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BURST LEVEL BEHAVIOUR

Overflow probability in a bufferless system

• Consider an output port of an ATM switch

• Suppose:

– the buffer can only absorb cell level fluctuations

– the capacity of the outgoing link is C

• Several VC connections use the same outgoing link

– denote the total bitrate of the connections by X

• The rate exceeding C flows over

• The overflow rate (X − C)+

– where (·)+ = max(0, ·)
input
rate

link
rate
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Overflow and saturation probabilities

• Overflow probability

– the ratio of the overflow rate to the arrival rate

Ploss =
E[(X − C)+]

E[X ]
=

∫ ∞
C

(x − C)f (x)dx
∫ ∞
0

xf (x)dx

• Saturation probability

Psat = P{X ≥ C}
– probability that the capacity is exceeded

– sometimes easier to evaluate than Ploss

– rough upper bound for Ploss (not strictly a bound, though)

– usually a few orders (factor 100) higher than Ploss

– often, from the point of dimensioning, the difference is not important

– losses depend very strongly on the capacity

– conversely, the required capacity is not very sensitive to the level of accepted losses



J. Virtamo 38.3141 Teletraffic Theory / Burst level 3

Elementary consideration – normal approximation

• There are n virtual channel connections over the link

– we assume the streams are statistically identical and independent

X = X1 + . . . + Xn

• Denote














m = mean rate of a single stream, E[X1],

σ2 = variance of the rate of a single stream, V[X1].

• Correspondingly


















M = n · m = mean rate of the aggregate stream, E[X ],

Σ2 = n · σ2 = variance of the rate of the aggregate stream, V[X ]

• For large n, approximately X ∼ N(M, Σ2)

• Saturation probability is then

Psat = Q





C − M

Σ





where

Q(x) =
1√
2π

∫ ∞
x

e−y2/2dy =
1

2
erfc

( x√
2

)

M C

Psat
Σ Σ
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Normal approximation – effective bandwidth

• In order not to exceed level Psat requires the capacity C

C ≥ M + Q−1(Psat) · Σ

• Let η be the quantile point of the N(0,1) distribution corresponding to probability 1−Psat

η = Q−1(Psat)

• By the definitions of M and Σ2 we get

C ≥ n · m + η
√

n · σ
• The required bandwidth per stream, so

called effective bandwidth, is

Beff = m +
η · σ√

n

• As n grows the effective bandwidth tends

to the mean rate
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Moment generating function

• The moment generating function of a random variable X

M(β) = E[eβX] =
∫

eβxf (x)dx

• Logarithmic moment generating function

ϕ(β) = log M(β)

Values at the origin:














M(0) = 1

ϕ(0) = 0

• By means of these the moments can be computed as follows






























m = E[X ] = M ′(0) = ϕ′(0)

E[X2] = M ′′(0)

σ2 = V[X2] = M ′′(0) − M ′(0)2 = ϕ′′(0)

• Additivity: If X = X1 + X2 + . . . + Xn, where X1, X2, . . . , Xn are independent random

variables with lmgfs ϕ1(β), ϕ2(β), . . . , ϕn(β), then

ϕ(β) = log E[eβX]

= log E[eβ(X1+X2+...+Xn)]

= log E[eβX1eβX2 · · · eβXn]

= log(E[eβX1] · E[eβX2] · · ·E[eβXn])

= log E[eβX1] + log E[eβX2] + . . . + log E[eβXn]

= ϕ1(β) + ϕ2(β) + . . . + ϕn(β)
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Twisted distribution

• Let the pdf of X be f (x)

• The twisted or shifted distribution fβ(x)

fβ(x) =
eβxf (x)

M(β)
= eβx−ϕ(β)f (x)

– large values of X become more likely

– the mass of the distribution is shifted towards

large values

– the moment generating function M(β) is the

normalization factor
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• Conversely, f (x) can be expressed in terms of fβ(x)

f (x) = e−βx+ϕ(β)fβ(x)

• Twisting can be defined without assuming a continuous distribution

• Twisting of the probability measure

dPβ(x) = eβx−ϕ(β)dP (x)

• Denote Eβ[·] = expectation with respect to the measure Pβ
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Twisted distribution – continued

• The moments of the twisted distribution






























































Eβ [X ] =
E[XeβX]
M(β)

=
M ′(β)
M(β)

= ϕ′(β)

Eβ [X2] =
E[X2eβX]

M(β)
=

M ′′(β)
M(β)

Vβ [X ] = =
M ′′(β)
M(β)

− M ′(β)2

M(β)2
= ϕ′′(β)



















m(β) = ϕ′(β)

