distribution of the service demand (job size) is exponential such that if the customer got all the capacity of the server the service time would be distributed as $\text{Exp}(\mu)$.

- Then the number of customers in system N obeys the same birth-death process as in the familiar M/M/1-FIFO queue:
 - the probability per time unit for an arrival of a new customer is λ
 - with n customers in system the finishing intensity of each of them is μ/n; thus the overall probability per time unit that the service of some customer ends is μ

- The queue length distribution of the PS queue is the same as for the ordinary M/M/1-FIFO queue,
 \[\pi_n = (1 - \rho)\rho^n, \quad \rho = \frac{\lambda}{\mu} \]

- Accordingly, the expected number of customers in system $E[N]$ and, by Little’s theorem, the expected delay in the system $E[T]$ are
 \[E[N] = \frac{\rho}{1 - \rho}, \quad E[T] = \frac{1/\mu}{1 - \rho} \]
M/G/1-PS queue

- First we derive an auxiliary result valid for a general G/G/1 queue. Denote

\[
\begin{align*}
 x &= \text{the amount of service (work) received by a customer} \\
 F_X(x) &= \text{cdf of the service demand (work) of a customer} \\
 N(x) &= \text{av. number of customers in system that have received service } \leq x \\
 T(x) &= \text{av. time spent in system by customers that have received service } x \\
 n(x) &= \frac{dN(x)}{dx} = \text{av. density of customers (wrt received service)}
\end{align*}
\]

- Now, apply Little’s theorem to a black box defined as follows:

 - customer arrives at the box when the amount of service received passes \(x \); the customer has then spent in system a time \(T(x) \) on average
 - customer departs from the box when the amount of service received passes \(x + \Delta x \); the customer has then spent in system a time \(T(x + \Delta x) \) on average

- Think of the service demand to be discrete so that the amount of required work is always a multiple of \(\Delta x \)

 - then no customer exits the box because of the completion of the job
 - finally, in the limit \(\Delta x \to 0 \) the discreteness becomes immaterial
M/G/1-PS queue (continued)

- As customers arrive at the system at rate λ and the fraction $1 - F_X(x)$ of them reach the “service age” x, the arrival rate at the box is $\lambda(1 - F_X(x))$.
- The mean delay of a customer in the box is $T(x + \Delta x) - T(x)$.

\[
\begin{array}{c}
\lambda(1-F_X(x)) \\
\downarrow \text{T(x)} \\
\begin{array}{c}
N(x+\Delta x)-N(x) \\
\downarrow \text{T(x+\Delta x)} \\
x \\
x+\Delta x
\end{array}
\end{array}
\]

- Little’s result gives

\[
N(x + \Delta x) - N(x) = \lambda(1 - F_X(x))(T(x + \Delta x) - T(x))
\]

- By dividing by Δx we obtain in the limit $\Delta x \to 0$ the desired auxiliary result

\[
n(x) = \lambda \left(1 - F_X(x)\right) \frac{dT(x)}{dx}
\]
M/G/1-PS queue (continued)

• On the other hand, we can directly deduce that

\[
 n(x) = n(0) \cdot (1 - F_X(x))
\]

• This is because all the customers in a PS queue are served at the same rate

 – at every instant of time, the “service age” of all the customers increases at the same rate

 – the difference in the customer density wrt to the service age arises only due to departures of customers upon completion of their service

 – by age \(x \) the fraction \(F_X(x) \) of the customers have departed and the fraction \(1 - F_X(x) \) of them remains in the system

• By equating the expressions for \(n(0) \) in the framed equations, we obtain

\[
 \frac{dT(x)}{dx} = \frac{n(0)}{\lambda} \quad \text{or} \quad T(x) = \frac{n(0)}{\lambda} x
\]

• \(T(x) \) is besides the average time spent in system by customer with age \(x \), also the total mean delay of those customers whose service demand is \(x \), i.e. the mean delay conditioned on the service requirement.
M/G/1-PS queue (continued)

- Further, one can deduce that
 \[\lim_{x \to \infty} T(x) = \frac{x}{C(1 - \rho)} \]

- Arrival of a very big job is rare sole event. The job stays in the system for a very long time. Meanwhile, all the other (small) jobs arriving in the system pass by; the big job sees effectively the service rate remaining from the other jobs, \(C(1 - \rho) \).

