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BURST LEVEL BEHAVIOUR
Overflow probability in a bufferless system

e Consider an output port of an ATM switch
e Suppose:

— the buffer can only absorb cell level fluctuations

— the capacity of the outgoing link is C
e Several VO connections use the same outgoing link

— denote the total bitrate of the connections by X

e The rate exceeding C' flows over d &
e The overflow rate (X — C)*

link

input rate

— where (+)* = max(0, -) rate
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Overflow and saturation probabilities

e Overflow probability

— the ratio of the overflow rate to the arrival rate

B(X —C)f] _ | (&= O)f(a)da
E[X] /OOO xf(x)dx

Boss -

e Saturation probability
P, = P{X > C}

— probability that the capacity is exceeded

— sometimes easier to evaluate than P

— rough upper bound for P (not strictly a bound, though)

— usually a few orders (factor 100) higher than P

— often, from the point of dimensioning, the difference is not important
— losses depend very strongly on the capacity

— conversely, the required capacity is not very sensitive to the level of accepted losses
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Elementary consideration — normal approximation

e There are n virtual channel connections over the link

— we assume the streams are statistically identical and independent

X=X1+...+X,

e Denote
m = mean rate of a single stream, E[X],
0 = variance of the rate of a single stream, V[X].

e Correspondingly
{ M =mn-m = mean rate of the aggregate stream, E[X],

32 =n-0? = variance of the rate of the aggregate stream, V[X]

e For large n, approximately X ~ N(M, 3?)
e Saturation probability is then

Puy = Q (C_ M)

)
where r

1 0o .2 1
Q(z) = ﬁ/‘” e Y2y = §erfc(%>
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Normal approximation — effective bandwidth

e In order not to exceed level P,y requires the capacity C
C>M+Q (Pu)- T

e Let 1 be the quantile point of the N(0,1) distribution corresponding to probability 1 — Py
n=Q '(Peat)

e By the definitions of M and 32 we get 7

C>n-m+nyn-o

e The required bandwidth per stream, so o
called effective bandwidth, is v3
2 /]
. O' 1 /
Bg=m+ "7 L/
\/ﬁ 2 4 6 8 10

e Asn grows the effective bandwidth tends
to the mean rate
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Moment generating function

e The moment generating function of a random variable X

M(B) = E[e™] = [ e f(x)dw

e Logarithmic moment generating function
p(B) = log M(3)

e By means of these the moments can be computed as follows

m

0.2

° Addltl\/lty X =X+Xo0+... —|—Xn, where Xl, XQ, ..

E[X] = M'(0) = ¢'(0)
E[X? = M"(0)
VIX? = M"(0) - M'(0)* = ¢"(0)

variables with lmgfs ©1(3), w2(8), ..., @a(F), then

©(5)

log E[e"X]

10g E[eﬁ(X1+X2+...+Xn)]

log Ele#X1¢Xz ... ¢0X0]

10g(E[€ﬁX1] . E[eﬁXz] ce E[eﬁXn])

log E[e”1] + log E[e”%2] + ... + log E[e/*n]
p1(8) + 2(8) + ...+ en(B)

Values at the origin:
M) =1

p(0) =0

., X, are independent random
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Twisted distribution
e Let the pdf of X be f(x)

e The twisted or shifted distribution fs(x)

0.25
e’ f(z) 0.2
folx) = = MO f(x) |
TN ) sl
— large values of X become more likely 0.1 /
— the mass of the distribution is shifted towards 0.05 /
large values 0 /

— the moment generating function M([3) is the
normalization factor

e Conversely, f(z) can be expressed in terms of fs(x)

flz) = e—ﬁxw(ﬁ)fB(@

e T'wisting can be defined without assuming a continuous distribution
e T'wisting of the probability measure
dPy(z) = " *WdP(x)

e Denote Eg-| = expectation with respect to the measure Py
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Twisted distribution — continued

e The moments of the twisted distribution
EXe™] _ M(3) _

EsX] = “ya = aas) =90

) = Sy = B

VilX] = - S -k — wp)
mi®) = @'(5)

