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The use of Session Initiation Protocol (SIP) as the call control protocol in the third 
generation mobile network, starting from the Third Generation Partnership Project 
(3GPP) release 5 onwards, results in long call setup times. This is because the large size 
of SIP signalling messages increases the transfer delay over the narrowband radio 
interface. Since users will see little sense in switching to a service that does not provide 
at least the same quality of service as the existing systems, a solution is needed to 
reduce the call setup time. One such solution is the Signalling Compression (SigComp) 
protocol designed by the Internet Engineering Task Force (IETF). SigComp provides a 
framework for the compression of application-layer signalling between two network 
elements. 
 
This master’s thesis examines the performance of the SigComp protocol. In addition, 
the architecture and operation of the SigComp prototype used in the performance 
evaluation are presented. 
 
The first part of the thesis introduces some theory and literature related to the subject. 
The architecture of the third generation mobile network is presented and the central 
concepts of the SigComp protocol are described. The way SigComp can be applied to 
SIP is explained. Also an introduction to computer and operating system architecture is 
given. 
 
In the second part of the thesis, the architecture and operation of the SigComp prototype 
are presented. A modified version of the Lempel-Ziv-Storer-Szymanski (LZSS) 
compression algorithm is introduced. The algorithm belongs to the class of dictionary 
compression algorithms and is used throughout the measurements. 
 
In the third and final part of the thesis, the results of the measurements performed on the 
SigComp prototype are presented and analysed. Also the way the measurements were 
carried out is described. Because it can be expected that most SigComp 
implementations will use dictionary compression algorithms like the modified LZSS 
used in this thesis, the results presented in the third part are applicable to a wide range 
of compression algorithms. 
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SIP (Session Initiation Protocol) –protokolla on valittu kolmannen sukupolven 
matkapuhelinverkon puhelunhallintaprotokollaksi 3GPP:n (Third Generation 
Partnership Project) viidennestä julkaisusta eteenpäin. SIP-merkinantoviestien suuren 
koon vuoksi SIP-protokollan käytöllä on negatiivinen vaikutus puheluiden 
aloitusviiveeseen. Koska kolmannen sukupolven matkapuhelinverkon käyttäjät eivät 
tule kokemaan houkuttelevana järjestelmää, jonka tarjoama palvelunlaatu on huonompi 
kuin olemassa olevien järjestelmien, on syntynyt tarve ratkaisulle, joka voisi pienentää 
puhelunaloitusviivettä SIP-protokollaa käytettäessä. Tärkein tällainen ratkaisu on 
IETF:n (Internet Engineering Task Force) SigComp (Signalling Compression) –
protokolla. SigComp tarjoaa viitekehyksen sovellustason merkinantoliikenteen 
pakkaamiselle kahden verkkoelementin välillä. 
 
Tässä diplomityössä tutkitaan SigComp-protokollan suorituskykyä. Lisäksi työssä 
esitetään suorituskykymittauksissa käytetyn SigComp-prototyyppitoteutuksen 
arkkitehtuuri ja toiminta. 
 
Työn ensimmäinen osa käsittelee aiheeseen liittyvää teoriaa ja kirjallisuutta. 
Ensimmäisessä osassa esitetään kolmannen sukupolven matkapuhelinverkon 
arkkitehtuuri ja SigComp-protokollan keskeiset käsitteet. Ensimmäisessä osassa 
käydään myös läpi SigComp-protokollan soveltaminen SIP-liikenteen pakkaamiseen ja 
annetaan johdanto tietokoneiden ja käyttöjärjestelmien arkkitehtuuriin. 
 
Työn toisessa osassa esitetään SigComp-prototyypin arkkitehtuuri ja toiminta. 
SigComp-prototyypissä käytetään muokattua versiota Lempel-Ziv-Storer-Szymanski 
(LZSS) –pakkausalgoritmista. Tämä algoritmi kuuluu sanakirjapohjaisten 
pakkausalgoritmien luokkaan ja sitä käytetään kaikissa työhön liittyvissä mittauksissa. 
 
Työn kolmannessa osassa esitetään SigComp-prototyypin suorituskykymittausten 
tulokset ja niiden analyysi. Myös mittausjärjestelyt esitellään. Koska voidaan odottaa, 
että suuri osa SigComp-toteutuksista tulee käyttämään sanakirjapohjaisia 
pakkausalgoritmeja, tässä työssä esitellyt tulokset ovat sovellettavissa moniin eri 
pakkausalgoritmeihin. 
 
Avainsanat: merkinantoliikenteen pakkaus, suorituskyky, SigComp, SIP 
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1 Introduction 

1.1 Background 
Session Initiation Protocol (SIP) is the protocol used for call control in the third 
generation mobile network starting from the Third Generation Partnership Project 
(3GPP) release 5.  SIP uses textual encoding, which makes it easier to build services 
based on SIP, design extensions to SIP and debug the protocol. However, the textual 
encoding of SIP also has a serious drawback; it is well-known that SIP messages are 
considerably larger than those of the protocols used for instance in GSM call control. 
Large message sizes result in increased call setup delay because more data needs to be 
transmitted over the low-bandwidth radio interface. This observation created a need to 
develop a solution which could reduce the call setup time. One such solution is the 
Signalling Compression (SigComp) protocol designed by the Internet Engineering Task 
Force (IETF). SigComp provides a framework for the compression of application-layer 
signalling between two network elements. The central piece of SigComp architecture is 
the Universal Decompressor Virtual Machine (UDVM), which is a virtual machine 
optimised for running decompression algorithms. Because of the UDVM, SigComp can 
support a wide range of compression algorithms instead of dictating a single algorithm 
to be supported by all SigComp endpoints. 
 
SigComp is a mandatory part of the 3GPP release 5 IP Multimedia Subsystem (IMS). It 
is applied over the interface between a terminal and Proxy Call Session Control 
Function (P-CSCF), which is the first contact point for the terminal within the IMS. 
SigComp improves the quality of service the user perceives by reducing the idle time at 
call setup. It also allows the network to support a greater number of users by reducing 
the amount of resources consumed per subscriber. 
 
The concept of the compression of protocol information is certainly not a new one and 
has already been applied in other contexts. Well-known examples include the File 
Transfer Protocol (FTP) [RFC 959], which defines a compressed transmission mode, 
and IP payload compression (IPComp) [RFC 3173], which can be used to reduce the 
size of Internet Protocol (IP) datagrams. Yet another related approach to protocol 
compression is the compression of signalling protocol headers. An example of this is 
the Robust Header Compression (ROHC) [RFC 3095] scheme of IETF. However, these 
approaches are not suitable for the compression of application protocol payload in a 
mobile network. 
 
Like the compression of signalling protocols, also the use of virtual machines has a long 
history. A virtual machine is an abstract computer that is implemented in software and 
executed on a real hardware platform and an operating system. A well-known example 
of a virtual machine is the Java Virtual Machine (JVM) [Lindholm 1997], an abstract 
computer that executes compiled Java programs. The SigComp UDVM is a virtual 
machine much like the Java Virtual Machine, but with the key difference that it has 
been optimised for running decompression algorithms. 
 
The primary target for SigComp is cellular systems, where the mobile terminals have 
varying capabilities and undetected errors may be introduced on the cellular link. 
SigComp is not the optimal choice in short-range wireless networks, such as the 
Wireless Local Area Network (WLAN), in which the throughput is usually high enough 
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and latency low enough to support uncompressed messages. When throughput and 
latency are not an issue, unnecessary compression and decompression can even 
decrease performance. SigComp is also not the best compression scheme on wired 
links, such as those between network servers. Because of the design decisions made in 
the development of SigComp, other compression solutions are more efficient for these 
purposes. 

1.2 The Goals and Objectives of the Thesis 
Because SigComp is a new feature, it is important to study its performance, including 
the achievable compression ratios and the amount of resources it consumes in the 
network elements performing compression and decompression of SIP messages. So far 
little research has been carried out on this topic and the focus has been on estimating the 
achievable compression ratios. This thesis describes the performance and architecture of 
a SigComp prototype implementation. The main goal is to examine the performance of 
the SigComp protocol through measurements performed on the prototype. The 
secondary goals are (1) to describe the way SigComp functionality can be implemented 
and (2) to examine the way the load placed by SigComp compression and 
decompression can be reduced. 

1.3 Scope of the Thesis 
This thesis concentrates on the general class of dictionary compression algorithms, i.e. 
algorithms that compress data via textual substitution. The algorithm used in the 
measurements is a modified version of the Lempel-Ziv-Storer-Szymanski (LZSS) 
compression algorithm. The application-layer protocol being compressed is the Session 
Initiation Protocol (SIP).  The performance of the following SigComp mechanisms 
defined in [RFC 3320], [RFC 3321] and [RFC 3485] is studied: basic compression, 
static SIP and Session Description Protocol (SDP) dictionary, dynamic compression and 
shared compression. 

1.4 The Structure of the Thesis 
This thesis is divided into three parts. The first six chapters form the first part and they 
cover the theory and background information that are related to the SigComp protocol 
and to the implementation of the prototype. The chapters of the first part are based on 
literature research. 
 
Chapter 2 describes the central concepts related to the third generation mobile network. 
 
Chapter 3 covers the most important concepts of the SigComp protocol. 
 
Chapter 4 describes the way SigComp compression is applied to the Session Initiation 
Protocol (SIP). 
 
Chapter 5 gives an introduction to computer and operating system architectures. 
 
Chapter 6 presents some previous research on SigComp. 
 
In the second part, consisting of Chapter 7, the architecture and operation of the 
SigComp prototype that was implemented as a part of the thesis work are described. We 
implemented the prototype from scratch for the purposes of this thesis. 
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In the third and final part of the thesis, consisting from chapters 8 to 12, the results of 
the measurements carried out on the SigComp prototype implementation are presented 
and analysed. The measurements are divided into three phases. 
 
Chapter 8 explains the way the measurements will be carried out. A systematic 
approach to performance evaluation is used. 
 
Chapter 9 describes the first phase of the measurements. The aim of the first phase is to 
study various factors that affect the performance of SigComp. 
 
Chapter 10 presents the second phase of the measurements. In the second phase, the 
performance of the SigComp protocol is studied in case of different SIP message 
sequences. 
 
Chapter 11 consists of the third and final phase of the measurements. In the third phase, 
the performance of the system performing SigComp compression and decompression is 
evaluated. 
 
Chapter 12 concludes the thesis, describes the advantages and limitations of the 
SigComp protocol, presents the considerations made in the thesis, and suggest ideas for 
further work. 
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2 Third Generation Mobile Network 
The purpose of this chapter is to give an overview of the environment in which 
SigComp is used. The architecture of the third generation mobile network, the IP 
Multimedia Subsystem (IMS) and the Session Initiation Protocol (SIP) are presented. 
Also the reasons why a compression scheme like SigComp is required is demonstrated 
by comparing the call setup delay in the second and third generation mobile networks.  

2.1 Comparison of Call Setup Delay in Second and Third Generation 
Mobile Networks 

To make it clear why a compression scheme like SigComp is needed, the call setup 
delay in a GSM network and in a UMTS network using SIP as the call control protocol 
is compared in this section.  
 
The worst-case estimate regarding the maximum combined message size of a GSM call 
setup is calculated in [Nortel 2000] to be approximately 1050 bytes. [Foster 2002] 
presents results derived from a UMTS system simulator. The results obtained for an 
initial SIP call setup delay in a UMTS network applying SIP are shown in Table 1. 
Compression was not applied in the simulations. MT stands for mobile terminated i.e. 
from a fixed user in the Public Switched Telephone Network (PSTN) to a mobile user. 
MO stands for mobile originated. 
 
Table 1 - SIP call setup delay in a UMTS network applying SIP but not compression [Foster 2002] 

Delay MT SIP call setup MO SIP call setup 
RAN delay 4,228 s 4,169 s 
Core delay 2,397 s 2,692 s 
Total delay 6,624 s 6,861 s 

 
The results presented in [Foster 2002] include also estimates for call delays in a GSM 
network and a UMTS release 99 network, which does not use SIP for call control. These 
results are shown in Table 2. 
 