σ2(β) = ϕ′′(β)
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Twisted distribution – continued

• Additivity of the twisted distributions: If X = X1+X2+. . .+Xn, where X1, X2, . . . , Xn

are independent, then it follows from the additivity of the lmg functions














m(β) = m1(β) + m2(β) + . . . + mn(β)

σ2
1(β) = σ2

1(β) + σ2
2(β) + . . . + σ2

n(β)

where mi(β) and σ2
i (β) stand for the expectation and variance of the random variable

Xi with respect to the twisted distribution

• In fact, a stronger relation holds:

The twisted distribution of the sum X of independent random variables Xi equals the

sum of the twisted distributions of the individual variables:

sum

=⇒
twisting ⇓ ⇓ twisting

=⇒
sum
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Twisted distribution – example 1

• Exponential distribution X ∼ Exp(λ)

• Probability density function f (x) = λe−λx



























M(β) = E[eβX] =
∫ ∞
0

λ e−(λ−β)xdx =
λ

λ − β
,

ϕ(β) = log M(β) = log λ − log(λ − β)



















m(β) = ϕ′(β) = 1
λ−β

σ2(β) = ϕ′′(β) = 1
(λ−β)2

• The twisted distribution

fβ(x) = (λ − β)e−(λ−β)x

– is also exponential

– with parameter λ − β
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Twisted distribution – example 2

• X is the sum of n independent exponentially distributed random variables

• X ∼ Erlang(n, λ)

• The density function is

f (x) = λ
(λx)n−1

(n − 1)!
e−(λx)

• Twisted distribution:

the distribution of the sum of n variables

with the twisted distributions Exp(λ−β)

• Erlang(n, λ − β) distribution

• Expectation and variance






























m(β) =
n

λ − β

σ2(β) =
n

(λ − β)2
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The distribution of the sum of five Exp(1) ran-

dom variables and the corresponding twisted di-

stribution with the twisting parameter β = 2
3 .
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Twisted distribution – Summary table

• For the usual families of distributions the twisted distribution belongs to the same family

• The expectation and variance of the twisted distribution are given by the familiar formulae
of that family

Distribution Twisted m(β) σ2(β)

Bin(n, p) Bin(n,
peβ

1 − p + peβ
)

npeβ

1 − p + peβ

n(1 − p)peβ

(1 − p + peβ)2

Erlang(n, λ) Erlang(n, λ − β)
n

λ − β

n

(λ − β)2

Poisson(a) Poisson(aeβ) aeβ aeβ

N(m, σ2) N(m + σ2β, σ2) m + σ2β σ2

Taulukko 1: The twisted distributions and their parameters for a few distributions.

• Bernoulli distribution is a special case of the binomial distribution: Bernoulli(p) ∼ Bin(1, p)

• Exponential distribution is a special case of the Erlang distribution: Exp(λ) ∼ Erlang(1, λ)

• χ2 distribution is a special case of the Erlang distribution: χ2(n) ∼ Erlang(
n

2
,
1

2
)
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The Chernoff bound

• For all β ≥ 0 it holds

P{X ≥ x} = E[1{X≥x}]

≤ E[eβ(X−x)]

= e−βxE[eβX ]

= eϕ(β)−βx

since eβ(X−x) ≥ 1{X≥x}.

X
x

e (X-x)β

1

1{X>x}

• Then it holds also P{X ≥ x} ≤ infβ e−βx+ϕ(β)

• Denote by βx the value of β which realizes the minimum.

• The Chernoff bound

P{X ≥ x} ≤ e−βxx+ϕ(βx)

• The value βx can be found by minimizing the exponent.

ϕ′(βx) = x or m(βx) = x

• The mean of the twisted distribution is shifted to x.
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Cramér’s theorem

• Let X = X1 + X2 + . . . + Xn

– Xi are independent and identically distributed

– the component rvs have a common lmgf ϕ(β)

– the lmgf of X is n ϕ(β)

• Consider the exceedance probability of the average value 1
n
X

P{1

n
(X1 + X2 + . . . + Xn) ≥ x}

• Apply the Chernoff bound

P{1

n
(X1 + X2 + . . . + Xn) ≥ x} = P{X ≥ n x} ≤ e−n(βxx−ϕ(βx))

• βx is determined by the condition n ϕ′(βx) = n x, that is ϕ′(βx) = x.

• The rate function I(x) = supβ(βx − ϕ(β)) = βxx − ϕ(βx).