- Thus the coefficient of proportionality \(n(0)/\lambda \) in the equation \(T(x) = (n(0)/\lambda) x \) is \(1/C(1 - \rho) \),

\[
T(x) = \frac{x}{C(1 - \rho)}
\]

- By averaging this formula for the conditional delay with respect to the distribution of the job size, and then applying Little’s result, one obtains again the mean formulae

\[
E[T] = \frac{1/\mu}{1 - \rho} \quad 1/\mu = E[X]/C, \quad E[N] = \frac{\rho}{1 - \rho}
\]
M/G/1-PS queue (continued)

- The important thing in these re-derived formulae is that we didn’t make any assumption on the distribution of the job size. The mean formulae for the PS queue are insensitive.

- The equation $T(x) = x/C(1 - \rho)$ tells that the average delay of a customer in system is proportional to the job size

 - the mean delay in system of each customer is its service time x/C, had it all the capacity of the server, multiplied by the “stretching” factor $1/(1 - \rho)$

 - on the average, each customer sees the same effective service capacity $C(1 - \rho)$.

- Because of these properties the PS queue can be considered the most equalitarian queueing discipline.
M/G/1-PS queue (continued)

- According to Pollaczek-Khinchin results the mean queue length and mean delay in an M/G/1-FIFO queue are greater (smaller) than in a corresponding M/M/1-FIFO queue, and thence in an M/G/1-PS queue, if the squared coefficient of variation C_v^2 of the service demand is greater (smaller) than 1.

- The superiority of the PS discipline in the case of a large squared coefficient of variation is easy to understand as
 - in FIFO, a large number of small jobs have to wait the completion of a long job
 - whereas, in a PS queue, they can pass by
 - a large number of customers experience better service in the PS system

- In the case of a small squared coefficient of variation (regular traffic), the more disciplined FIFO scheduling is better.

- With the M/M/1 assumptions, whence the means are equal, the variance of the delay distribution in the PS-queue is greater than that in the FIFO queue. One can derive the results:
 \[
 V[T]_{\text{FIFO}} = \frac{1}{\mu^2(1 - \rho)^2} \quad V[T]_{\text{PS}} = \frac{1}{\mu^2(1 - \rho)^2} \frac{2 + \rho}{2 - \rho}
 \]
 the latter factor is in the range 1 \ldots 3
Example: downlink data traffic in a cellular system

- The HSPDA protocol (High speed downlink packet access) of 3G cellular systems uses a time-division type multiplexing:
 - the base station (BS) transmits at full power to only one user in each time slot.
- If slots are assigned in a round robin fashion to the active users, then the BS station realizes a PS queue for the downlink traffic.
- Link adaptation: the bit rate is adapted to the radio channel conditions.
- The rate goes down with the distance r from the BS as signal becomes weaker, e.g.,

$$C(r) = \begin{cases}
C_0 & r \leq r_0 \\
C_0 \left(\frac{r_0}{r}\right)^\alpha & r > r_0
\end{cases}$$

where r_0 is some threshold range within which the maximal rate C_0 is obtained; the exponent α is typically in the range 2 . . . 4.
- $C(r)$ is the maximum bit rate for a user at distance r
 - when there are n users active in the cell, the rate is $C(r)/n$.
Example (continued)

Assumptions:

- The cell is approximated by a circular disk with radius R.
- Flows arrive at the base station at total rate λ (Poisson process).
- Each flow has a size X independently drawn from some distribution with mean \bar{X}.
- The location of the destination point of each flow is independently drawn from a uniform distribution in the disk.

The service time S (at full rate, without sharing)

$$ S = \frac{X}{C(r)} $$

is a random variable because both X and the distance r are random variables. X and r are, however, independent and we have

$$ \bar{S} = \frac{\bar{X}}{C} \quad \text{where} \quad \frac{1}{C} = \left(\frac{1}{C(r)} \right) = \frac{1}{\pi R^2} \int_0^R \frac{2\pi r}{C(r)} \, dr $$
Example (continued)

- The queue at BS is a PS queue with load $\rho = \lambda \bar{S} = \lambda \bar{X} / \bar{C}$.
- For a stable queue we must have $\rho < 1$. Thus the greatest sustainable traffic load, $\lambda \bar{X}$, is \bar{C} and we have the cell capacity [kbits/s],

$$\bar{C} = \left(\frac{1}{\pi R^2} \int_0^R \frac{2\pi r}{C(r)} dr \right)^{-1}$$

- Because the system is a PS queue we have the effective service rate (also called flow throughput) at distance r

$$C_{\text{eff}} = C(r)(1 - \rho)$$

and average sending time of a flow of size X for a node at distance r,

$$\bar{T}(r, X) = \frac{X}{C(r)(1 - \rho)}$$