Table 2 - GSM and UMTS Release 99 call setup delay [Foster 2002] 

Delay MT call MO call Mobile to mobile call 
GSM 2,2 s 2 s 4,0 s 
UMTS Release 99 2 s 1,7 s 3,4 s 

 
We can see from the results presented above that for example the mobile originated call 
setup delay in a UMTS network applying SIP is over 4.8 seconds longer than the mobile 
originated delay calculated for the GSM network. It can also be seen that the call setup 
delay in a UMTS release 99 network not applying SIP is of the same level as in the case 
of a GSM network. In addition, one can observe that in a UMTS network applying SIP, 
the radio access network (RAN) delay seems to contribute a significant portion (68%) 
of the total delay. 
 
The main reason behind the increased call setup delay in a UMTS network applying SIP 
compared to a GSM or release 99 network is the use of SIP for call signalling. SIP is not 
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an efficient protocol regarding message size. The textual encoding of SIP makes SIP 
messages grow dramatically as soon as several extensions are used at the same time. 
GSM uses Signalling System No. 7 (SS7) protocols for signalling. These protocols use 
bit-wise encoded messages that make more efficient use of the air interface where 
bandwidth is limited. 

Table 3 – SIP messages 

 SIP Message Size uncompressed [bytes] 
1 INVITE 1437 
2 100 Trying 254 
3 183 Session Progress 1440 
4 PRACK 1318 
5 200 OK 904 
6 UPDATE 1291 
7 200 OK 865 
8 180 Ringing 563 
9 PRACK 717 
10 200 OK 260 
11 200 OK 1133 
12 ACK 458 
 Total 10640 

 
Table 3 shows example message sizes for a mobile originated SIP session establishment 
in a release 5 network. The flow of messages between the UE and the P-CSCF is taken 
from [3GPP TS 24.228] and is illustrated in Figure 1. The message sizes were also 
calculated from [3GPP TS 24.228 2004]. We can observe from Table 3 that the 
combined message size for the setup of a mobile originated call in a release 5 network is 
10640 bytes, which is over ten times more than the corresponding worst-case value for 
GSM call setup, 1050 bytes. The one-way RAN delay for each message can be 
calculated as follows: 
 

2]/[
][ RTT

sbitsspeedlink
bitsmessageofSizedelayRANwayOne += . (2.1) 

 

P-CSCF

1. INVITE

2. 100 Trying

3. 183 Session Progress

4. PRACK

5. 200 OK

6. UPDATE

7. 200 OK

8. 180 Ringing

9. PRACK

10. 200 OK

11. 200 OK

12. ACK

UE

 
Figure 1 - SIP messages between UE and P-CSCF during session initiation 
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Because there is pressure to minimize capacity allocations on grounds of cost, it can be 
expected that relatively low bandwidth is provided for signalling. According to 
[Nordberg 2003] it is reasonable to assume that a bit rate of the order of 9.6 or 12.2 
kbps will be allocated for SIP signalling in the UMTS. The one-way RAN for a SIP 
session establishment using the messages of Table 3 delay is depicted in Figure 2 for the 
following signalling link bandwidths: 9.6, 12.2, 16, 32, 64, 128 and 256 kbps. It is 
assumed that the Round-Trip Time (RTT) of the signalling link is 70 ms [RFC 3322, 
Nordberg 2003]. The values presented in Figure 2 do not include the overhead added by 
IP and transport protocol headers. In addition, the values do not include the radio bearer 
setup delay and the delay introduced by resource reservation and session management 
signalling before the INVITE message and during the SIP message sequence. 
 
From Figure 2, we can observe that the one-way RAN delay for a mobile originated call 
is 9.7 seconds if the bit rate of the signalling link is 9.6 kbps. Thus, according to these 
calculations, the mere RAN delay part of the call setup time can be almost five times 
longer than the entire mobile originated call setup time in a GSM network. To get the 
RAN delay close to the entire call setup time in a GSM network, 2.0 seconds, a bit rate 
of 64 kbps or more is required. 
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Figure 2 - One-way RAN delay for session establishment signalling flow in a 3GPP release 5 

network 

 
It is clear that a call setup time that is considerably longer than in the GSM network is 
not acceptable. Users will see little sense in switching to a service that does not provide 
at least the same quality of service as GSM. Therefore, solutions for decreasing the call 
setup time are needed. Three most intuitive candidates are increased bandwidth per 
user, reduced round-trip time or smaller message sizes.  
 
If the bit rate of one user is increased, the number of users that a cell can support will 
decrease. This is not desirable especially in dense urban areas. Decreasing the RTT may 
not be possible, because it is likely to require considerable changes in the current system 
architecture. In addition, it is unlikely to have a sufficient impact since only a small 
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portion of the total delay is due to the RTT.  In fact, the only one of the three 
alternatives that is feasible is reduced message sizes. One way to achieve this is through 
the compression of SIP messages, e.g. by using a compression scheme like SigComp. 

2.2 Third Generation Mobile Network Architecture 
In this section, the architecture of the third generation mobile network is presented. The 
Third Generation Partnership Project (3GPP) release 5 network architecture [3GPP TS 
23.228, 3GPP TS 23.002] is logically divided into a Core Network (CN) and an Access 
Network (AN) infrastructure. The CN is logically divided into a Circuit Switched (CS) 
domain, a Packet Switched (PS) domain and IP Multimedia Subsystem (IMS). The AN 
is called the UMTS Terrestrial Radio Access Network (UTRAN) and is formed by a 
hierarchical Radio Network Subsystem (RNS), whose elements are Radio Network 
Controller (RNC), Node B and User Equipment (UE). A Node B is a logical network 
component which serves one or more cells. It is the radio transmission/reception unit for 
communication in the radio cells. A RNC is a network component with the functions for 
control of one or more Node B elements. It handlers protocol exchanges between 
UTRAN interfaces. The RNC provides centralised operation and maintenance of the 
radio network system including access to an operations support system. Among other 
things, the functions of the RNC include radio resource control, admission control, 
channel allocation and handover control. The entities specific to the circuit switched 
domain are Mobile Switching Centre (MSC) and Gateway Mobile Switching Centre 
(GMSC). The MSC constitutes the interface between the radio system and the fixed 
networks. The GMSC is an MSC which performs routing to the actual location of the 
mobile station. The entities specific to the packet switched domain are Serving GPRS 
Support Node (SGSN) and Gateway GPRS Support Node (GGSN). The SGSN and 
GGSN handle packet traffic. The SGSN delivers packets to mobile stations within its 
service area. It performs mobility management functions such as handing off a roaming 
subscriber from the equipment in one cell to the equipment in another. The GGSNs are 
used as interfaces to external IP networks such as the public Internet, other mobile 
service provider’s GPRS services, or enterprise intranets. The GGSNs maintain routing 
information that is necessary to tunnel protocol data units (PDUs) to the SGSNs that 
service particular mobile stations. The IMS entities are discussed in Section 2.3. Figure 
3 illustrates the architecture of the 3GPP release 5 network. 
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Figure 3 - 3GPP release 5 network architecture 

 
Other new features besides IMS that are included in release 5 include bearer 
independence, separation of transport and control and Home Subscriber Server (HSS), 
which contains user and terminal profiles [3GPP TS 23.002]. 

2.3 IP Multimedia Subsystem 
Third Generation Partnership Project (3GPP) release 5 introduces among other things 
the IP Multimedia Subsystem (IMS) [3GPP TS 23.228, Andreadis 2003, Camarillo 
2004]. The IMS aims at combining the latest trends in technology and make the mobile 
Internet paradigm come true. It is an attempt to create a common platform to develop 
diverse multimedia services. One aim is also to create a mechanism to boost margins 
due to extra usage of mobile packet-switched networks. The IMS comprises all core 
network elements for the provision of IP multimedia (IM) services, for example Call 
Session Control Function (CSCF) and Media Gateway Control Function (MGCF). 
When exploring the architecture in the IMS, one should keep in mind that 3GPP does 
not standardize nodes, but functions. The IMS architecture is a collection of functions 
linked by standardized interfaces. Implementers are free to combine two functions into a 
single node or to split a single function into two or more nodes. The IMS is a new core 
network domain that controls voice and multimedia calls and sessions as well as the 
interconnection to other networks like PSTN and other UMTS networks. It has a 
signalling plane and a media plane that traverse different paths. SigComp is a 
mandatory part of the IMS and it is used to compress SIP signalling traffic.  
 
The IM domain enables cost reductions and introduction of new services, e.g. voice 
telephony, video telephony, multimedia conferencing, instant messaging and real-time 
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interactive games.  IMS should enable the convergence of, and access to, voice, video, 
messaging, data and web-based technologies for the wireless user, and combine the 
growth of the Internet with the growth in mobile communications. IMS makes it 
possible for PLMN operators to offer their subscribers multimedia services based on 
and built upon Internet applications, services and protocols. It utilises the packet 
switched domain to transport multimedia signalling and bearer traffic. The packet 
switched domain maintains the service while the terminal moves and hides the 
movement from the IMS. IMS is independent of the circuit switched domain. The IM 
domain enables users and applications to control sessions and calls between multiple 
parties. It controls and supports network resources to provide the functionality, security 
and quality required for the calls. The IM domain provides for registration of users so 
that they can access their own services from any UMTS network. One additional role of 
the IM is to generate Call Detail Records (CDRs), which contain information on call 
participants, time, duration and volume of data sent and received. CDRs are used for 
charging purposes. 
 
IMS entities [3GPP TS 23.228] include CSCF, MGCF, IMS Media Gateway Function 
(IMS-MGW), Multimedia Resource Function Controller (MRFC), Multimedia 
Resource Function Processor (MRFP), Subscription Locator Function (SLF), Breakout 
Gateway Control Function (BGCF) and Application Server (AS). The configuration of 
IMS entities is shown in Figure 4. In the figure, interfaces supporting user traffic are 
shown as bold lines and interfaces supporting signalling are drawn as dashed lines.  
 
The roles of IMS entities are described in [3GPP TS 23.228]. The CSCF, which is a SIP 
server, can act as a Proxy CSCF (P-CSCF), Serving CSCF (S-CSCF) or Interrogating 
CSCF (I-CSCF). The P-CSCF is the UE’s first contact point for the IMS. The P-CSCF 
is also of special importance to SigComp, since it is the core network element that has 
been selected for performing compression and decompression of SigComp messages. 
For this, the P-CSCF includes a compressor and a decompressor (IMS terminals include 
both as well). The S-CSCF handles the session states in the network while the role of 
the I-CSCF is to find the proper S-CSCF for a particular user. The MGCF performs 
protocol conversion, receives out of band information, communicates with the CSCF, 
selects the CSCF and controls parts of call state. The IMS-MGW terminates bearer 
channels from a switched circuit network and media streams from a packet network. It 
handles media conversion, bearer control and payload processing. The task of the 
MRFC is to control media stream resources in the MRFP, generate CDRs and interpret 
information coming from an AS and an S-CSCF and control MRFP accordingly. The 
MRFP provides resources that are controlled by the MRFC, controls bearers on the Mb 
reference point shown in Figure 4 and mixes, sources and processes media streams. The 
SLF provides the name of the HSS containing the required subscriber specific data 
when requested by the I-CSCF during registration and session setup. It is also queried 
by the S-CSCF during the registration process. The BGCF selects the network in which 
PSTN breakout is to occur and chooses the MGCF that is used. The AS can be a SIP 
Application Server, an Open Service Access (OSA) Application Server or a Customized 
Application for Mobile Enhanced Logic (CAMEL) IP Multimedia Service Switching 
Function (IM-SSF). It offers value added IM services. The interface between the S-
CSCF and the AS is used to provide services residing in the AS. 
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Figure 4 - Configuration of IM subsystem entities [3GPP TS 23.228] 

 
The IP multimedia subsystem attempts to be conformant to IETF Internet standards in 
order to achieve access independence and to maintain a smooth operation with wireline 
terminals across the Internet [3GPP TS 23.228]. The signalling protocol that is used for 
registration and call control in the IM domain is the Session Initiation Protocol (SIP). 
SIP is the single protocol that is applied between UE and CSCF. 

