Call Setup Examples based on Generic SIP

SIP in 3G

Registration example with SIP

```
REGISTER sip:registrar.biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7
Max-Forwards: 70
To: Bob <sip:bob@biloxi.com>
From: Bob <sip:bob@biloxi.com>;tag=456248
Call-ID: 843817637684230@998sdasdh09
CSeq: 1826 REGISTER
Contact: <sip:bob@192.0.2.4>
Expires: 7200
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7
;received=192.0.2.4
To: Bob <sip:bob@biloxi.com>;tag=2493k59kd
From: Bob <sip:bob@biloxi.com>;tag=456248
Call-ID: 843817637684230@998sdasdh09
CSeq: 1826 REGISTER
Contact: <sip:bob@192.0.2.4>
Expires: 7200
Content-Length: 0
```
Copy of the given content is not available.
Call Setup example with two proxies

1a) INVITE
1c) 100 Trying
3c) 180 Ringing
4c) 200 OK
5a) ACK

1b) INVITE
2b) 100 Trying
3b) 180 Ringing
4b) 200 OK

2a) INVITE
3a) 180 Ringing
4a) 200 OK

5a) ACK

7a) 200 OK

Media stream
Call Setup example with two proxies

1a) INVITE
1c) 100 Trying
3c) 180 Ringing
4c) 200 OK
5a) ACK

Media stream

atlanta.com proxy
Biloxi.com proxy

1b) INVITE
2b) 100 Trying
3b) 180 Ringing
4b) 200 OK

atlanta.com proxy
Biloxi.com proxy

2a) INVITE
3a) 180 Ringing
4a) 200 OK

6a) BYE
7a) 200 OK

Raimo Kantola –S- 2007
Signaling Protocols

Raimo Kantola –S- 2007
Signaling Protocols
Call Setup example with two proxies

1a) INVITE
1c) 100 Trying
3c) 180 Ringing
4c) 200 OK
5a) ACK

1b) INVITE
2b) 100 Trying
3b) 180 Ringing
4b) 200 OK

1c) 100 Trying
2b) 100 Trying
3b) 180 Ringing
4b) 200 OK

atlanta.com proxy
Biloxi.com proxy

Media stream

6a) BYE
7a) 200 OK

Registration example with SIP authentication

1) REGISTER
Call-ID: 123@here.com

2) 401 Unauthorized
WWW-Authenticate: <Challenge>

3) REGISTER
Call-ID: 321@here.com
Authorization: <Authorization info>

4) 200 OK
Call Setup example with a non-working proxy

1) INVITE
2) INVITE (6x)
3) CANCEL, BYE
4a) INVITE
5b) 180 Ringing
6b) 200 OK

4b) INVITE
5a) 180 Ringing
6a) 200 OK

7a) ACK

Call Setup example with a Redirect server

1a) INVITE
2) INVITE
3) 301 Moved Temporarily
4b) 180 Ringing
5b) 200 OK
6a) ACK

1b) INVITE
2) INVITE
3) ACK
1c) INVITE
4a) 180 Ringing
5a) 200 OK

6b) BYE
7a) 200 OK
Services use many protocols

- New services and more flexible service creation should differentiate IP Communications Network from PSTN
- Services should combine different forms of communication, thus multiple protocols are needed:
 - SIP for media sessions and session related services, subscriptions and notifications?, messaging?
 - HTTP for web and transactions
 - SMTP for e-mail
 - RTSP for media streaming
- The use of these protocols is orchestrated by the service logic: context is set up using SIP.

Routing and Service Model in 3G

- P1, P4: Outbound Proxies
- P2, P3: Registrar Proxies
- AS1, AS2: Application Servers

NB: Also AS based on direct processing of call state: There is no Basic call state model like in IN
SIP Entities & Service Capabilities

- **User Agent (= UAC + UAS)**
 - Can run services, such as forwarding, filtering etc.
 - Not always connected (out of coverage/battery etc.)
- **Redirect Server**
 - Can do services that require only Request-URI change, e.g. translation, parameter addition etc.
- **Proxy Server**
 - Can change certain headers and stay in the signaling path
 - Forking, actions based on responses
- **Back-to-Back User Agent (=both ways User Agent)**
 - Can e.g. issue requests to a call leg or modify SDP, generate ACK and 200OK, like UAC/UAS
 - In many cases necessary e.g Sessio Border Controller or 3G SIP

Application Server in 3G

- Fuzzy Definition but has SIP+ interface!
- Can be a Redirect or Proxy Server or Back-to-Back UA
- The key is that it should be *programmable*
 - Routing based on service logic: what to do when user not registered or busy
 - URI translation: Reachability chains
 - Interfaces to other protocols: HTTP, SMTP, RTSP etc.
- Can be single purpose boxes, or multi-purpose boxes, or controllers that orchestrate things
Different Kinds of CSCFs

Proxy CSCF:
In the same network as the GGSN: if the visited net does not support IMS, can be in the home network.
Provides
- emergency service breakout,
- triggers for locally-provided services, and
- number normalizing (per local dialing plan)
- Policy Decision point
- user authentication
- maintains a security association with the terminals for signaling

Raimo Kantola –S- 2007
Signaling Protocols
13 - 18
Different Kinds of CSCFs

Interrogating CSCF: Queries the HSS to find the correct S-CSCF. First point of contact for incoming call signalling. Load distribution node!