• The exceedance probability of the average

P{1

n
(X1 + X2 + . . . + Xn) ≥ x} ≤ e−nI(x)

• Cramérs theorem: the upper bound is asymptotically exact in the sense that

lim
n→∞

1

n
log P{1

n
(X1 + X2 + . . . + Xn) ≥ x} = −I(x)
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Summary table

• The table gives

– twisting parameter corresponding to level x

– the variance of the twisted distribution with parameter βx

– rate function I(x)

Distribution βx σ2(βx) I(x)

Bin(n, p) log
x
n
(1 − p)

(1 − x
n
)p

x(1 − x

n
) x log

x
n
(1 − p)

(1 − x
n
)p

+ n log
1 − x

n

1 − p

Erlang(n, λ) λ − n

x

x2

n
xλ − n − n log(

xλ

n
)

Poisson(a) log
x

a
x x log

x

a
+ a − x

N(m, σ2)
x −m

σ2
σ2

1

2

(x− m

σ

)

2
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Improved approximation

• The Chernoff bound in terms of the twisted distribution

P{X ≥ x} =
∫ ∞
x

f (y)dy

=
∫ ∞
x

e−βy+ϕ(β)fβ(y)dy

= e−βx+ϕ(β)
∫ ∞
x

e−β(y−x)fβ(y)dy

• In the domain of integration holds e−β(y−x) ≤ 1

⇒ the whole integral ≤ 1

⇒ P{X ≥ x} ≤ e−βx+ϕ(β)

⇒ The Chernoff bound e−βxx+ϕ(βx) is obtained by minimizing with respect to β

• The tightest bound is obtained at βx, where m(βx) = x

– the mean of distribution fβx(·) is at x

• Close to the mean the normal distribution N(x, σ2(βx)) is a reasonable approximation

fβx(y) ≈ e−
1
2(y−x)2/σ2(βx)

√
2πσ(βx)
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Improved approximation (continued)

• Then (assuming βxσ(βx) � 1)

∫ ∞
x

e−βx(y−x)fβx(y)dy ≈ 1√
2πσ(βx)

∫ ∞
x

e−βx(y−x)e−
1
2(y−x)2/σ2(βx)dy

≈ 1√
2πβxσ(βx)

• We obtain a (rather accurate) approximation – no longer a strict upper bound

P{X ≥ x} ≈ e−I(x)

√
2πβxσ(βx)



J. Virtamo 38.3141 Teletraffic Theory / Burst level 17

The exceedance probability and the loss probability

• According to the more accurate approximation we have for the mean

P{1

n
(X1 + X2 + . . . + Xn) ≥ x} ≈ e−nI(x)

√
2πnβxσ(βx)

– I(x) is the rate function of one component variable

– σ(βx) is the twisted variance of one component variable

– the variance of the twisted distribution of the sum is
√

n times larger

– therefore we have a facto n in the denominator

• Ploss can be approximated as follows

Ploss =
1

m
E[(X − x)+] =

1

m
e−βx+ϕ(β)

∫ ∞
x

(y − x)e−β(y−x)fβ(y)dy

• Specifically, set β equal to βx

∫ ∞

x
(y − x)e−β(y−x)fβ(y)dy ≈ 1√

2πσ(βx)

∫ ∞

x
(y − x)e−βx(y−x)e−

1

2
(y−x)2/σ2(βx)dy ≈ 1√

2πβ2
xσ(βx)

from which it follows

Ploss =
1

m
E[(X − x)+] ≈ e−I(x)

√
2πmβ2

xσ(βx)
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Example: calculating the exceedance probability

• What is the probability that the sum of five rvs with distribution Exp(1) exceeds x = 15?

• X ∼ Erlang(5, 1)

• Exact result: P{X ≥ 15} = 22403e−15/8 ≈ 8.566 10−4

• We know that E[X ] = V[X ] = 5

• Normal approximation, X ∼ N(5, 5): Psat ≈ Q(15−5√
5

) ≈ 3.87 10−6

• The Chernoff bound: Psat ≤ e−5I(15/5) ≈ 1.10 10−2

where I(x) = x − 1 − log x is the rate function of one component

• Improved approximation: Psat ≈
e−5I(15/5)

√
2π5(2/3)(15/5)

≈ 9.84 10−4

where































I(x) = x − 1 − log x is the rate function of a single component

βx = 1 − 1/3 = 2/3

σ2(βx) = x2

– the normal approximation is too optimistic

– the Chernoff bound is very conservative

– the improved approximation is reasonably accurate
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Call acceptance – the effective bandwidth






































K = number of source types; the index of type k = 1, . . . , K

ϕk(β) = the logarithmic moment generating function of source type k (assumed to be known)

nk = the number of sources of type k

c = the capacity of the link

Acceptance condition according to the loss criterion: Ploss ≤ ε (ε is the largest allowed

value)