2.4 Location of Signalling Compression Functions 
The entity that compresses messages sent to a terminal and decompresses messages 
received from the terminal is the P-CSCF. This is illustrated in Figure 5, in which a SIP 
signalling flow from a UE to the S-CSCF is shown. SIP messages that are compressed 
with SigComp in the UE flow through the radio interface, Base Station (BS) and Radio 
Network Controller (RNC) of UMTS Terrestrial Radio Access Network (UTRAN). 
From the UTRAN they traverse through the Serving GPRS Support Node (SGSN) and 
Gateway GPRS Support Node (SGSN) all the way to the P-CSCF, where the SigComp 
messages are decompressed. From the P-CSCF onwards, the SIP messages are sent 
uncompressed. The reasons behind selecting the entity performing SigComp 
compression and decompression from the network core rather than from the radio 
access network are discussed below [West 2002]. First of all, the location of traffic 
encryption and decryption functionalities also affects the location of compression 
functionality, because compression has to be applied out bound from the points of 
encryption and decryption and it must be transparent. The packet content of some traffic 
types is authenticated, integrity protected or encrypted. The trusted party that decrypts 
traffic from and encrypts traffic to a terminal is in the mobile network core. If the 
endpoint was chosen from the radio access network, network design and performance 
would suffer from the complexity that would be added by transferring message keys 
within the mobile network. Another important issue that affects the location of 
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signalling compression is handover. In SigComp, a relatively large amount of historical 
state is built up to enable efficient compression. If the endpoint performing 
decompression changed, this state would need to be transferred to the new entity to 
maintain compression efficiency. This kind of solution would add complexity to the 
network. When the decompression is performed in the P-CSCF, the decompressing 
endpoint remains stable for the duration of the application layer session.  
 

UTRANUTRAN

BS

BS

P-CSCF I-CSCF

S-CSCF

GGSN

UE

InternetInternet

SigComp 
compression/decompression

SigComp 
compression/decompression
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Uncompressed
traffic

RNC

SGSN

 
Figure 5 - Location of SigComp functions 

 
Thus, the location of SigComp functions is in the mobile terminal and in the interior of 
the network, namely in the IMS. This approach contrasts with header compression 
[RFC 3095], in which the compression functions are located in the terminal and in the 
radio access network. In the case of SigComp, messages are application level messages 
that do not contain routing information. They are carried in the payload of transport 
layer protocols, which in turn leave routing issues to IP. SigComp does not compress 
the headers of transport layer protocols. Only the entities interested in the content of the 
transport layer protocol payload, namely the two communicating endpoints, need to 
decompress SigComp messages. 
 
It should be emphasized that the reason SIP signalling is sent compressed between the 
terminal and the P-CSCF is not to save a few bytes over the air interface. It is not worth 
saving a few bytes of signalling when the terminal will be establishing a multimedia 
session that will use much more bandwidth. The main motivation for compression is to 
reduce the time required to transmit SIP messages over the air interface. 

2.5 Session Initiation Protocol 
Perhaps the most important component of the signalling plane is the protocol that 
performs session control. In the IMS, this is the task of the Session Initiation Protocol 
(SIP) [RFC 3261]. SIP was originally used to invite users to existing multimedia 
conferences, but today it is mainly used to create, modify and terminate multimedia 
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sessions. Although SigComp can be used to compress the messages of any text-based 
protocol, the main focus is currently on the compression of SIP messages. 
 
SIP is independent of the type of multimedia session handled and of the mechanism 
used to describe the session. The most common format to describe multimedia sessions 
is the Session Description Protocol (SDP). SDP is simply a textual format that is carried 
in the body of SIP messages. This is the reason SigComp has to be able to efficiently 
compress both SIP and SDP. The SIP/SDP static dictionary [RFC 3485] was defined for 
this purpose. 
 
SIP protocol defines several entities [Camarillo 2002], which are user agents (UAs), 
redirect servers, proxy servers, registrars and location servers. All 3G terminals 
supporting 3GPP Release 5 or later releases contain a SIP UA. Also 3GPP2 has adopted 
SIP. SIP makes use of proxy servers to help route requests to the user’s current location, 
authenticate and authorise users for services, implement provider call-routing policies, 
and provide features to users. Redirect servers help in the location of SIP UAs by 
providing alternative locations where the user can be reachable. A registrar accepts 
registrations. It is usually co-located with a redirect server or a proxy server.  A location 
server is not a SIP entity, but is an important part of any architecture that uses SIP. 
Location servers store and return possible locations of users. 
 
SIP is a request/response protocol like the Hypertext Transfer Protocol (HTTP), on 
which it is based. SIP User Agent Clients (UACs) send requests and User Agent Servers 
(UASs) return responses. The start line of a request declares a method name, which 
indicates the purpose of the request. The methods that are currently defined in SIP are 
shown in Table 4 [Camarillo 2004]. 
 

Table 4 - SIP methods [Camarillo 2004] 

Method name Meaning 
ACK Acknowledges the establishment of a session 
BYE Terminates a session 
CANCEL Cancels a pending request 
INFO Transports PSTN telephony signalling 
INVITE Establishes a session 
NOTIFY Notifies the user agent about a particular event 
OPTIONS Queries a server about its capabilities 
PRACK Acknowledges the reception of a provisional response 
PUBLISH Uploads information to a server 
REGISTER Maps a public URI with the current location of the user 
SUBSCRIBE Requests a notification about a particular event 
UPDATE Modifies some characteristics of a session 
MESSAGE Carries an instant message 
REFER Instructs a server to send a request 

 
The start line of a response is referred to as the status line. The status line contains the 
protocol version and the status of the transaction. The latter is given in a numerical 
format using a status code and also in a human readable format. Responses are 
classified by their status codes, which are listed in Table 5. Status codes indicate the 
status of a transaction. 
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Table 5 - Status codes of SIP responses 

Range Response class Example 
100-199 Informational 180 Ringing 
200-299 Success 200 OK 
300-399 Redirection 380 Alternative service 
400-499 Client error 401 Unauthorized 
500-599 Server error 500 Internal server error 
600-699 Global failure 600 Busy everywhere 

 
The exchange of a set of SIP messages between two user agents is referred to as a SIP 
dialog. In Figure 6, there is an example of a dialog, which is established by an INVITE-
200 OK transaction and terminated by a BYE-200 OK transaction. The contents of 
messages (2) and (3) of the dialog are shown in Figure 7. 
 

Bob Proxy Alice

Conversation

(1) INVITE

(4) 200 OK

(5) ACK

(6) BYE

(7) 200 OK

(2) INVITE

(3) 200 OK

 
Figure 6 - Session establishment through a proxy 

 
INVITE sip:Alice@domain.com SIP/2.0
Via: SIP/2.0/UDP p1.domain.com:5060;branch=xyz
Via: SIP/2.0/UDP c1.domain2.com:5060;branch=abc;

received=123.0.100.4
Max-Forwards: 69
From: Bob <sip:Bob@domain2.com>;tag=123
To: Alice <sip:Alice@domain.com>
Call-ID: 123456789@123.0.100.4
Cseq: 1 INVITE
Contact: <sip:Bob@123.0.100.4>
Content-Type: application/sdp
Content-Length: 120

v=0
o=Bob 2890844526 2890844526 IN IP4 c1.domain2.com
s=-
c=IN IP4 123.0.100.4
t=0 0
m=audio 20000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

SIP/2.0 200 OK
Via: SIP/2.0/UDP p1.domain.com:5060;branch=xyz

;received=123.1.0.5
Via: SIP/2.0/UDP c1.domain2.com:5060;branch=abc;

received=123.0.100.4
From: Bob <sip:Bob@domain2.com>;tag=123
To: Alice <sip:Alice@domain.com>;tag=987
Call-ID: 123456789@123.0.100.4
Cseq: 1 INVITE
Contact: <sip:Alice@123.0.0.5>
Content-Type: application/sdp
Content-Length: 120

v=0
o=Alice 2890844545 2890844545 IN IP4 123.0.0.5
s=-
c=IN IP4 123.0.0.5
t=0 0
m=audio 30000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

(2) INVITE (3) 200 OK
 

Figure 7 - Messages (2) and (3) of the example dialog 
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From Figure 7, we can observe that most of the rows or substrings of rows in the 200 
OK response can also be found from the INVITE request. The matches are shown in 
Figure 8 using grey background colour. Matches shorter than three characters are not 
shown. All coloured rows or substrings contain information that was already present in 
the INVITE message. The purpose of the figure is to show that usually SIP messages 
belonging to the same dialog contain much information that is present also in other 
messages of the same dialog. This is good news for a compression scheme like 
SigComp, since this redundant information can be compressed efficiently. 
 

Via: SIP/2.0/UDP c1.domain2.com:5060;branch=abc;
;received=123.0.100.4

INVITE sip:Alice@domain.com SIP/2.0
Via: SIP/2.0/UDP p1.domain.com:5060;branch=xyz
Via: SIP/2.0/UDP c1.domain2.com:5060;branch=abc;

received=123.0.100.4
Max-Forwards: 69
From: Bob <sip:Bob@domain2.com>;tag=123
To: Alice <sip:Alice@domain.com>
Call-ID: 123456789@123.0.100.4
Cseq: 1 INVITE
Contact: <sip:Bob@123.0.100.4>
Content-Type: application/sdp
Content-Length: 120

v=0
o=Bob 2890844526 2890844526 IN IP4 c1.domain2.com
s=-
c=IN IP4 123.0.100.4
t=0 0
m=audio 20000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

(2) INVITE (3) 200 OK

Via: SIP/2.0/UDP p1.domain.com:5060;branch=xyz

Call-ID: 123456789@123.0.100.4
Cseq: 1 INVITE

Content-Type: application/sdp
Content-Length: 120

a=rtpmap:0 PCMU/8000

t=0 0

s=-

v=0

;received=123.

SIP/2.0 200 OK

1.0.5

To: Alice <sip:Alice@domain.com>;tag=

Contact: <sip: Alice@ 123.0. 0.5>

m=audio 3 0000 RTP/AVP 0

c=IN IP4 123.0. 0.5

o=Alice 28908445 45 28908445 45 IN IP4 123.0. 0.5

;tag= 987
From: Bob <sip:Bob@domain2.com>;tag=123

 
Figure 8 - Comparison of the content of messages (2) and (3) 

2.5.1 Compressibility of Session Initiation Protocol 
The average number of binary symbols needed to code the output of a source is called 
entropy [Sayood 1996]. In case of first-order entropy, nothing is known about the 
structure of the data and only single characters are being coded, not the whole message. 
The first-order entropy of a typical SIP message is about 6.7 bits [Fidrich 2003]. This 
means that the best scheme that could be found to code a SIP message could only code 
it at 6.7 bits/character. Knowing that the amount of bits that is used to present a 
character is 8, we can get the achievable compression ratio calculated below: 

83,0
/8
/7.6

==
charbit
charbit

original
compressed . 

If something about the structure of the data is known, the entropy can be reduced. Better 
compression ratios can be achieved if dictionaries that make use of probability models 
and codewords for symbols are used. An example of this approach is the static SIP/SDP 
dictionary. One further means is to compress messages relative to previously sent 
messages taking advantage of the redundancy in the contents of the messages. This was 
illustrated in Figure 8. 



Performance of Signalling Compression in the Third Generation Mobile Network 
 

 
Jouni Mäenpää                                                                                                           15                     

3 Signalling Compression 
In this chapter, an introduction is given to SigComp, and the central concepts related to 
the protocol are explained. The chapter begins with a description of SigComp 
requirements. We continue by going through the architecture, message structure and 
most important mechanisms of the SigComp protocol. Finally, an example is given on 
the operation of SigComp. 

