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OVERFLOW TRAFFIC

Overflow traffic in a loss system

Consider a circuit switched network which works as a loss

system (blocked calls are cleared).

• System is offered Poissonian traffic with intensity λ.

• The holding times are exponentially distributed with

parameter µ.

• The offered traffic intensity a = λ/µ.

The system consists of two parts:

- primary system: m1 servers

- secondary system: m2 servers
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• The arriving traffic is first offered to the primary system.

• If all servers of the primary group are occupied the call is directed to the secondary group,

– the traffic directed from the primary group to the secondary group is called overflow traffic;

denote its intensity by α.

• If all servers of the secondary group are also occupied, the arriving call is blocked.
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Traffic process of the overflow traffic

The primary and secondary groups toget-

her constitute a m1 +m2 server loss system

(Erlang’s system; M/M/m/m queue, whe-

re m = m1 + m2).

The primary system alone forms an m1 ser-

ver loss system (m = m1).

The division of the capacity m1 +m2 of the

system into two parts does not affect the

overall behaviour of the system (the bloc-

king probability is the same as in an m1+m2

server system).

One can think the trunks of the system to

be numbered. An arriving call is carried by

the free trunk with the lowest number.

N (t)2

m2

m1

N (t)1



















N1 ∼ truncated (m1) Poisson distribution
N = N1 + N2 ∼ truncated (m1 + m2) Poisson distr.

N2 = N − N1 occupancy of the secondary group

Note. Though both N and N1 are separately insensiti-

ve (independent of the holding time distribution), the

distribution of N2 is not insensitive.

Overflow traffic is generated only when the primary group is in blocking state. The bloc-

king periods of the primary group form time windows, during which the arriving traffic

is directed to the secondary group. The arrival process of the overflow traffic is so called

interrupted Poisson process (IPP).
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Blocking of the overflow traffic

Intensity of the overflow traffic α

(traffic “blocked” in the primary group)

α = a · E(m1, a)

where E(m, a) is the Erlang B-formula.

Ultimately blocked traffic α` = a`

(traffic blocked in the secondary group)

a` = a · E(m1 + m2, a)

m2

m1

m1+m2

a a

ac
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al

ac

a

Call blocking of the overflow traffic

B2 =
aE(m1 + m2, a)

aE(m1, a)
B2 =

E(m1 + m2, a)

E(m1, a)
One can show that B2 > E(m2, α)

The blocking experienced by the overflow traffic is greater than the blocking that would be

experienced by Poisson traffic with the same intensity in a secondary group of m2 trunks.

This is due to the fact that the IPP process is more bursty than the ordinary Poisson process.
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Blocking of the overflow traffic (continued)

Example

Assume that the intensity of the offered traffic is a = 5 erl.

The sizes of the primary and secondary groups: m1 = 5 and m2 = 1










overflow traffic α = 5 · E(5, 5) = 5 · 0.285 = 1.42

finally blocked traffic a` = 5 · E(6, 5) = 5 · 0.192 = 0.96























blocking of overflow traffic B2 =
a`

α
=

E(6, 5)

E(5, 5)
= 0.67

blocking if the traffic were Poissonian E(1, 1.42) = 0.59
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Peakedness of the overflow traffic

Sometimes it is useful to characterize a traffic process by telling what would be the occupancy

distribution if the traffic were offered to a trunk group of infinite capacity.

To characterize the overflow traffic in this way, assume now the secondary group is infinite,

m2 = ∞.

Then all the overflow traffic will be carried in the secondary group and it holds

E[N2] = aE(m1, a) = α

Also the variance of N2 can be calculated in this case. The derivation is rather involved. The

result is known as the Riordan formula:

V[N2] = α
(

1 − α +
a

m1 + 1 − a + α

)

The variance to mean ratio of the occupancy is called the peakedness factor. (In the case

of a Poisson arrival process the occupancy distribution is Poisson(a) distribution with the

peakedness factor 1.)

z =
V[N2]

E[N2]
= 1 − α +

a

m1 + 1 − a + α
where α = aE(m1, a)
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Peakedness of the overflow traffic (continued)

The peakedness factor is a function of m1 and a, z = z(m1, a).

