1. The output port of an ATM switch carries 4 constant bit rate virtual channel connections. The speed of the link is 155 Mbit/s and the bit rate (net information rate) of each connection is 24 Mbit/s. The information is packed into the 48 octet (byte) length payload of the cell, which additionally has a header of 5 octets. Using the \(N \cdot D/D/1 \) model calculate the probability that there are at least \(n \) cells in the output buffer of the port for the values \(n = 0, \ldots, 4 \).

2. Cells arrive to a modulated \(N \cdot D/D/1 \) queue from three different sources. In each of the streams the cell interarrival time is 5 (cell transmission times) when the burst is active. The activity probabilities of the sources are 0.5, 0.4 and 0.2. Calculate the probabilities that there are \(n \) cells, \(n = 0, \ldots, 3 \) in the queue.

3. Let the unfinished work in a queue, \(X \), measured in the time it takes to serve the work (also called the virtual waiting time), have the tail distribution \(Q(x) = P\{X > x\} \). Denote the actual waiting time of random customer by \(W \) and its tail distribution by \(W(x) = P\{W > x\} \). Justify the following: a) in an \(M/D/1 \) queue it holds that \(W(x) = Q(x) \), b) in an \(N \cdot D/D/1 \) queue it holds that \(W_N(x) = Q_{N-1}(x) \), where the subscript refers to the number of sources in the system.

4. Customers arrive at an \(M/D/1 \) queue with Poissonian rate \(\lambda \), each customer bringing an amount \(d \) of work in the queue. The server has rate \(C \) and thus the load of the system is \(\rho = \frac{\lambda d}{C} \). The tail distribution of the unfinished work \(X \) in the queue is known to be asymptotically of exponential form \(G(x) = P\{X > x\} = Ae^{-kx} \), where \(A \) and \(k \) are some constants. Derive an equation for \(k \) by writing the balance condition of the probability flows across a surface at level \(x \) \((x \gg d)\). Hint: 1) as the server is discharging the queue, the probability mass with density \(-G'(x)\) at point \(x \) flows at rate \(C \) downwards, 2) every arrival that finds the system in a state \(X \) with \(x - d < X \leq x \) transfers a probability mass of 1 across the surface. Solve the equation for \(k \) when \(\rho = 0.5 \).

5. Determine the twisted distribution and its mean and variance for a random variable \(X \), which obeys
 a) Binomial distribution \(\text{Bin}(N, p) \),
 b) Poisson distribution \(\text{Poisson}(a) \).

6. The bit rate produced by a traffic source varies as follows: 50% of the time 0 kbit/s, 30% of the time 100 kbit/s and 20% of the time 300 kbit/s. How many sources of this type can be multiplexed on link with capacity 2 Mbit/s, when the allowed loss probability is \(P_{\text{loss}} \leq 10^{-4} \)? Thus, what is the effective bandwidth of one source in this setting? Compare with the mean and peak rates. Hint: Use the approximation formula at the bottom of page 17 of the lectures.