3.1 Requirements 
SigComp requirements, as stated in [RFC 3322], are: 
 

• Transparency 
• Header compression coexistence 
• Compatibility 
• Ubiquity 
• Generality 
• Support for unidirectional routes 
• Operation over both unreliable and reliable transport 
• Performance requirements 

o Scalability 
o Must not add delay noticeably 

• Robustness 
o Low probability of incorrect decompression caused by errors undetected 

by lower layers 
o Minimised error propagation 
o Ability to operate under all expected delay conditions 

• Compression efficiency 
o Message loss should not affect later messages 
o Toleration of moderate message disordering 

 
Transparency requirement states that when a message is first compressed and then 
decompressed, the result must be bitwise identical to the original message. SigComp 
must be able to coexist with header compression, which is likely to be needed together 
with it to reduce bandwidth usage even further. The compression scheme must be 
compatible, i.e. it has to allow the upper layer protocols’ mechanisms to negotiate 
whether the compression scheme is used or not. Even if only one of the two 
communicating entities supports SigComp, the entities have to be able to communicate 
with each other. SigComp should not require modifications to the protocols generating 
the messages that are to be compressed. The compression scheme should also be 
general. It must not be limited to certain protocols, traffic patterns or sessions. SigComp 
must be able to operate on unidirectional routes without explicit feedback messages 
from the compressor. It has to work for both reliable and unreliable transport protocols. 
A primary target for SigComp is cellular systems, where the mobile terminals have 
varying capabilities. Therefore it must be scalable; it must be flexible enough to 
accommodate a range of compressor/decompressor pairs with varying processor and 
memory capabilities. It must not noticeably add to the delay experienced by the end 
user. The probability that errors, which are not detected by lower layers, cause incorrect 
decompression should be low. The compression of later messages should not be 
affected by the loss or damage of earlier messages. SigComp should also be able to 
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operate under all expected delay conditions. It should allow for the correct 
decompression of moderately disordered messages between compressor and 
decompressor. 

3.2 Architecture 
The layout of a SigComp endpoint is illustrated in Figure 9. It includes the following 
entities: compressor dispatcher, one or more compressors, state handler, Universal 
Decompressor Virtual Machine (UDVM) and decompressor dispatcher. Each of these 
entities is described in the following subsections. 
 

Compressor
dispatcher

Compressor 1

Compressor 2

State 1

State 2

Decompressor
dispatcher

Decompressor
(UDVM)State handler

Local application (SIP)

Transport layer (e.g. UDP)

Application message and
compartment identifier

Decompressed
message

Compartment
identifier

SigComp message SigComp message

SigComp layer

 
Figure 9 - Architecture of a SigComp endpoint [RFC 3320] 

3.2.1 Compressor Dispatcher 
The task of the compressor dispatcher [RFC 3320] is to receive messages from the 
application and pass the compressed version of each message to the transport layer. The 
application has to provide the compressor dispatcher a compartment identifier together 
with each message. A compartment is an application specific grouping of messages that 
relate to a peer endpoint. In case of SIP, a compartment is formed by all messages 
belonging to a SIP dialog. The compartment identifier uniquely identifies a 
compartment. SigComp invokes compressors on a per-compartment basis, which means 
that a compartment identifier can also be used to identify a compressor. For this, a 
mapping between compartment identifiers and compressors has to be maintained. By 
providing a compartment identifier together with the application message, the 
application ensures that the compressor dispatcher can locate an appropriate 
compressor. Each time a new compartment identifier is encountered, a new compressor 
is invoked. Once the compressor has compressed the application message, a SigComp 
header is created and attached to it. After this, the compressor dispatcher can pass the 
SigComp message to the transport layer. When the application wishes to close a 
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compartment, e.g. after receiving a BYE message and sending the final response, it 
should indicate this to the compressor dispatcher. 

3.2.2 Compressor 
The compressor [RFC 3320] implements a certain compression algorithm that is used to 
compress application messages. One of the fundamental ideas of SigComp is that the 
standard does not dictate the use of one compression algorithm that should be used by 
all endpoints. Instead, the choice of the algorithm is left as an implementation decision. 
What follows is that each endpoint should be able to decompress the output of a variety 
of compression algorithms. This is made possible by the use of a virtual machine to take 
care of the decompression functionality. When a compressor creates a SigComp 
message containing a compressed application message, it includes a decompression 
algorithm to the header of the message. This decompression algorithm is called the 
bytecode, and it has been compiled to a form that can be executed on the virtual 
machine. 
 
A number of requirements are placed on the compressor in [RFC 3320]. First of all, it 
needs to be transparent, i.e. it must not send bytecode which causes the UDVM to 
incorrectly decompress a SigComp message. The compressor should supply some form 
of integrity check over the application message to ensure that successful decompression 
has occurred. It must ensure that the message can be decompressed using the resources 
available at the remote endpoint. If the transport is message-based, as it is in the case of 
User Datagram Protocol (UDP), the compressor must map each application message to 
exactly one SigComp message. In case the transport is stream-based, but the application 
defines its own internal message boundaries, the compressor should also map each 
application message to exactly one SigComp message. 
 
The compressor of the SigComp prototype that we implemented as part of this thesis 
uses a compression algorithm called Lempel-Ziv-Storer-Szymanski (LZSS). The LZSS 
algorithm compresses data via textual substitution. It uses an adaptive dictionary, which 
consists of a portion of the previously encoded sequence. When the input sequence is 
encoded, the LZSS algorithm performs searches to its adaptive dictionary, trying to find 
as long substitutions as possible for the n next bytes in the portion of the input sequence 
that has not yet been encoded. The n next bytes are called the look-ahead buffer. All 
matches, i.e. reoccurrences of strings that are already in the dictionary are substituted in 
the output of the algorithm using offset/length pairs. This is illustrated in Figure 10, in 
which the adaptive dictionary contains the string abracad. The look-ahead buffer 
contains the four next bytes of the portion of the input sequence that has not yet been 
encoded, in this case the string abra. By comparing the content of the look-ahead buffer 
to the content of the adaptive dictionary, the LZSS compressor notices that the string 
abra can be found in the adaptive dictionary. Therefore, it can use an offset/length pair 
to encode the string abra. In this case, the offset is seven positions to the left and the 
length is four. 
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Figure 10 - Operation of the LZSS compression algorithm 

 

3.2.3 Decompressor Dispatcher 
The role of the decompressor dispatcher [RFC 3320] is to receive SigComp messages 
from the transport layer, invoke a new instance of the UDVM to decompress each 
message, and pass the resulting uncompressed message to the application. Once the 
application has received the message, it maps the message to a compartment and returns 
the compartment’s identifier to the decompressor dispatcher. The decompressor 
dispatcher then hands the identifier to the state handler, which uses the identifier to save 
state information and forward feedback information to an appropriate compressor. By 
supplying a compartment identifier, the application grants the dispatcher a permission to 
do this. 

3.2.4 Universal Decompressor Virtual Machine 
The Universal Decompressor Virtual Machine (UDVM) [RFC 3320] is the central piece 
of the SigComp architecture. It is the entity that decompresses SigComp messages. The 
decompression process is carried out by executing a special compiled program called 
the bytecode on the virtual machine. The UDVM is a virtual machine much like the 
Java Virtual Machine, but with the difference that it has been optimised for running 
decompression algorithms. In the case of SigComp, the source code that is compiled to 
bytecode is called the UDVM assembly and the entity compiling it is called the UDVM 
interpreter. The bytecode can be thought of as the machine language of the UDVM. 
 
The UDVM provides flexibility when choosing how to compress a given application 
message: the compressor implementer has the freedom to select an algorithm of his 
choice. The compressed data is combined with a bytecode containing a set of UDVM 
instructions. These instructions are carried in the header of the SigComp message and 
they allow the original data to be extracted at the receiving endpoint.  
 
Because SigComp can run over an unsecured transport layer, a separate instance of the 
UDVM is invoked on a per-message basis to ensure that damaged messages do not 
affect the decompression of later messages. However, during the decompression process 
the UDVM may invoke the state handler to access an existing state. This way the state 
of the UDVM instance that decompressed the previous message can be restored by a 
later UDVM instance. 
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Figure 11 - Interfaces between UDVM and its environment [RFC 3320] 

 
The interfaces between the UDVM and its environment are illustrated in Figure 11. 
When the UDVM has been initialised, it can receive additional compressed data from 
the decompressor dispatcher or state information from the state handler only upon 
request. As the decompression proceeds, the UDVM outputs decompressed data to the 
decompressor dispatcher. When it encounters the end of a message, it indicates this to 
the dispatcher, which provides it with a compartment identifier. This identifier is passed 
to the state handler in a state creation request. The state handler uses the compartment 
identifier to store the state information in a location in the state memory that is reserved 
for the corresponding compartment. The UDVM also forwards the feedback 
information that may be piggybacked to a SigComp message to the state handler. 
 
To ensure that the decompression of a single message cannot consume excessive 
processing resources, the concept of UDVM cycles in introduced in [RFC 3320]. A 
UDVM cycle is a measure of the amount of CPU power that is required to execute a 
UDVM instruction. A UDVM cycle limit is used to restrict the number of UDVM 
cycles that can be used to decompress each bit in a SigComp message. The amount of 
cycles a bytecode uses must be monitored because malicious users can send bytecodes 
containing looping code. However, the cycle limit only reduces the amount of damage 
that can be caused, but does not remove the problem. 
 
In SigComp, the size of the decompressor memory is negotiable [RFC 3320]. The 
decompressing side advertises the size of the decompressor memory to the compressing 
side. The default size is two kilobytes. To improve the efficiency of the compression, a 
memory size of four or eight kilobytes or even more can be used. The decompressor 
memory is divided into two sections, the first of which is used to store the 
decompressed message. The other section is used for the UDVM to hold the bytecode 
and a circular buffer, which enables the use of states that are larger than the UDVM 
memory. This is possible because as soon as the buffer fills, the UDVM can start to 
overwrite content at the beginning of the buffer.  
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The UDVM instruction set specified in [RFC 3320] contains 36 instructions chosen to 
support the widest possible range of compression algorithms with the minimum possible 
overhead. These instructions, their bytecode values and their cost in UDVM cycles are 
presented in Appendix A. 

3.2.5 State Handler 
Because a separate instance of the UDVM is invoked to decompress each message that 
arrives, a way is needed to retain information between messages. This is the task of the 
SigComp state handler [RFC 3320], which stores information between received 
SigComp messages. Thanks to the state handler, the compression ratio is improved 
since messages can be compressed relative to the information contained in previous 
messages. The state handler makes it possible to create state items for access when a 
later message is being decompressed. The state items typically contain either a snapshot 
of a UDVM instance’s memory or an uncompressed message. 
 
The state handler manages state memory on a per-compartment basis. As well as storing 
the state items themselves, it maintains a list of the state items created by a particular 
compartment and ensures that no compartment exceeds its allocated memory. 

3.2.6 UDVM Interpreter 
The entity that translates the UDVM instructions and their operands listed in UDVM 
assembly to the bytecode form is the UDVM interpreter [Draft Price]. The operation of 
the UDVM interpreter is illustrated in Figure 12. The interpreter takes as an input a file 
containing UDVM assembly source code and compiles it to a bytecode, which can be 
executed on the virtual machine. 

UDVM
interpreter

UDVM
Assembly bytecode

 
Figure 12 - UDVM interpreter 

 
As an example, let’s suppose the following piece of UDVM assembly is provided as an 
input to the interpreter: 
 

:start pad(8) 
MULTILOAD(start, 4, 10, 20, 30, 400) 

 
The assembly contains one instruction, MULTILOAD, which simply loads four 
consecutive two-byte blocks to the location specified by the label start, which in this 
case has been assigned to memory address zero. The output of the interpreter, i.e. the 
bytecode would look as follows: 
 

0x0f 0x00 0x04 0x0a 0x14 0x1e 0xa1 0x90 
 
The first byte, 0x0f, contains the operation code of the MULTILOAD instruction and 
the remaining seven bytes encode the six operands of the instruction. The five first 
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operands can be encoded using only one byte per operand, but two bytes are required to 
encode the last operand, 400. The operands are encoded using variable length encoding 
as defined in [RFC 3320]. 