() = @"(5)
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Twisted distribution — continued

e Additivity of the twisted distributions: If X = X+ Xs+. ..+ X, where X1, Xo,..., X,
are independent, then it follows from the additivity of the Img functions
m(3) = mi(8) +ma(B) + ... +mn(B)
o1(8) = oi(B) +03(B) + ...+ ()

where m;(3) and o?(3) stand for the expectation and variance of the random variable
X; with respect to the twisted distribution

e In fact, a stronger relation holds:

The twisted distribution of the sum X of independent random variables X; equals the
sum of the twisted distributions of the individual variables:

sum
—

twisting ) | twisting
_
sum
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Twisted distribution — example 1

e Exponential distribution X ~ Exp(A\)

e Probability density function f(z) = e M

©\ _Oef)e A
M(B) = Ele™] = [T xe”*7 dr = <",

p(B) = logM(B) =log A —log(A — )
m(B) = ¢'(B) = 323
o(B) = ¢"(B) = 5y
e The twisted distribution
fo(a) = (A = Ble” N

— 18 also exponential

— with parameter A — (3
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Twisted distribution — example 2

e X is the sum of n independent exponentially distributed random variables

e X ~ Erlang(n, \)
e The density function is

(Az)"
f(@) :Ame A

e T'wisted distribution:
the distribution of the sum of n variables
with the twisted distributions Exp(A — ()

e Erlang(n, A — ) distribution
e Expectation and variance
n
n

7O 5 =5p

0.25

0.2

0.15 /\
0.1 /

\
/ »"—\
N

\

0 15 20 25 30

0.05 /
0

The distribution of the sum of five Exp(1) ran-

dom variables and the corresponding twisted di-

\

stribution with the twisting parameter 3 = %
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Twisted distribution — Summary table

e For the usual families of distributions the twisted distribution belongs to the same family

e The expectation and variance of the twisted distribution are given by the familiar formulae
of that family

Distribution Twisted m(3) a*(5)
B B B
: , pe npe n(1l — p)pe
B Bin(n,
in(n, p) in(n 1= +p65) 1—p+ peP (1 — p + ped)2
n n
Erlang(n, A Erlang(n, A —
(. ) mA-B) | 5 ST
Poisson(a) Poisson(ae”) ac’ ac’
N(m, o?) N(m + 023, 0?) m+ o023 o?

e Bernoulli distribution is a special case of the binomial distribution:

e Exponential distribution is a special case of the Erlang distribution:

e 2 distribution is a special case of the Erlang distribution:

Taulukko 1: The twisted distributions and their parameters for a few distributions.

1
2
~ Erl
X(n) ~ Brlang(5., >

Bernoulli(p) ~ Bin(1, p)
Exp(A) ~ Erlang(1, \)
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The Chernoff bound
e For all 5 > 0 it holds
P{X >z} = E[l{x>4)]

e[5()(7)()

S E[eﬁ(X_x)] )
— egp(ﬁ)_ﬁx B
since X7 > Lix>a)-

e Then it holds also P{X > z} <infj e~ Br+e(B)
e Denote by 3, the value of 3 which realizes the minimum.

e The Chernoff bound

P{X > CIZ} < e—ﬁxx+s0(ﬁx)

e The value 3, can be found by minimizing the exponent.

O (B)=x or m(B,) ==

e The mean of the twisted distribution is shifted to x.

12
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Cramér’s theorem

olet X=X+ Xo+...+X,
— X, are independent and identically distributed

— the component rvs have a common Imgf (3)
— the Imgf of X is n ¢(0)

e Consider the exceedance probability of the average value %X
P{%(X1+X2+...+Xn) > x}

e Apply the Chernoff bound
P{%(Xl +Xo+...+ X)) >z} =P{X >nz} < e\ Par—p(Br))

e (3, is determined by the condition n ¢/(5,) = nz, thatis ¢'(G,) = x.
e The rate function I(x) = supg(Br — ©(8)) = Bz — ©(5e).

e The exceedance probability of the average
1
P{-(X1+Xo+...+X,) >2} <e ™
n

e Cramérs theorem: the upper bound is asymptotically exact in the sense that

1 1
lim —logP{— (X1 +Xo+ ...+ X)) >z} =—I(x)