Serving CSCF: Provides subscriber services. Interface to Application servers.
SIP Proxy vs B2BUA

Overview of routing between two mobile terminals
3G Application Triggering

Service processing can be delegated to Application Servers with a fine grained control: Filter criteria in IMS triggering is bound to user identities, since a user may have many identities, different services may be invoked depending on the identity.

Identification of users in 3G IMS in R6

In Release 5 only one Private User id

Raimo Kantola –S- 2007 Signaling Protocols 13 - 23

How to Program Services

- Call Processing Language
- SIP CGI
- SIP Servlets
- SIP JAIN (JSLEE – Jain Serv Logic Exec Env)
- Soft SSF and INAP/CAP
- Parlay
- OSA

=> Whatever… Different abstraction levels

The claim is that it should be as open as flexible as creating services in the web these days

Server types for different services

- Media Server (SIP, RTSP, HTTP)
 - Announcements, IVR, Voicemail, Media on demand
- Conferencing Server (SIP)
 - Media mixer
- Presence Server (SIP)
 - User’s status info, capabilities, willingness to communicate
- Web Server (HTTP), E-mail Server (SMTP), Messaging Server (SIP?), Text-to-Speech Server etc.
- Controller Server
 - Co-ordinates the overall service

=> Server resources can be addressed by URLs, no need for tight coupling a la MGCP/Megaco
Third Party Call Control is based on SIP

- Powerful tool e.g. for inviting users to centralized conferences or sessions with a Media Server
- In principle third party call control that has never been properly implemented in CSN, is as natural in SIP as first party call control because SIP is used also on the the interface to Application servers.

REFER and Call Transfer

Transferor Transferee Transfer Target

INVITE/200 OK/ACK
INVITE (hold)/200 OK/ACK
REFER
202 Accepted
NOTIFY (200 OK)
200 OK
BYE/200 OK

INVITE/200 OK/ACK
BYE/200 OK

Media can always go directly from Transferee to Transfer target.
Auto-conferencing Service Example

1. One user orders the conference by filling a web form
2. Controller subscribes to each participant’s presence
3. When all available, send message or start IVR session to each participant to confirm willingness
4. Connect each participant to conference server. Play announcements to conference from media server when new parties join

Technical Problems

- How to make service components really independent?
- If there is dependency, how to move parameters between the components?
- How to secure call release?
- Signaling efficiency for narrow band services
 - Problem for narrow band networks and for shared capacity networks when SIP applied to narrow band services
 - SigComp gives some relief with the expense of cpu cycles and memory (most likely less than 1:10 compression)
Emergency calls in IMS

• Requirements
 – different countries have different requirements and different numbers for Emergency calls (Europe 112, USA 911, Japan 119 etc)
 – US: mobile terminal has to be geographically located
 – Europe: the network has to place the call even if there is no SIM card. Call has to be routed to the right Emergency Center.

• IMS issues:
 – GPRS always authenticates the user.
 – Different numbers in different countries → routing problem for roaming customers

• IMS solution in Release 5: The terminal has to place the emergency call using the CS domain in 3G → all voice terminals have to support CS services. P-CSCF has to detect an incoming emergency call by a roaming customer irrespective in which country the customer is roaming and even if the P-CSCF is located in the home network.

• Support for Emergency services has been added to IMS later releases but still all Mobiles support CS services…

Emergency calls in VOIP

• Requirement: The Emergency Center has to see the address of the caller to the emergency number.

• In PSTN the telephone extension has a location number that identifies the copper wire to the residence. The directory number of the caller can always be mapped to the location number and the address of the caller retrieved from a subscriber database.

• IP networks do not support location numbers. IP addresses are allocated to users dynamically. If the user is calling from home, the home address can somehow be identified from a DB. If the user is connected while away from home, VOIP may give a wrong address to the Emergency Center.
Business issues and opportunities

- Broadband + VOIP will kill PSTN, there is no incentive to deploy VOIP aggressively.
 - PSTN penetration has drobbed to about 30% in Finland
- At the same time voice is becoming mobile.
 - e.g. with very conservative mobile policy, ca 90% of call costs are incurred by mobile services in Universities and Politechnics in Finland.
 - Many people have little faith in any wireline voice service.
- How to retain control over Subscribers that have BB connection?
 - Any third party can provide VOIP (with QoS problems not solved).
- Why would Mobile Operators deploy IMS and SIP for voice services when the CS subsystems provides all the needed voice services?
 - It may be that IMS will first be used for services other than VOIP.
- IMS may be used to provide corporate telephony services – integration of corporate communication services with other business process IT systems.