When a is held fixed and m1 is increased

- first, for small m1, z ≈ 1 (all the traffic flows over)

- then z attains a maximum (when m1 ≈ a)

- finally, for very large m1, z → 1 (the overflow events are rare singular events)
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An example of overflow traffic

The figure on the right shows the offered traffic in

a period of five days a

The figures below show the same traffic in a prima-

ry group of 60 trunks and the overflow traffic. The

traffic in the primary group is smoother (trunca-

ted) than the offered traffic, whereas the overflow

traffic is more peaky than the offered traffic.
aFrom: A. Myskja, Telektronikk 2/3 (1995).
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Hayward’s approximation

Hayward’s approximation provides an approximate way to calculate the blocking probability

for non-Poissonian traffic (e.g. overflow traffic).

The starting point is the observation that for the occupancy N induced by Poissonian traffic

in an infinite server system the following relations hold:

E[N ] = a V[N ] = a N ∼ Poisson(a)

For non-Poissonian traffic, in contrast, we generally have V[N ] 6= E[N ].

The Hayward approximation tries to describe non-Poissonian traffic by “equivalent Poisson

traffic” and then apply Erlang’s formula for the blocking probability.

The idea is to consider the behaviour of the occupied capacity R instead of the occupancy N .

Let










c = the bandwidth (number of trunks) required of a single connection

R = N · c = the bandwidth occupied in the occupancy state N
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Hayward’s approximation (continued)

For Poissonian traffic holds










E[R] = E[c · N ] = c · a

V[R] = V[c · N ] = c2 · a
⇒

V[R]

E[R]
= c

Consider a non-Poissonian source with known mean and variance of occupation










E[N ] = a

V[N ] = v
⇒











E[R] = c · a

V[R] = c2 · v

This is now replaced by Poissonian traffic










a′ = intensity of the traffic

c′ = bandwidth requirement of a single connection

so that the mean and variance of the occupied

capacity are the same for the original non-

Poisson traffic and the model Poisson traffic:

E[R] = E[R′], V[R] = V[R′]

c c'

R R'

t t

The point is that for the equivalent Poisson traffic also the bandwidth required by a single

connection is taken as free parameter.

A single connection of the equivalent traffic may thus require e.g. 1.6 trunks.
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Hayward’s approximation (continued)

The fitting of the two first moments leads to the conditions for a′ and c′











a′ · c′ = a · c

a′ · c′2 = v · c2 ⇒



























a′ =
a2

v
c′ = c ·

v

a

equivalent intensity

equivalent bandwidth

The size of the system is modified correspondingly. If the original system has m trunks, i.e. a

capacity of m · c bandwidth units, then it can accommodate m · c/c′ equivalent connections.

Thus the equivalent system has m′ trunks:

m′ =
m · c

c′
= m ·

a

v

Now the blocking probability is approximated by that of the equivalent Poissonian traffic:

B ≈ E(m′, a′) = E(m ·
a

v
,
a2

v
) = E(

m

z
,
a

z
)

Hayward’s approximation

where z = v/a

The load per the server is the same as before: (a/z)/(m/z) = a/m.

When z > 1, the system becomes smaller ⇒ blocking increases.
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Hayward’s approximation (continued)

The non-Poissonian traffic may originate from several independent sources. If for each source

the mean ai and the variance vi of the occupancy are known, then the corresponding para-

meters for the aggregate stream are























a =
∑

i

ai

v =
∑

i

vi

Hayward’s approximation then gives the approximate total blocking probability of the aggre-

gate stream in a system with m trunks,

B ≈ E(m ·
a

v
,
a2

v
) = E(

m

z
,
a

z
) where z = v/a

How the blocking is distributed among different sources remains undefined.
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The ERT method (Equivalent Random Theory)

The ERT method is also known as the Wilkinson method.