3.3 Messages 

partial state identifier

remaining SigComp message

0 1 2 3 4 5 6 7

1 0

returned feedback item

0 1 2 3 4 5 6 7

1

code_len

code_len destination

1 1 1 T1 len1 1 1 1 T

returned feedback item

uploaded UDVM bytecode

remaining SigComp message

(a) (b)

 
Figure 13 - Format of a SigComp message [RFC 3320] 

 
The format of a SigComp message [RFC 3320] depends on whether it accesses a state 
item at the receiving endpoint or not. A message that contains a partial state identifier, 
which is used to load a previously stored state item, is shown in Figure 13 (a). Figure 13 
(b) presents a message that does not access a state item, but instead contains the UDVM 
bytecode needed to decompress the message. An example of a situation in which the 
bytecode is supplied with the message is when the message is the first message of a 
compartment, meaning that there are not any stored state items to access yet. 
 
The SigComp header is formed by the fields other than the field remaining SigComp 
message. All SigComp messages contain a special prefix, which does not occur in 
Unicode Transformation Format 8 (UTF-8) encoded text messages: the five most 
significant bits of the message are set to 1. The prefix makes it possible to receive 
uncompressed messages and SigComp messages on the same port. The T-bit of the 
header is set to 1 whenever the SigComp message contains a returned feedback item.  
The len field of the header determines which fields follow the returned feedback item. If 
it is non-zero, the message contains a partial state identifier to access a state item at the 
receiving endpoint. The length of the partial state identifier field can be 6, 9 or 12 
bytes. If the len field is set to 0, then the bytecode needed to decompress the message is 
supplied as part of the message itself. The code_len field specifies the size of the 
uploaded UDVM bytecode. The destination field specifies the starting memory address 
to which the bytecode is copied. The format of the field remaining SigComp message is 
an implementation decision by the compressor that supplies the UDVM bytecode. It can 
contain for example a compressed SIP message and a field specifying its length. 
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3.4 Extended Operations 
SigComp extended operations are specified in [RFC 3321]. They can significantly 
improve the compression efficiency compared to per-message compression, which is 
the mechanism offered by RFC 3320. Extended operations include the following 
mechanisms: 
 

• dynamic compression 
• shared compression 
• maintenance of state data across application sessions 
• use of user-specific dictionary 
• checkpoint states 
• implicit deletion for dictionary update 

 
Dynamic compression, shared compression and user-specific dictionary are discussed 
below in their own subsections. In the method of maintaining state data across 
application sessions, the lifetime of a compartment is made longer than the duration of a 
single application session. Checkpoint state can be used to avoid decompression failure 
due to reference to a non-existing state. A compressor can indicate that a state is a 
checkpoint state by setting parameter state_retention_priority to the highest value. This 
parameter is set when a state item is created. In implicit deletion some parts of the 
dictionary are deleted using a well-defined algorithm, which can be part of the 
predefined UDVM bytecode. When implicit deletion approach is used, there is no need 
to signal explicitly which parts of the dictionary need to be deleted on a per-message 
basis. The content of the dictionary needs to be deleted in order to keep an upper bound 
on the memory consumption of e.g. in a low-end mobile terminal. 

3.4.1 Dynamic Compression 
In dynamic compression [RFC 3321], compression is done relative to messages sent 
prior to the current compressed message. The use of previously sent messages is 
efficient because the entropy of a message flow is better than the entropy of a single 
message. Dynamic compression makes use of the similarity of consecutive messages. 
As an example, let’s suppose endpoints A and B exchange messages using dynamic 
compression. If both the first and the second messages that A sends to B contain the 
string “john.doe@domain.com”, there is no need to resend this information in the 
second message, provided that A knows that B has received and saved the first one. 
Instead of this string, the output of A’s compressor can contain a pointer, which points 
to this string in the memory of B’s UDVM. In the dynamic compression approach, 
information from previously decompressed messages is maintained as a dictionary in 
the memory of the UDVM. After a message has been decompressed, the contents of the 
UDVM’s memory are saved. This UDVM memory snapshot is then retrieved when a 
new message is to be decompressed, and the memory of the new UDVM instance is 
initialised using it. 
 
In order to be able to utilise information from previously sent messages, the compressor 
has to gain knowledge about the reception of these messages. In case of unreliable 
transport, the SigComp feedback mechanism can be used to provide a means for a 
SigComp endpoint to confirm which states it has established during the lifetime of a 
compartment. When a reliable transport layer protocol such as TCP is used, explicit 
acknowledgements are not necessary. 
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3.4.2 Shared Compression 
In shared compression [RFC 3321], messages are compressed relative to messages 
received by the endpoint prior to the current compressed message. The compressing 
endpoint saves the uncompressed version of the compressed message as a state. In 
addition to sent and acknowledged messages, also received messages are used to update 
the dictionary and to compress new messages. It is efficient to use received messages 
because acknowledgements are not needed. Instead of acknowledging a state item, 
endpoint A signals to endpoint B that it has saved the uncompressed version of message 
X it just sent by setting a special bit on the SigComp header. When endpoint B checks 
the bit, it immediately knows that the dictionary entry corresponding to message X is 
available at endpoint A. Therefore, endpoint B can compress the next message it sends 
relative to message X. Shared states are saved in the same memory as the normal states 
created by the particular remote compressor. 

3.4.3 User-specific Dictionary 
The idea behind the use of a user-specific dictionary [RFC 3321] is that for protocols 
such as SIP, a given user and device combination produces some messages containing 
fields that are always populated with the same data. For example, the capabilities of SIP 
endpoints tend not to change unless the capabilities of the devices change. Also the 
user’s name, email address and Uniform Resource Locator (URL) constitute 
information that does not change frequently. When this approach is used, the SigComp 
compressor includes the user-specific dictionary to the initial message that is sent to the 
remote decompressor. This increases the compression efficiency once the messages start 
to flow. 

3.4.4 Impacts on SigComp Messages 
[RFC 3321] suggests a format for SigComp messages carrying information required by 
SigComp extended operations. To support dynamic and shared compressions, the 
SigComp messages need to convey additional information: acknowledged state 
identifiers and shared state identifiers. There is no need to specify a message format to 
carry the information necessary for the extended features, because the format of the 
field remaining SigComp message is an implementation choice by the compressor 
which supplies the UDVM bytecode. An example of what the remaining SigComp 
message field with support for shared compression and dynamic compression could 
look like is illustrated in Figure 14 [RFC 3321]. 



Performance of Signalling Compression in the Third Generation Mobile Network 
 

 
Jouni Mäenpää                                                                                                           24                     

Format according to RFC 3320
except for the field

“remaining SigComp message”

0 1 2 3 4 5 6 7

s reserved

shared_state_id

acked_state_id

a r

Rest of the SigComp message,
typically the compressed payload

Present if s = 1

Present if a = 1
remaining SigComp message

 
Figure 14 - SigComp extended operations message format [RFC 3321] 

 
If the s bit of the message is set, the message contains a shared_state_id field. If the a 
bit is set, the message contains an acked_state_id field. If the r bit is set, a state 
corresponding to the decompressed version of the compressed message was saved at the 
compressor. The lengths of the shared_state_id and the acked_state_id fields are the 
same as in the case of the partial state identifier, i.e. 6, 9 or 12 bytes depending on the 
length of the partial state identifier. 

3.5 Feedback Mechanism 
SigComp feedback mechanism is specified in [RFC 3320]. If SigComp endpoints both 
send and receive SigComp messages and there is a one-to-one relationship between the 
compartments exchanged between them, it is possible to send feedback information that 
monitors the behaviour of an endpoint and helps to improve the efficiency of the 
compression. Two types of feedback data exist: requested feedback data and returned 
feedback data.  
 
Feedback is done on a request/response basis: a compressor makes a feedback request 
and receives some feedback in return from the remote endpoint. Requests and responses 
are always piggybacked to SigComp messages carrying compressed data. The feedback 
data is retained between SigComp messages and is considered to be part of the overall 
state. It cannot be forwarded if not accompanied by a valid compartment identifier. Size 
of the returned feedback item is 1-128 bytes. 
 
By using the feedback mechanism, the receiving endpoint is informed about the 
capabilities of the sending endpoint and additional resources available can be 
advertised. Remote endpoints can also indicate their interest in receiving a list of some 
of the state items available locally at an endpoint. Thanks to the feedback mechanism, it 
is possible for a compressor to check that the state item it wants to access is not rejected 
because there is not enough state memory available at the remote endpoint. This is done 
by checking a special state_memory_size parameter. Successful decompression can also 
be acknowledged in case of unreliable transport such as UDP. This needs to be done, 
because when unreliable transport is used, messages can be lost or disordered on the 
path between the compressor and a remote decompressor. 
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3.6 Negative Acknowledgement Mechanism 
A negative acknowledgement mechanism for SigComp is described in [Draft Roach]. It 
allows the reporting of precise error information upon reception of a message that 
cannot be decompressed. The negative feedback can be used by the endpoint that 
originally sent the message to make adjustments to the compressed message before 
retransmitting it. The negative acknowledgement mechanism is needed, because there 
are situations in which a sender’s view of a shared state differs from the receiver’s view. 
Examples of such situations are discarding of compartments without explicit signalling 
in case of client failures, loss of connectivity, mobile terminal restarts and server 
failover. The only solution the basic SigComp offers to these situations is to signal that 
all states have been lost. Thus, even though only one state is corrupted or missing, all 
states belonging to a compartment are erased. In addition, this requires a message in the 
reverse direction that the application will authorize. 
 
SigComp implementations that use the negative acknowledgement (NACK) mechanism 
need to calculate and store a hash value for each SigComp message they send. When a 
SigComp message that is received causes a decompression failure, the recipient forms 
and sends a SigComp NACK message. The message contains a hash of the message that 
could not be decompressed, the exact reason why the decompression failed and any 
additional details that might assist the NACK recipient to correct the problems. Figure 
15 shows the format of a SigComp NACK message. Only the content of the fields that 
are new compared to those of Figure 13 are described here. Version gives the version of 
the NACK mechanism being used. Reason code is a one-byte value that indicates the 
nature of the decompression failure. OPCODE of failed instruction is a one-byte value 
that includes the operation code to which the Program Counter (PC) of the UDVM was 
pointing when the failure occurred. PC of failed instruction is a two-byte field 
containing the value of the program counter when failure occurred. Hash of failed 
message is simply a hash of the message that could not be decompressed. Error Details 
provides any additional information that might be useful in correcting the problem that 
caused the decompression failure.  

1 0

returned feedback item

0 1 2 3 4 5 6 7

1

code_len = 0

code_len = 0 version = 1

1 1 1 T

reason code

opcode of failed instruction

PC of failed instruction

PC of failed instruction

hash of failed message

error details

 
Figure 15 - SigComp NACK message format [Draft Roach] 
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When a NACK message is received, the receiver performs a search using the hash 
contained in the message. Then, if unreliable transport is used, SigComp uses the 
information included in the message to make adjustments to the compressor associated 
with the compartment in question. The next transmission of a message that the 
application makes will take advantage of the adjustments. When NACK is received for 
a message that was sent over reliable transport, the SigComp layer must indicate the 
error to the application. The application, e.g. a SIP application, should react in the same 
way as it does for any other transport layer error. 

3.7 SigComp Operation 
An example is given on the process of sending and receiving a SigComp message in 
Figure 16. It is assumed that state information has already been saved at both endpoints, 
i.e. messages have already been exchanged between them. Two communicating 
endpoints, A and B, are shown. The sequence of interactions between different 
SigComp entities is explained below. 
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Figure 16 - SigComp operation 

 
(1) The local application at endpoint A sends a SIP message together with a 

compartment identifier to the compressor dispatcher. Also an IP address and a 
port number of the destination need to be supplied. 