Voting for VOIP

- Vendors have stopped developing CS telephony.
- BB deployment is proceeding: Examples of South-Korea, US.
- With wide spread BB, if operators do not deploy VOIP, someone will (e.g. SKYPE).
OECD Broadband Statistics to June 2007.

Over the past year, the number of broadband subscribers in the OECD increased 22% from 181 million in June 2006 to 221 million in June 2007.

Fibre to the home is becoming increasingly important for broadband access, particularly in countries with high broadband penetration.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>% DSL</th>
<th>% Cable</th>
<th>% Fibre/ LAN</th>
<th>other</th>
<th>Subs/100 inhab</th>
<th>Total subs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Denmark</td>
<td>21.3</td>
<td>9.7</td>
<td>2.9</td>
<td>0.4</td>
<td>34.3</td>
<td>1 886 306</td>
</tr>
<tr>
<td>2</td>
<td>Netherlands</td>
<td>20.4</td>
<td>12.7</td>
<td>0.4</td>
<td>0.0</td>
<td>33.5</td>
<td>5 470 000</td>
</tr>
<tr>
<td>3</td>
<td>Switzerland</td>
<td>20.5</td>
<td>9.3</td>
<td>0.0</td>
<td>0.9</td>
<td>30.7</td>
<td>2 322 577</td>
</tr>
<tr>
<td>4</td>
<td>Korea</td>
<td>10.1</td>
<td>10.6</td>
<td>9.2</td>
<td>0.0</td>
<td>29.9</td>
<td>14 441 687</td>
</tr>
<tr>
<td>5</td>
<td>Norway</td>
<td>22.7</td>
<td>4.5</td>
<td>1.8</td>
<td>0.7</td>
<td>29.8</td>
<td>1 388 047</td>
</tr>
<tr>
<td>6</td>
<td>Iceland</td>
<td>29.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.6</td>
<td>30.8</td>
<td>90 622</td>
</tr>
<tr>
<td>7</td>
<td>Finland</td>
<td>24.4</td>
<td>3.7</td>
<td>0.0</td>
<td>0.8</td>
<td>28.8</td>
<td>1 518 900</td>
</tr>
<tr>
<td>8</td>
<td>Sweden</td>
<td>17.9</td>
<td>5.6</td>
<td>4.6</td>
<td>0.4</td>
<td>28.6</td>
<td>2 596 000</td>
</tr>
<tr>
<td>9</td>
<td>Canada</td>
<td>11.9</td>
<td>12.9</td>
<td>0.0</td>
<td>0.1</td>
<td>25.0</td>
<td>8 142 320</td>
</tr>
<tr>
<td>10</td>
<td>Belgium</td>
<td>14.5</td>
<td>9.2</td>
<td>0.0</td>
<td>0.1</td>
<td>23.8</td>
<td>2 512 884</td>
</tr>
<tr>
<td>11</td>
<td>United Kingdom</td>
<td>18.4</td>
<td>5.3</td>
<td>0.0</td>
<td>0.0</td>
<td>23.7</td>
<td>14 361 816</td>
</tr>
<tr>
<td>12</td>
<td>Australia</td>
<td>18.3</td>
<td>3.4</td>
<td>0.0</td>
<td>0.9</td>
<td>22.7</td>
<td>4 700 200</td>
</tr>
<tr>
<td>13</td>
<td>France</td>
<td>21.4</td>
<td>1.1</td>
<td>0.0</td>
<td>0.0</td>
<td>22.5</td>
<td>14 290 000</td>
</tr>
<tr>
<td>14</td>
<td>United States</td>
<td>9.3</td>
<td>11.5</td>
<td>0.6</td>
<td>0.7</td>
<td>22.1</td>
<td>66 213 257</td>
</tr>
<tr>
<td>15</td>
<td>Japan</td>
<td>10.8</td>
<td>2.9</td>
<td>7.6</td>
<td>0.0</td>
<td>21.3</td>
<td>27 152 349</td>
</tr>
<tr>
<td>16</td>
<td>Germany</td>
<td>20.2</td>
<td>1.0</td>
<td>0.0</td>
<td>0.1</td>
<td>21.2</td>
<td>17 472 000</td>
</tr>
<tr>
<td>17</td>
<td>Austria</td>
<td>11.4</td>
<td>6.6</td>
<td>0.0</td>
<td>0.6</td>
<td>18.6</td>
<td>1 543 518</td>
</tr>
<tr>
<td>18</td>
<td>Spain</td>
<td>13.3</td>
<td>3.6</td>
<td>0.0</td>
<td>0.1</td>
<td>17.0</td>
<td>7 483 790</td>
</tr>
<tr>
<td>19</td>
<td>Other OECD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>OECD</td>
<td>11.6</td>
<td>5.4</td>
<td>1.4</td>
<td>0.3</td>
<td>18.8</td>
<td>221 020 786</td>
</tr>
</tbody>
</table>