13
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Summary table

e The table gives
— twisting parameter corresponding to level x

— the variance of the twisted distribution with parameter 3,

— rate function I(z)

Distribution Ba o*(Bx) I(x)
: 2(1—p) x 2(1—Pp) ~
Bin(n, p) log 2 z(l——) xlog =——= 4+ nlog 1
(1—=3)p n 1-2) —-p
n x? TA
Erlang(n, \) A—— — A —n —nlog(—)
x n n
Poisson(a) log a x xlog Tia—z
a a
9 T —m 9 1 /2 —m\2
N(m, c?) = o 5 ( - )
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Improved approximation

e The Chernoff bound in terms of the twisted distribution
P{X >z} = [7 fly)dy
— /;O e—ﬁerso(ﬁ)fﬁ(y)dy

e In the domain of integration holds e ?—%) < 1
= the whole integral <1

= P{X > 2} < e frteld)
= The Chernoff bound e~ ##*+#(%) is obtained by minimizing with respect to 3

e The tightest bound is obtained at (3., where m(8,) = «x

— the mean of distribution fg,(-) is at

e Close to the mean the normal distribution N(z, 0%(/3;)) is a reasonable approximation
o~ S (y—a)2/72(50)

210 (6,

fa.(y) =

15
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Improved approximation (continued)

e Then (assuming B,0(5;) > 1)
1

> e Bely—z 00 _ B (y—z) —S(y—2)2/02(Bs
[P e gy (y)dy ~ W/x o~ Bely=2) o= blu=2)’ /7% (52) g,
1

verB,o(5,)

e We obtain a (rather accurate) approximation — no longer a strict upper bound

Q

—1(x)
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The exceedance probability and the loss probability

e According to the more accurate approximation we have for the mean
—nl(x)

(&
- V2T ﬁxa<ﬁx)

— I(z) is the rate function of one component variable

1
P{E(X1+X2+...+Xn)zx}

— () is the twisted variance of one component variable
— the variance of the twisted distribution of the sum is y/n times larger

— therefore we have a facto n in the denominator

e P, can be approximated as follows
1 1

P = EEKX - x)+] _ Ee—ﬁxﬂow) /xoo@ B x)e—ﬁ(y—x)fﬁ@)dy
e Specifically, set (3 equal to 3,
oo 1 (6.9] 1 2 2 1
_e—Bl-a) ~ e Bely=1) 3 r=2)2/0%(B2) g,
| (y—x)e fa(y)dy Varo(5) | (y—a)e € dy V2 (3]

from which it follows

1)

~ Vermo(B,)

Ploss = %EKX - x)_l_]
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Example: calculating the exceedance probability

e What is the probability that the sum of five rvs with distribution Exp(1) exceeds z = 157
o X ~ Erlang(5,1)

e Exact result: P{X > 15} = 22403e1°/8 ~ 8.566 10~*

e We know that E[X] = V[X] =15

e Normal approximation, X ~ N(5,5): Py ~ Q(%) ~ 3.87107°

e The Chernoff bound: P < e 2115/5) 5 1101072
where I(x) =z — 1 — log z is the rate function of one component
o—51(15/5)
e Improved approximation: P ~ ~9.84107"

T VR(2/3)(15/5)
I(z) = x — 1 —log x is the rate function of a single component
where B,=1—-1/3=2/3
0*(Pe) = 7
— the normal approximation is too optimistic

— the Chernoff bound is very conservative

— the improved approximation is reasonably accurate
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Call acceptance — the effective bandwidth

K = number of source types; the index of type k =1,..., K

¢r(B) = the logarithmic moment generating function of source type k (assumed to be known)
n = the number of sources of type k

c = the capacity of the link

Acceptance condition according to the loss criterion: P < € (€ is the largest allowed
value)

Loss probability can be estimated as presented above
—1I(c)
PIOSS ~ 9
V2rm (3% o(0)
where
I(c) = Pc— %nkéﬁk(ﬁ)
() = Tniai(8) = L (5)

and 3 is determined by the condition

In order to estimate the loss probability one only needs
) to solve this equation (numerically) and insert the g in
m(f) =c or % ny pi(8) = ¢ the previous expressions. — This very easy as compared to
the convolution of distributions (Xxn; — 1 convolutions)
as needed in an exact calculation.
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Call acceptance — effective bandwidth (continued)

The vector n = (nq, ..., ng) composed of the number of connections of each type defines the
traffic mix (traffic profile).