(2) The compressor dispatcher figures out the compressor that is associated with 
this compartment and forwards the SIP message, the destination address and 
port number to it. 

(3) The compressor requests state information from the state handler. This state 
information can contain for example a shared state, provided that SigComp 
extended operations are used. The compressor uses the loaded state 
information to compress the message, creates a SigComp message header and 
puts the output from the compression process to the payload of the SigComp 
message. The compressor may also save state to store the uncompressed 
version of the message that is being processed. This will later become the next 
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shared state. 
(4) The compressor hands the SigComp message that was created in the previous 

step to the compressor dispatcher. 
(5) The compressor dispatcher passes the SigComp message to the transport layer 

together with the IP address and the port number that were received from the 
application. At endpoint B, SigComp decompressor dispatcher is invoked 
when the UDP datagram containing the SigComp message arrives to the port 
the decompressor dispatcher has been assigned. The decompressor dispatcher 
inspects the five first bits of the UDP payload and concludes that the payload 
contains a SigComp message. 

(6) The decompressor dispatcher reads the fields of the SigComp header. It creates 
a new UDVM and initialises the memory of the UDVM using a previously 
saved state, the state identifier of which was included in the header. The 
bytecode that is needed to decompress the payload of the SigComp message is 
a part of this state item. Next, the UDVM starts executing the bytecode. 

(7) While executing the bytecode, the UDVM retrieves the shared state item that 
endpoint A used in the compression process from the state handler. 

(8) When it has finished decompressing the message, the UDVM sends the 
decompressed SIP message to the decompressor dispatcher. 

(9) The decompressor dispatcher forwards the SIP message to the SIP application. 
(10) The SIP application maps the message to a certain compartment and returns 

the corresponding compartment identifier to the decompressor dispatcher. 
(11) The decompressor dispatcher forwards the compartment identifier to the 

UDVM. 
(12) The UDVM hands the compartment identifier to the state handler. Now the 

state handler can save state, i.e. store the contents of the UDVM’s memory, the 
shared state and the returned feedback item that the SigComp message 
possibly contained. These are saved in the state memory reserved for the 
compartment of the message. 
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4 Applying Signalling Compression to the Session Initiation 
Protocol 

In this chapter, the way SigComp is applied to the session initiation protocol is 
explained. The chapter begins by listing the requirements SigComp places on SIP. Also 
the mechanism that is used to signal that compression is required is presented. Finally, 
the static SIP/SDP dictionary that can be used to improve the efficiency of SigComp 
compression is described. 

4.1 Requirements of Signalling Compression on the Session Initiation 
Protocol 

A compression scheme like SigComp cannot be implemented without support from the 
application level protocols using it. [RFC 3320] lists a number of requirements on the 
applications using SigComp. SigComp requirements especially on SIP are discussed in 
[RFC 3486]. 
 
First of all, the negotiation of whether to use compression or not must be handled by the 
SIP application. When receiving messages, both SigComp messages and uncompressed 
SIP messages are first inspected by the SigComp layer. If the first five bits of the first 
byte of a transport protocol message payload are ‘11111’, the message is identified to be 
a SigComp message. If another bit pattern is encountered, the message is considered to 
be a SIP message and is immediately forwarded to the SIP application. This makes it 
possible to multiplex compressed and uncompressed messages on the same port. 
 
It is not enough for the SIP application to hand only the message to be compressed to 
the SigComp layer. In addition, a compartment identifier, destination IP address and a 
port number need to be supplied at a minimum. To be able to provide a compartment 
identifier, the SIP application should handle the mapping between a SIP dialog and a 
pair of peer SigComp compartments. When the application receives a decompressed 
message from the SigComp layer, it maps the message to a certain compartment and 
returns the compartment’s identifier. Distinct compartments must be assigned to distinct 
endpoints. The application should also use an authentication mechanism to securely 
map decompressed messages to compartment identifiers. When the application wishes 
to close a particular compartment, it should indicate this to the compressor dispatcher, 
so that the resources taken by the compartment can be reclaimed. 
 
Applications should agree on any limits to the lifetime of a compartment in order to 
avoid the case in which an endpoint accesses state information that has already been 
deleted. It should also be kept in mind that not all endpoints will understand SigComp. 
If a server, which does not support SigComp, receives a compressed message, it has no 
means to indicate this to the client. Thus, if a SIP client has initiated a transaction by 
sending a compressed request, and the client does not receive a response during the 
transaction timeout period, the client should resend the same request uncompressed. 
 
A SIP user agent needs a way to declare that it wishes to receive incoming requests 
compressed. On the other hand, it must also be able to send requests, preferably even 
the initial INVITEs, compressed. Mechanisms for this are discussed in section 4.2. 
 



Performance of Signalling Compression in the Third Generation Mobile Network 
 

 
Jouni Mäenpää                                                                                                           29                     

In order to avoid asymmetric compression, proxies need to rewrite their record-route 
entries in the responses. The Record-Route header field is inserted by proxies in a 
request to force future requests in the dialog to be routed through the proxy. If the URI 
of the next upstream hop in the route set contains the parameter comp=sigcomp, which 
indicates SigComp compression, the proxy should add the same parameter to its entry. 
If the URI does not contain the parameter, the proxy should remove the comp=sigcomp 
parameter from its entry in the Record-Route header field. Also the user agent servers 
need to observe the presence of the comp=sigcomp parameter. If the URI of the next 
upstream hop in the route set contains the comp=sigcomp parameter, the UAS should 
add the same parameter to the contact header field of the response. 

4.2 A Mechanism to Signal That Compression Is Required 
A mechanism for signalling that SigComp compression is required is described in [RFC 
3486]. In SIP, clients send requests to the host part of a URI. Servers send responses to 
the host specified in the sent-by parameter of the Via header field. To signal that a SIP 
message needs to be compressed, a comp=sigcomp parameter is used in URIs if a 
request is to be compressed or in Via entries if a response is to be compressed. An 
example of a URI containing this parameter is as follows: 
 

sip:bob@hut.fi;comp=sigcomp 

 
This indicates that the request has to be compressed using SigComp. An example of a 
Via header field indicating that the SIP entity is willing to receive compressed messages 
is presented below: 
 

Via:SIP/2.0/UDP 
computer.hut.fi:5060;branch=XXX;comp=sigcomp 
 
Clients other than proxies add the parameter comp=sigcomp to the URI in the contact 
header field, whereas proxies add the parameter to their URI in the record-route header 
field. Figure 17 shows the way the comp=sigcomp parameter can be used to signal SIP 
traffic compression between a user agent and a proxy. In the figure, the Route header 
field in the messages that the User Agent Client (UAC) sends indicates that the request 
(INVITE and ACK) needs to be compressed. Via header field in the messages the proxy 
sends indicates that the response (200 OK and 180 ringing) needs to be compressed. All 
SIP messages between the UAC and the proxy are sent compressed in Figure 17. 
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UAC@
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domain.com

1. INVITE Route: <sip:Proxy.domain.com;comp=sigcomp>

2. INVITE

3. 180 Ringing

4. 180 Ringing 
Via: SIP/2.0/UDP computer.helsinki.fi:5060;comp=sigcomp

5. 200 OK

6. 200 OK
Via: SIP/2.0/UDP computer.helsinki.fi:5060;comp=sigcomp

7. ACK Route: <sip:Proxy.domain.com;comp=sigcomp>

8. ACK

SigComp compression

 
Figure 17 - The comp=sigcomp parameter 

 
An example of the format of the INVITE message, which is the first message sent in 
Figure 17, is presented below. The SDP content is not shown. 
 

INVITE sip:UAS@hut.fi SIP/2.0 
Via: SIP/2.0/UDP computer.helsinki.fi:5060;comp=sigcomp 
Route: <sip:Proxy.domain.com;comp=sigcomp> 
From: UAC <sip:UAC@helsinki.fi> 
To: UAS <sip:UAS@hut.fi> 
Call-ID: 123456789@computer.helsinki.fi 
CSeq: 1 INVITE 
Contact: UAC <sip:UAC@computer.helsinki.fi;comp=sigcomp> 
Content-Type: application/sdp 
Content-Length: 200 

 
It is assumed that the UAC is configured to send compressed traffic to the Proxy, which 
is the reason it sends the INVITE compressed. The UAC adds the parameter 
comp=sigcomp to the Via and the Contact header fields so that it can receive future 
requests and responses compressed. An example of the format of the first response sent 
from the Proxy to the UAC, the 180 Ringing, is shown below. 
 

SIP/2.0 180 Ringing 
Via: SIP/2.0/UDP computer.helsinki.fi:5060;comp=sigcomp 
Record-Route: Proxy.domain.com;comp=sigcomp 
From: UAS <sip:UAS@helsinki.fi> 
To: UAC <sip:UAC@hut.fi>;tag=543210 
Call-ID: 123456789@computer.helsinki.fi 
CSeq: 1 INVITE 
Contact: UAS <sip:UAC@hut.fi> 

 
The comp=sigcomp parameter in the Via header field of the 180 Ringing message 
indicates that the message should be sent compressed to the UAC. It is assumed that the 
Proxy wants to remain in the signalling path. This is the reason the message contains the 
Record-Route field, which was originally added to the INVITE sent from the Proxy to 
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the UAS in step (2). When the Proxy sends the 180 Ringing response to the UAC, it 
assumes that because the UAC wants to receive compressed requests, it would also like 
to send compressed requests. Therefore the proxy adds the comp=sigcomp parameter to 
its entry in the Record-Route field. 
 
Receiving incoming requests, even initial INVITEs compressed is not a problem, since 
user agents can register a SIP URI with the comp=sigcomp parameter in their registrar 
[RFC 3486]. All incoming requests for the user will be sent to this SIP URI using 
compression. Sending of compressed messages is slightly more complicated. It is, of 
course, easy for the client to get a next-hop URI with the comp=sigcomp parameter 
from a record-route header field or contact header field, but in this case the client has to 
wait until it receives a response from the user agent server. To send the initial INVITE 
compressed, the client needs to get a comp=sigcomp URI from its outbound proxy 
before it decides to establish a session. To do this, the client can send an uncompressed 
OPTIONS request to its outbound proxy [RFC 3486]. The proxy can then provide an 
alternative URI with the comp=sigcomp parameter to the client. A client should never 
send a compressed request to a server if it does not know whether or not the server 
supports SigComp. 

4.3 The Static Session Initiation Protocol and Session Description 
Protocol Dictionary 

[RFC 3485] defines the Session Initiation Protocol (SIP) and Session Description 
Protocol (SDP) specific static dictionary, which can be used to achieve higher 
compression efficiency. The dictionary is compression algorithm independent and must 
be available in all SigComp implementations for SIP/SDP. It is static, i.e. it will stay as 
it is forever, even though some minor errors in the dictionary have been reported [Draft 
Surtees]. In general, the use of a static dictionary technique like the static SIP/SDIP 
dictionary is most appropriate when considerable prior knowledge about the source is 
available. When compressing SIP, it is known ahead of time that certain words such as 
Via, From, To or Contact are going to appear in almost all of the messages.  
 
When SIP/SDP messages are compressed, the first few messages are only partially 
compressed because there are not previous states to compress against. The compression 
becomes more efficient only after a few messages have been exchanged. For example, 
the INVITE request, which is the first message sent, cannot take advantage of any 
previously built dictionaries. This problem is reduced by the static SIP/SDP dictionary 
[RFC 3485], which constitutes a SigComp state that can be referenced already in the 
first SIP message that a compressor sends out. This is possible because both endpoints 
are guaranteed to have the same version of the dictionary. The use of the dictionary 
enables more efficient compression of the first messages. 
 