OECD Broadband subscribers per 100 inhabitants, by technology, June 2007

OECD average
Conclusions on BB penetration

• Subscriptions are growing at 20+% per annum
 – developed countries like to talk about connections per inhabitants. BB is however mostly a service per household. E.g. in Korea households have more people than in the West.
• Aging of ISDN/PSTN technology may be replaced by Multiservice Access Nodes with PSTN/ISDN/xDSL/… line cards + Next Generation Network backbone providing all services from the same platform and cutting costs.
 – IMS is the signaling and services machinery used in NGN.
• Nrof of Fiber connections to homes are gaining market share. BB radio is also gaining a limited success while xDSL and Cable dominate the BB access market.
 – in Korea xDSL penetration is declining – replacement by Fiber is taking place: nrof of Fiber homes has more than doubled between June 2006 and June 2007.
 – In Japan xDSL is also absolutely declining, replacement by Fiber is taking place.

Conclusions on SIP

• SIP is a native IP-network signaling system suitable for Broadband networks
 – Needs compression when used e.g. in shared media cellular networks such as 3G WCDMA
 – Also, cellular networks of the future are going to be BB networks
• Most signaling and service architecture development in the world now is SIP oriented
 – Several IETF groups are producing a broad set of documents related to SIP, 3GPP has produces >> n x 100 pages…
 – SIP architecture = base protocol + extensions
 – Recent developments include conferencing, emergency services, PSTN/ISDN emulation (TISPAN), Peer-to-Peer SIP etc.
• Deployment
 – BT NGN is based on SIP and IMS and will replace BT’s PSTN in a few years
 – No attractive services in cellular networks so far based on IMS. Due to well working CS services, operators are not in a hurry to replace CS services with packet based IMS produced services in cellular networks. New attractive services are needed.
Appendix B – 3GPP IMS call flows

Registration – user not registered

Source: 29.228 v 7.0.0
Registration – user currently registered

Source: 29.228 v 7.0.0

Mobile Terminated Session Setup

Source: 29.228 v 7.0.0
Mobile to Mobile Call

Call Flow Diagram

1. INVITE
2. INVITE
3. SERVICE CTRL
4. INVITE
5. Cx-LocQuery
6. Cx-LocResp
7. INVITE
8. SERVICE CTRL
9. INVITE
10. INVITE
11. INVITE
12. SERVICE CTRL
13. INVITE
14. INVITE
15. SERVICE CTRL
16. SERVICE CTRL
17. Cx-LocQuery
18. Cx-LocResp
19. INVITE
20. INVITE
21. ACK (possibly hop-by-hop)

Call Flow Examples

Example 1: No Answer

1. INVITE
2. INVITE
3. INVITE
4. Cx-LocQuery
5. Cx-LocResp
6. INVITE
7. INVITE
8. 180 Ringing
9. 180 Ringing
10. 180 Ringing
11. 180 Ringing
12. CANCEL
13. CANCEL
14. CANCEL
15. CANCEL
16. CANCEL
17. CANCEL
18. 200 OK
19. 200 OK
20. 200 OK
21. 200 OK
22. 200 OK
Call flow examples 1. - no answer

1. UE
2. P-CSCF
3. S-CSCF
4. S-CSCF
5. P-CSCF
6. UE

Called Party

1. INVITE
2. INVITE
3. INVITE
4. INVITE
5. INVITE
6. INVITE

Acknowledgment

Call flow examples 2. - busy

1. UE
2. P-CSCF
3. S-CSCF
4. L-CSCF
5. HSS
6. S-CSCF
7. P-CSCF
8. UE

Called Party

1. INVITE
2. INVITE
3. INVITE
4. INVITE
5. INVITE
6. INVITE

Acknowledgment

Raimo Kantola –S- 2007
Signaling Protocols 13 - 45
Call flow examples 3. - no response

Call flow examples 4. - temporarily unavailable
MO session setup - roaming

Visited Network

MO Session setup – user in home network

MO Session setup – user in home network

24.228 v 5.1.4

Raimo Kantola –S- 2007
Signaling Protocols
13 - 49

Raimo Kantola –S- 2007
Signaling Protocols
13 - 50