This provides another approximate method to calculate the blocking probability for non-

Poissonian traffic.

The offered traffic is characterized by










a = traffic intensity = mean occupancy in an infinite system

v = the variance of the occupancy in an infinite system

In the case of several independent components we have

a =
∑

i

ai, v =
∑

i

vi

The idea of the ERT method is to think that the traf-

fic (a, v) is obtained as overflow traffic from a fictitious

channel


























a∗ = offered traffic

m∗ = number of servers (trunks)

in the fictitious system

1 2 m*
a*

a, v

a∗ and m∗ are determined such that the overflow traffic in the fictitious channel has the

intensity a and variance v.
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The ERT method (continued)

Moment matching conditions are (the variance is given by the Riordan formula)



















a = a∗ · E(m∗, a∗)

v = a
(

1 − a +
a∗

m∗ + 1 − a∗ + a

) ⇒ a∗, m∗

If the channel to which the non-

Poissonian traffic is offered has m

trunks, the intensity a` of the ultimate-

ly overflown traffic can be calculated

a` = a∗ E(m∗ + m, a∗)

An estimate for the traffic blocking is cor-

respondingly

B =
a`

a

1 2 m*
a*

a, v
1 2 m

al
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The ERT method (continued)

The solution to this pair of equations has to be found numerically.

An additional difficulty is that, in general, there is no solution for an integer m∗.

One has either to make further approximations or to extend the definition of Erlang’s blocking

formula for real valued trunk numbers (which, of course, are unrealistic).

Such an extension can indeed be made:

E(m, a) =
ame−a

Γ(m + 1, a)

where the denominator is the incomplete gamma function

Γ(m + 1, a) =
∫ ∞

a
tme−tdt

By partial integration one can show for integer values of m that

Γ(m + 1, a) =
∫ ∞

a
tme−tdt = m!e−a

(

1 +
a

1!
+ · · · +

am

m!

)

whereby the formula reduces to the familiar form

E(m, a) =

am

m!

1 +
a

1!
+ · · · +

am

m!
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The ERT method (continued)

For the solution one can also use approximation formulae, e.g. that suggested by Rapp (1964),






















a∗ = v + 3z(z − 1) where z = v/a

m∗ =
a∗(a + z)

a + z − 1
− a − 1 (this is an exact relation; approximation is in a∗)

The approximation is not accurate if a is small and z is large.
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The ERT method (continued)

The parameters of the ERT method

The parameters of the model system, m∗ (lower curve)

and a∗ (upper curve) solved from the pair of equations

are shown in the figure on the right, when the offered

traffic has a = 10 and the peakedness z = v/a varies

from z = 1 . . . 2.

In the solution we have used the exact extension of

Erlang’s function for real number of trunks.
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Comparison of the Hayward and ERT methods

The figure shows the blocking probability for traffic

with a = 10 and z = 1 . . . 2 offered to a m = 15

trunk system. The calculations have been done both

with the Hayward method and the ERT method. In

this case the results are very close to each other. One

cannot say which one is “more correct”. The blocking

of the traffic, in reality, depends not only on the para-

meters a and v = z · a (and m). Based solely on these

parameters the “correct result” in not known.
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The ERT method (summary)

m1

A1 A2 AK

m2 mK

m m

a , v1 1 a , v2 2 a , vK K a, v

m*

a*

todellinen järjestelmä mallijärjestelmä

• The aggregate overflow traffic is handled as if it originated from a single channel.

• Find a∗ and m∗ such that the overflow traffic of the model system has the right a and v,

a =
∑

i

ai, v =
∑

i

vi.

• The blocking in the overflow channel is
a∗E(m + m∗, a∗)

a
; total blocking

a∗E(m + m∗, a∗)
∑

i

Ai