The static SIP/SDP dictionary is a collection of well-known strings that appear in most 
SIP and SDP messages. Table 6 shows examples of the input strings that have been 
used in generating the library. Also their priorities are shown. The examples are taken 
from the complete list of SIP/SDP strings presented in [RFC 3485] that were used when 
building the dictionary. A low number in the priority field indicates that the string can 
be found with high probability in a SIP message. The dictionary that is actually included 
in the SigComp implementation is in binary form. 
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Table 6 - The static SIP/SDP dictionary 

String Priority 
“sip:” 1 
“To: “ 1 
“tel:” 3 
“SIP/2.0” 1 
“SIP/2.0/UDP “ 1 
“terminated” 4 
“INVITE” 1 
“ Dec “ 4 
“ACK” 1 
“Via: “ 1 
“OPTIONS” 4 
“algorithm=” 2 
“BYE” 2 
“Record-Route: “ 2 
“CANCEL” 4 
“100 Trying” 2 
“REGISTER” 2 
“180 Ringing” 2 
“INFO” 4 
“Contact: “ 5 

 
The binary SigComp dictionary [RFC 3485] is comprised of two parts: a string subset 
and a table subset. The string subset contains all strings in the contributing collections 
as a substring. There are two collections: the first is a collection of strings that SIP 
contributed to the dictionary and the second one a collection of strings that SDP 
contributed to the dictionary. The table subset contains pairs of length and offset values 
for all the strings in the contributing collections. All compression algorithms are able to 
use the string subset and some compression methods can also use the table subset. The 
idea is that a compressor can choose to reference either a string in the string subset or an 
entry in the table subset. The compressor that is used in the SigComp prototype 
described in this thesis always references entries in the string subset.  
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5 Computer and Operating System Architectures 
In order to better understand the results of the performance measurements presented in 
this thesis, it is good to know something about the way a computer is organised.  In this 
chapter, the memory hierarchy of a computer system is described. Because the 
SigComp prototype presented in this thesis is implemented as a multithreaded 
application, also an introduction to multithreaded programming is given. 

5.1 Memory Hierarchy 
In an ideal situation, a computer would have a memory with an unlimited size and 
extremely fast access times. However, since no current technology satisfies these goals, 
a computer system can only provide an illusion of a large memory than can be accessed 
as fast as a very small memory. This illusion is provided by organising the memory into 
a memory hierarchy, which takes advantage of the principle of locality. The principle of 
locality [Patterson 1997] states that programs access a relatively small portion of their 
address space at any instant of time. The memory hierarchy of a computer is depicted in 
Figure 18. 

Magnetic disk

Main memory

Cache

Registers

 
Figure 18 - Memory hierarchy 

 
A memory hierarchy [Patterson 1997, Tanenbaum 2001] consists of multiple levels of 
memory with different speeds and sizes. On the top of the hierarchy are registers that 
are internal to the Central Processor Unit (CPU). They are just as fast as the CPU and 
can be accessed with no delay. The next level in the hierarchy is the cache memory, 
which uses static random access memory (SRAM) with an access time of about 5-25 ns. 
The main memory is divided up into cache lines, the most heavily used of which are 
kept in a high-speed cache that is located inside or very close to the CPU. There can be 
two or even three levels of cache, each one slower and bigger than the one before it. If a 
program wants to read a memory word and the needed line happens to be in the cache, 
the situation is called a cache hit. This means that the main memory does not need to be 
accessed and the word is returned to the program with only a little delay. On the other 
hand, if the needed line is not found in the cache, a cache miss occurs. This means that 
the main memory must be accessed with a substantial time penalty. The main memory 
[Patterson 1997] is implemented from dynamic random access memory (DRAM). 
DRAM is cheaper per bit than SRAM, but it is also substantially slower, having an 
access time of about 60-120 ns. All CPU requests that cannot be satisfied out of the 
cache go to main memory. 
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The use of virtual memory [Patterson 1997, Tanenbaum 2001] means that the combined 
size of the program, data and stack may exceed the amount of physical memory 
available for it. The parts of the program that are in use are kept in the main memory, 
while the rest are kept on disk, which is on the bottom of the memory hierarchy. In a 
multiprogramming system, it is sufficient that the main memory contains the active 
portions of the programs in execution. A virtual memory block is called a page, and a 
virtual memory miss is called a page fault. It takes millions of CPU cycles to process a 
page fault since the missing page has to be brought in from the disk. This may take even 
10-20 million nanoseconds. Therefore, the miss penalty can be considered enormous. 

5.2 Multithreaded and Parallel Programming 

5.2.1 Processes and Threads 
A process [Tanenbaum 2001] is an executing program, including the current values of 
the program counter, registers and variables. A process is essentially a way to group 
related resources together; this makes their management easier. In the process model, all 
runnable software on the computer is organised into a number of sequential processes. 
If there are multiple processes running on the same Central Processor Unit (CPU), the 
CPU switches back and forth from process to process, meaning that the processes take 
turns executing on the CPU. A process has also a thread of execution. While processes 
are used to group resources together, threads are the entities that are scheduled for 
execution on the CPU. A thread has a program counter keeping track of which 
instruction to execute next, registers to holds its current working variables and a stack 
containing the execution history. In multithreading [Tanenbaum 2001], multiple threads 
are allowed in the same process. The threads share the address space and resources of 
the process. When a multithreaded process is executed on a single-CPU system, its 
threads take turns running, in a similar way as in the case that there are multiple 
processes running on the same CPU. If there are for instance ten compute-bound threads 
in a process, the threads appear to be running in parallel, because the CPU switches 
rapidly back and forth among the threads. However, each thread gets only one-tenth of 
the speed of the CPU. 
 
Threads are useful, because they make the programming model simpler. In the thread 
model, parallel entities are allowed to share an address space and all of its data. Threads 
are also easier to create and destroy than processes. Having multiple threads is most 
useful when both substantial computing and substantial Input/Output (I/O) are present. 
The use of multiple threads allows overlapping of activities, thus speeding up the 
application. This is because when one thread becomes blocked while waiting for an I/O 
event to occur, CPU time can be allocated to another thread performing computing 
work. If the system had only one thread, the CPU would be idle for the duration of the 
I/O event. On the other hand, when all threads do heavy computing on a single-CPU 
system, having multiple threads yields no performance gain.  
 
Threads are also useful on systems with multiple CPUs. In these systems, real 
parallelism is possible; if there are for instance two threads and two CPUs, both threads 
can execute simultaneously on their own CPUs. 
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5.2.2 Processors and Multiprocessors 
A single-CPU system executes multiple threads by switching between them. Rapid 
switching provides the illusion that the threads are running in parallel. There are many 
approaches to multithreading. In time-slice multithreading [Marr 2002], the processor 
switches between software threads after a fixed time period. In switch-on-event 
multithreading, the threads are switched on long latency events such as cache misses. In 
simultaneous multi-threading [Marr 2002], multiple threads can execute on a single 
processor without switching. The threads execute simultaneously and make better use of 
resources than in the case of time-slice or switch-on-event multithreading. For instance, 
Intel’s Hyper-Threading Technology [Marr 2002] uses the simultaneous multi-threading 
approach. The Hyper-Threading Technology makes a single physical processor appear 
as multiple logical processors. In a Hyper-Threading processor, there is one copy of the 
architecture state for each logical processor, and the logical processors share a single set 
of physical resources. 
 
True multiprocessor systems have two or more CPUs sharing the same physical 
memory. Adding more processors allows applications to get performance 
improvements, because multiple threads can be executed on multiple processors at the 
same time.  
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6 Previous Research on Signalling Compression 
In this chapter, some previous research on SigComp is presented. Because SigComp is a 
fairly new feature, manufacturers are still in the middle of the process of implementing 
the protocol. Therefore, the research that has been published so far has mainly focused 
on the estimated performance of the protocol. At least to the author’s best knowledge, 
this thesis is the first to study the performance of a full-blown SigComp implementation 
and the load it places on the core network element performing compression and 
decompression of SIP messages. SigComp architecture plans have neither been 
published before. 
 
The compression ratios achieved by SigComp extended operations are studied in 
[Nordberg 2003]. The compression ratios were measured for a compression algorithm 
called LZBS. Compression and decompression times or the overhead added by the 
extended mechanisms were not measured. In addition, some simplifying assumptions 
were made and therefore the results obtained do not reflect the performance of a 
complete SigComp implementation. A maximum compression ratio (size 
compressed/size uncompressed) of 22.7% was achieved for the entire call setup 
sequence using a buffer size of 4096 bytes and a ratio of 35.7% using a buffer size of 
2048 bytes. This thesis studies the effects of using larger buffer sizes, namely 8192 and 
16384 bytes in addition to the smaller buffer sizes. The use of a buffer size of 2048 
bytes is not feasible in most cases, because the buffer is too small to hold the static 
SIP/SDP dictionary, let alone the biggest SIP messages. In fact, it makes it completely 
impossible to send certain messages compressed [Draft Surtees]. A buffer of size 4096 
is able to hold the string subset of the static SIP/SDP dictionary, but parts of the 
dictionary typically need to be overwritten already when the first message is 
decompressed.  
 
Fidrich, Bilicki, So’gor and Sey [Fidrich 2003] studied the compression ratios, 
compression times and decompression times of some well-known algorithms. These 
algorithms include Deflate, Subexponential encoder, Synth, LZ77 and Huffman coding. 
The algorithms supported only basic compression together with a static dictionary, 
which was not the same one as the static SIP/SDP dictionary defined in [RFC 3485]. 
For these two reasons, the resulting compression ratios are quite modest, about 46% in 
the case of the best-performing algorithm. The compression and decompression times 
were estimated using a theoretical approach. They were calculated for a CPU of a 
mobile phone having a clock rate of 100 MHz. This thesis focuses on the performance 
of SigComp on the core network side. Fidrich, Bilicki, So’gor and Sey conclude that 
most well-known compression algorithms cannot be used without adapting or even re-
designing them. If carefully built dictionaries are not used, the compression ratios are 
typically over 100%, i.e. the compressed messages are actually larger than the original 
ones. 
 
SigComp can also be applied to the Push-to-talk over Cellular (PoC) service, because 
PoC uses SIP based signalling for session control. The effect of SigComp on the end-to-
end delay in PoC session control is estimated in [Balazs 2004]. The results imply that if 
SigComp were able to reduce the size of the SIP message sequence by 80%, the end-to-
end session setup delay would be reduced by almost 56% from 3.04 seconds to 1.34 
seconds. 
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7 Signalling Compression Implementation 
The purpose of this chapter is to describe the SigComp prototype that was implemented 
as a part of this thesis. We implemented the SigComp prototype from scratch. We did 
not use any program code written by other parties, but implemented all the functionality 
ourselves. The techniques used and the design decisions made are discussed. The 
chapter begins by describing the way that code from a single-threaded SigComp 
implementation was ported to the multi-threaded SigComp prototype. The test 
configuration and the process interaction paradigms used are presented. The 
implementation of shared resources and the data structures used are described. The 
architecture and operation of the SigComp prototype are explained through Unified 
Modelling Language (UML) class, state and sequence diagrams. The compression and 
decompression algorithms used by the prototype are presented. Finally, the way the 
functionality of SigComp extended operations was implemented is described. 
 

7.1 From Single-threaded to Multi-threaded Code 
In the first stage of the implementation work, we implemented the SigComp prototype 
as a single-threaded application. This allowed us to concentrate on the core functionality 
of the protocol, since the multi-threaded issues were left to a later stage. The things that 
had to be kept in mind when the single-threaded code was modified to support multiple 
threads are discussed below. 
 
First of all, it has to be noted that choices that enable efficient parallelisation have to be 
made during the design of a program. It is most often not possible to introduce them to 
the program code afterwards. For this reason, the program code that was used to test the 
single-threaded SigComp prototype was thrown away, redesigned and rewritten when 
the switch to multiple threads was made. This program code is the one that binds the 
different components together, e.g. listens to the socket interface, creates and stores the 
compressors, invokes the decompressors and manages the state handler. However, many 
of the individual components of the protocol like the compressor and the decompressor 
could be ported to the new design with only minor, if any modifications. 
 