Loss probability can be estimated as presented above

Ploss ≈
e−I(c)

√
2π mβ2 σ(β)

where






















I(c) = β c − ∑

k
nk ϕk(β)

σ2(β) =
∑

k
nk σ2

k(β) =
∑

k
nk ϕ′′

k(β)

and β is determined by the condition

m(β) = c or
∑

k
nk ϕ′

k(β) = c

In order to estimate the loss probability one only needs

to solve this equation (numerically) and insert the β in

the previous expressions. – This very easy as compared to

the convolution of distributions (
∑

k nk − 1 convolutions)
as needed in an exact calculation.
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Call acceptance – effective bandwidth (continued)

The vector n = (n1, . . . , nK) composed of the number of connections of each type defines the

traffic mix (traffic profile).

For a given mix n and capacity c we can calculate Ploss,

Ploss = Ploss(n, c)

By means of this we can conversely find the

allowed region A (in general concave)

A = {n : Ploss(n, c) ≤ ε}
that is, all allowed traffic mixes for which Ploss ≤ ε.

The system can accept new connections as long as n

is in A.

n
2

n
1

A



J. Virtamo 38.3141 Teletraffic Theory / Burst level 21

Call acceptance – effective bandwidth (continued)

If the traffic streams do not differ too much, the boundary of the allowed region is approxi-

mately linear (a hyperplane)

∑

k
nkBk ≤ c, where the effective bandwidth Bk is Bk =

c

nk(c)

and nk(c) tells how many connections of type k alone can be accepted to the link c such that

Ploss ≤ ε.

If the traffic types are very different, then the planar

approximation is no longer accurate.

An arbitrary tangent plane of the allowed region defi-

nes a safe region of acceptance.

We can take as the effective bandwidth the value

Bk = c/n∗
k

where n∗
k is the point where the tangent plane inter-

sects the nk axis.

n
2

n
1

A

n *
2

n *
1
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A rough approximation for the effective bandwidth

In order of magnitude calculations one can use Lindberger’s approximate formula

Bk = 1.2mk + 60σ2
k/c

If only the mean rate mk and the peak rate hk are known, we can further make the worst

case analysis:

• Suppose the source is of the “on/off” type

– when the source is on, it sends with the peak rate hk

– the source is intermittently off, such that the mean rate is mk

Then one can easily show that

σ2
k = mk(hk − mk)
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Effective bandwidth in case of on/off sources

The method based on the large deviation theory gives a rather accurate way to estimate the

overflow probability for an arbitrary traffic mix.

In some cases the overflow probability can be calcula-

ted exactly. The most important case is that of similar

“on/off” sources.

• n statistically identical sources

• the rate of a source in the “on” state is h (peak

rate)

• the probability of the “on” state is α

• the probability of the “off” state is 1 − α

• the mean rate of a source is m = α h

.

.

.

.

c

Using the peak rate allocation, one can admit n0 sources: n0 = c/h

When the number of sources is large and α is not too close to 1, it is very unlikely that all

the sources would be simultaneously in the “ on” state.

• The sources are statistically multiplexed (interleaved).

• By allowing overflow with a small probability, one can significantly increase the allowed

number of connections (so called multiplexing gain G).
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Effective bandwidth in case of on/off sources (continued)

Probability pi that i sources out of n are simultaneously active

pi =







n

i





αi(1 − α)n−i

The overflow probability is thus

Ploss(n, n0, α) =
1

nm

n
∑

i=dn0e
pi · (i − n0)h =

1

nα

n
∑

i=dn0e
pi · (i − n0)

Largest allowable number of connections nε(n0, α) is determined from the condition

Ploss(nε, n0, α) ≤ ε

The effective bandwidth Beff of a single connection is (m ≤ Beff ≤ h)

Beff =
c

nε
=

n0

nε
· h

• Multiplexing gain G = nε/n0 = h/Beff

• Allowed load ρ = nεm/c = nεαh/c = αnε/n0 = αG
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Effective bandwidth in case of on/off sources (continued)

The effectiveness of the statistical multiplexing can be gauged by means of either the mul-

tiplexing gain G or the allowed load ρ = αG (both contain the same information).

• The figures below show G and ρ as a function of α with ε = 10−9.

• The parameter of the family of curves is n0 = c/h (from below 10, 15,30,100).

Multiplexing gain vs. α

100

1

G

1.01 α

Load factor vs. α

1

.01

ρ

1.01 α

• For small α (bursty traffic) the multiplexing gain can be great.

• The allowed load, however, depends almost solely on the parameter c/h.

• In order to have a reasonable load in a bufferless system it is required that the peak rate

of every single source is a small fraction of the link rate (1% or less).