For a given mix n and capacity ¢ we can calculate Py,

Boss - Boss(na C)

By means of this we can conversely find the R
allowed region A (in general concave)

A= {Il : Boss(na C) < 6}

that is, all allowed traffic mixes for which Py < €.

The system can accept new connections as long as n A
isin A.

\4
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Call acceptance — effective bandwidth (continued)

If the traffic streams do not differ too much, the boundary of the allowed region is approxi-
mately linear (a hyperplane)

C

n(c)

> niBr < ¢, where the effective bandwidth B is By =
k

and ny(c) tells how many connections of type k alone can be accepted to the link ¢ such that
Ploss < €.

If the traffic types are very different, then the planar
approximation is no longer accurate. N2

An arbitrary tangent plane of the allowed region defi-
nes a safe region of acceptance.

We can take as the effective bandwidth the value

By = c¢/n;

where nj is the point where the tangent plane inter-
sects the ny axis.
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A rough approximation for the effective bandwidth

In order of magnitude calculations one can use Lindberger’s approximate formula

By = 1.2my + 6007 /c

If only the mean rate m; and the peak rate h; are known, we can further make the worst
case analysis:

e Suppose the source is of the “on/oft” type

— when the source is on, it sends with the peak rate hy

— the source is intermittently off, such that the mean rate is my

Then one can easily show that

Oi = mk(hk — m;{;)




J. Virtamo 38.3141 Teletraffic Theory / Burst level 23

Effective bandwidth in case of on/off sources

The method based on the large deviation theory gives a rather accurate way to estimate the
overflow probability for an arbitrary traffic mix.

In some cases the overflow probability can be calcula- — — R —
ted exactly. The most important case is that of similar 1 —
“on/off” sources. R -
e n statistically identical sources
— [ 1

e the rate of a source in the “on” state is h (peak
rate)

o : o L -
e the probability of the “on” state is « e w

e the probability of the “off” state is 1 — «

e the mean rate of a source is m = a h

Using the peak rate allocation, one can admit ng sources: ng = c¢/h

When the number of sources is large and « is not too close to 1, it is very unlikely that all

(

the sources would be simultaneously in the “ on” state.

e The sources are statistically multiplexed (interleaved).

e By allowing overflow with a small probability, one can significantly increase the allowed
number of connections (so called multiplexing gain G).
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Effective bandwidth in case of on/off sources (continued)

Probability p; that ¢ sources out of n are simultancously active

pi = (n) a'(l—a)"™

[/

The overflow probability is thus

1 n _ 1 n _
Pos(n,ng, ) = — ¥ pi- (it —ngh=— Y pi- (1 —np)
T = [ny)] A j=ny)]

Largest allowable number of connections n.(ng, a) is determined from the condition
Boss(na no, CV) <e
The effective bandwidth Beg of a single connection is (m < Beg < h)
C Un

By =— = h
Ne N

e Multiplexing gain G = n./ng = h/Beg

e Allowed load p = ngm/c = n.ah/c = ane/ng = aG

24
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Effective bandwidth in case of on/off sources (continued)

The effectiveness of the statistical multiplexing can be gauged by means of either the mul-
tiplexing gain G or the allowed load p = aG (both contain the same information).

e The figures below show G and p as a function of a with € = 1077,

e The parameter of the family of curves is ng = ¢/h (from below 10, 15,30,100).

Multiplexing gain vs. o Load factor vs. «
100 1
=
|
A —
N —TT | |
. \ N 0 e
N
N
N NN
\\\ \ N
T~ \\\>\
1 .01
.01 o 1 .01 o 1

e For small a (bursty traffic) the multiplexing gain can be great.
e The allowed load, however, depends almost solely on the parameter ¢/h.

e In order to have a reasonable load in a bufferless system it is required that the peak rate
of every single source is a small fraction of the link rate (1% or less).



