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Time Scale Hierarchy of
Traffic Problems

• The relevant time scales span a vast

range of over 13 decades!

• Each time scale poses of its particu-

lar type of problems.

• In the following, we will deal with

the three lowest layers, starting

from the cell or packet level, going

through the burst level up to call of

flow level.
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HOL blocking in an input buffered ATM switch
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• HOL = Head of Line

• Only one of the cells in HOL position heading to the

same output port can be sent, the others have to wait

• Discrete time (slotted time) system

• Time slot = transmission time of a cell

• The destination addresses distributed evenly among

the output ports

• Very large offered traffic; input buffers always full

• Throughput per output port p = probability that a

randomly chosen slot on the output line is occupied

by a cell

• HOL blocking: output port 1 free, but the cell in the lowest input queue destined for

output port 1 is blocked by another cell, which cannot be sent because of the contention

for output port 2
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HOL queues

• HOL queue i comprises of the cells in the HOL posi-

tion which are destined for output port i.

• In each slot, precisely one cell is sent from each non-

empty HOL queue,

– of course, no cell can be sent from an empty queue.

• In each time slot, N · p cells on the average depart

from the switch;

– when N → ∞, the number of departing cells

equals, in relative terms, more and more exactly

N · p.

• The same number of cells are transferred to the HOL

position, i.e. arrive as new cells to the HOL queues.
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Distribution of the number of cells arriving at a HOL queue

• Denote M = N · p, i.e. N = M/p.

• Each of these M cells is intended for output i with the probability 1/N .

• The number of cells joining queue i obeys the distribution Bin(1/N, M)=Bin(p/M, M).

• As the size of the switch grows, N → ∞, then also M → ∞.

• At this limit, the number of arriving cells is distributed as Poisson(p).

• Each HOL queue has the same queue length distribution as a continuous time M/D/1
queue with load p:

– the queue length of a continuous time queue can be determined at embedding points separated
by one service time D (the distribution at the embedding points is the same as at a random

point of time)

– the queue at the embedding points obeys the rule given before for the discrete time queue: if
the queue at the embedding point is non-empty, then precisely one customer will depart until

the next embedding point; and if the queue is empty, then no customer will depart before the

next embedding point

– the number of new arrivals from a Poisson process between the embedding points is Poisson

distributed with mean ρ = λD (here denoted by p)
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Maximum throughput limited by the HOL blocking

• Since each HOL queue behaves as an M/D/1 queue with load p, the mean queue length

of each is given (by the PK formula)

the mean length of a HOL queue = p +
1

2

p2

1 − p

• There are N HOL queues in total (one per each output port).

• In a heavily overloaded system, none of the input buffers is empty; thus the N HOL

queues together always fill all the N HOL places. It follows that

The mean queue lengths of each HOL queue equals 1

• From this condition one can solve p

p + 1
2

p
2

1−p
= 1 ⇒ 1

2p
2 = (1 − p)2

⇒ 1√
2
p = 1 − p

⇒ p =
√

2
1+

√
2

= 2 −
√

2 ≈ 0.586



J. Virtamo 38.3141 Teletraffic Theory / HOL blocking 6

HOL blocking in a finite 3x3 switch

3 x 3

• We can define three states of the HOL cells (‘colour’

denotes the output port):

1. all cells have the same colour

2. cells are of two different colours

3. cells are of three different colours (all cells have

different colour)

• In state 1, only one HOL cell can be forwarded; it is replaced by a new cell, which is of

the same colour as the others with the probability 1/3 and of different colour with the

probability 2/3.

• In state 2, two cells will be forwarded; they are replaced with two new ones, which have

the same colour with the remaining cell with the probability 1/9; all have different colour

with the probability 2/9; otherwise, with the probability 6/9, after the replacement the

HOL cells are again of two different colours.

• In state 3, all three cells are forwarded and replaced by new ones; these have the same

colour with probability 1/9, all have different colour with the probability 2/9, and with

the probability 6/9 they are of two different colours.
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Throughput of a 3x3 switch (continued)
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• The state of the HOL cells constitutes a Markov chain

with the state transition diagram shown in the figure.

• The transition probability matrix is

P =
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• The equilibrium probability vector π = (π1, π2, π3) can be solved from the balance equa-

tion of the Markov chain π = πP, i.e.


























9 π1 = 3 π1 + π2 + π3

9 π2 = 6 π1 + 6 π2 + 6 π3

9 π3 = 0 + 2 π2 + 2 π3

• The normalized solution is π = ( 3
21

, 14
21

, 4
21

).

• The throughput per output port is p = 1
3
(π1 · 1 + π2 · 2 + π3 · 3) = 43

63
≈ 0.683.
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The throughput limited by the HOL blocking for switches of different sizes
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• HOL = Head of Line

• Only one of the cells in HOL position heading to the

same output port can be sent, the others have to wait

• Discrete time (slotted time) system

• Time slot = transmission time of a cell

• The destination addresses distributed evenly among

the output ports

• Very large offered traffic; input buffers always full

• Throughput per output port p = probability that a

randomly chosen slot on the output line is occupied
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