The code written for multi-threaded programs has to be re-entrant and thread-safe to 
protect resource integrity. A re-entrant function cannot hold any static data over 
successive calls. This is because all statically allocated data will be overwritten by the 
next call to the function. Instead of the function holding the data, its caller must provide 
all the data that needs to be maintained over successive calls. The second requirement 
for a re-entrant function is that it should not return a pointer to static data. This can be 
achieved either by returning dynamically allocated data or by using caller-provided 
storage. In the latter case, the interface to the function needs to be modified so that for 
example a pointer to the storage can be passed to the function. In the former case, the 
caller must be modified in such a way that it frees the dynamically allocated storage 
when it is no longer required. Both of these approaches were used in the SigComp 
prototype. Finally, also all library procedures that multithreaded programs use should be 
re-entrant. 
 
Thread-safety means that entities using shared resources, such as a shared database, 
must take turns using the resource. This can be achieved through the use of mutexes and 
semaphores, which are special kinds of shared variables used for synchronization. The 
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approach that was taken in the SigComp prototype is to use a separate wrapper class for 
each shared resource. These classes use the Singleton design pattern [Gamma 1995] to 
ensure that only one instance of each such class can be created. Furthermore, each class 
takes care of its own lock variables. All the functions that are visible to outsiders are 
guaranteed to be multi-thread safe. In practise, this means that the caller of the function 
does not need to pay special attention to mutual exclusion; it can call the function just as 
if the code was single-threaded. Therefore, no modifications to the callers of such 
functions are required. For example, the interface to the state handler remains 
unchanged despite of the fact that in a multi-threaded code, there are multiple 
compressors and decompressors accessing the state handler. 

7.2 Test Configuration 
The SigComp prototype process acts as a P-CSCF in the measurements carried out to 
collect the results analysed in this thesis. In addition to the SigComp prototype, also 
another program was implemented to generate SigComp traffic for the P-CSCF process. 
The purpose of this program is to simulate mobile users that establish and terminate 
various kinds of sessions. From now on, this process is referred to as the UE process. 
The use of simple scripts on the UE side to generate the signalling traffic was not 
sufficient, because the UEs must generate and receive compressed traffic. 

7.3 Process Interaction Paradigms 
In this section, the process interaction paradigms used by the P-CSCF and UE processes 
are presented. These paradigms include the bag-of-tasks paradigm and the producers 
and consumers paradigm. 

7.3.1 Bag-of-tasks 
The UE process uses the bag-of-tasks paradigm [Andrews 2000] as the underlying 
process interaction paradigm. The bag-of-tasks paradigm is used to implement parallel 
computations. Its benefits include that it is scalable, meaning that it is easy to vary the 
number of workers that carry out the parallel computations. It is also relatively easy to 
ensure that each worker does about the same amount of work. The bag is a data 
structure that is shared by worker threads, while a task is an independent unit of work. 
There can be multiple worker threads executing on the CPU at a given time, each 
carrying out a separate task. A manager thread listens to the socket and generates a new 
receive task each time a SigComp message arrives. The worker threads fetch these tasks 
from the bag, execute them and possibly generate new send tasks to the bag. This is 
illustrated in Figure 19. 
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Figure 19 - The bag-of-tasks paradigm 

 
As it was already mentioned, there are two kinds of tasks: receive tasks and send tasks. 
A receive task consists of a SigComp message that is to be decompressed, while a send 
task contains a SIP message that should be compressed and sent. A worker thread has 
two different roles: it can be either a receive worker or a send worker. Each worker is 
capable of handling both receive and send tasks; it cannot know which one of these two 
tasks it will get when it accesses the bag. The worker runs in a loop, which is illustrated 
by the following pseudo-code: 
 

while(true) { 
    if(the bag is empty) { 
        wait until a task appears to the bag; 
    } 
    get a task from the bag; 
    if(the task is a send task) { 

         compress the message and create a SigComp message; 
         send the SigComp message; 

    } 
    else { 
        decompress the message; 
        hand the decompressed SIP message to the SIP user agent, which returns  
        a compartment identifier and possibly adds a new send task to the bag; 
        provide the compartment identifier to the decompressor; 
    }      
} 

 
A worker carrying out a receive task goes through three stages. First it decompresses the 
payload of the SigComp message it received. In the second stage it acts as a SIP user 
agent. It parses the SIP message and possibly generates a new send task to the bag. In 
the final stage, the worker terminates its UDVM instance by providing the UDVM the 
compartment identifier that was returned by the SIP user agent.  

7.3.2 Producers and Consumers 
The P-CSCF process uses producers and consumers [Andrews 2000] as the underlying 
process interaction paradigm. In the producers and consumers paradigm, a producer 
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process produces tasks that are carried out by a consumer process. Communication 
between producers and consumers is conducted by means of a shared buffer. Access to 
the shared buffer is synchronized using a bounded buffer technique [Andrews 2000], 
which uses semaphores as resource counters. A bounded buffer is a multislot 
communication buffer. Producers deposit tasks to the rear of the buffer while consumers 
fetch messages from the front of the buffer. Because of this, deposit and fetch 
operations can execute concurrently as long as there are both empty slots and stored 
tasks in the buffer. Most importantly, a continuous stream of fetch operations initiated 
by consumers cannot prevent a producer from depositing new tasks to the buffer.  
 
The P-CSCF process has one producer thread whose task is to listen to the socket 
interface and generate new tasks. It receives SIP messages from the core network side 
and SigComp messages from the access network side and inserts them to the buffer as 
new tasks. In addition to the producer, there are multiple worker threads that consume 
the generated tasks. A task containing a SIP message is executed by reading the 
message, compressing it and sending it to the access network. On the other hand, a task 
containing a SigComp message is carried out by decompressing the message, parsing it 
and sending the decompressed SIP message to the core network. 

7.4 Shared Resources 
Due to the nature of the SigComp protocol, the SigComp prototype has to use certain 
shared resources: the state handler and the compressor array. In addition to these, the 
shared buffer used by the producer and consumers must be implemented as a shared 
resource as well. All of these structures need to be multithread-safe because multiple 
workers use them simultaneously 
 
The state handler, compressor array and the shared buffer have two kinds of users: those 
performing read operations and those carrying out write operations. When there are both 
readers and writers accessing the shared resource, a classical synchronization problem, 
the readers/writers problem, needs to be taken into account. In the case of a shared 
resource like the state handler, readers execute transactions that examine the records in 
the state item table of the state handler, while writers execute transactions that both 
examine and update the records. To ensure that each transaction transforms the state 
handler from one consistent state to another, the writer processes must have exclusive 
access to the state item table. If no writer is accessing the state item table, any number 
of readers may concurrently execute transactions.  
 
The SigComp prototype uses the technique of passing the baton [Andrews 2000] to 
solve the readers/writers problem. This technique employs split binary semaphores both 
to provide exclusion and to signal delayed threads. Its virtues include that the order in 
which delayed threads are awakened can be controlled precisely and thus different 
scheduling policies can be implemented between readers and writers. When a thread is 
executing within a critical section, it can be thought that it is holding a baton that 
signifies permission to execute. When the thread no longer needs the baton, it passes the 
baton to one other process.  To ensure fair access to the shared data structures of the 
state handler of the SigComp prototype, the guards of the technique of passing the baton 
use the following rules: 
 

• If a reader is waiting, delay a new writer 
• If a writer is waiting, delay a new reader 
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• When a reader finishes, awaken, i.e. pass the baton to one waiting writer, if any. 
• When a writer finishes, awaken all waiting readers. If there is more than one 

delayed reader, one is awakened first and the others are awakened in cascading 
fashion. If there are not any readers waiting, awaken one waiting writer, if any.  

 
The purpose of these rules is to force readers and writers to alternate turns when both 
are waiting. Both the state handler and the compressor array use this scheduling policy.  

7.5 Data Structures 
Different components of the SigComp prototype make use of different kinds of data 
structures. The bag of the bag-of-tasks paradigm is implemented as a priority queue. 
Each task on the queue has a timestamp indicating the time when the task should be 
carried out. The tasks are ordered based on the timestamp value in such a way that the 
task with the smallest timestamp is placed at the top of the queue. The shared buffer of 
the producers and consumers paradigm is implemented as a fixed-length array. The 
compressor array uses a map, which is a data structure containing key/value pairs. The 
key to the compressor array consists of a SigComp compartment identifier. 
 
The compressor uses a hash table to implement the search buffer of the modified LZSS 
algorithm. The state handler uses two hash tables to store state items and feedback 
items. The key to the compressor’s hash table is formed by the first three bytes of the 
sequence to which the value of the key/value pair points. The key to the state handler’s 
state item table is the state identifier, which is a 20-byte Secure Hash Algorithm One 
(SHA-1) cryptographic hash, and the key to state handler’s feedback item table is a 
SigComp compartment identifier. The use of hash tables [Weiss 1999] is called hashing 
and it is a technique used for performing insert, delete and find operations in constant 
average time. Constant time can be achieved because the operations can be carried out 
without performing a search. Instead, the position where an item is stored can be 
determined directly from its value. This is enabled by the use of a hash function, the 
task of which is to map the position of an item and its value. A hash function distributes 
the keys evenly among the cells of the array the hash table uses. Each key is mapped 
into some number in the range 0 to size of table-1 and placed in the appropriate cell. A 
good hash function is easy to compute, spreads out keys evenly in the array and avoids 
collisions, i.e. situations in which distinct keys produce same hash values. Hashing is 
useful for any problem where the entries have real names instead of numbers.  
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7.6 Classes of the Signalling Compression Prototype 
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Figure 20 - Class diagram of SigComp prototype 

 
The class diagram of the SigComp prototype is shown in Figure 20. The role of each 
class in the diagram is discussed in the following subsections. 

7.6.1 BitOperations 
The class BitOperations is a collection of functions that are used to manipulate binary 
sequences: to get and set bits, shift bits, carry out logical operations and so forth. The 
compressor and the UDVM use these functions heavily. 

7.6.2 Compressor 
The compressor is a super class for different compression algorithms. One Compressor 
object is associated with each SigComp compartment. The identifier of the 
compartment uniquely identifies a compressor. The most important task of the 
Compressor class is to provide an interface for the classes inheriting it. Compressor 
objects also construct the SigComp message header and attach the payload to it. 



Performance of Signalling Compression in the Third Generation Mobile Network 
 

 
Jouni Mäenpää                                                                                                           43                     

7.6.3 CompressorArray 
Since the lifetime of a compressor is the same as the lifetime of a compartment, 
compressors need to be stored between the sending of SigComp messages. This is the 
task of the class CompressorArray. CompressorArray uses the Singleton design pattern 
described in [Gamma 1995]. The purpose of this pattern is to ensure a class only has 
one instance, and provide a global point of access to it. When the first message of a 
compartment is to be compressed, a new Compressor object is created. After the 
message has been compressed, the compressor object is stored in the compressor array 
for future use. The key of the compressor array is the compartment identifier, which has 
to be unique. After the initial message has been sent, the compressor is fetched from the 
compressor array each time a new message belonging to its compartment is sent. When 
the compartment is closed, the compressor has to be removed from the compressor 
array. 

7.6.4 Config 
The class Config implements an Extensible Mark-up Language (XML) reader that reads 
configuration information from an XML file. The configuration information includes 
various parameters used by the other classes of the SigComp prototype. 

7.6.5 FeedbackItem 
FeedbackItem is a class whose instances are used to convey information between 
compressors and decompressors. For example, after having decompressed a message 
and received a compartment identifier from the SIP application, the UDVM saves the 
feedback data that was included in the SigComp message header in a FeedbackItem 
object and forwards it to the state handler. One feedback item is associated with each 
compartment and the data that is stored in it is not compression or decompression 
algorithm specific. A feedback item holds a list of locally available states, a list of states 
that the remote endpoint has established, the most recently acknowledged state 
identifier, the shared state identifier and the state identifier of the most recent local 
UDVM memory snapshot state. It also contains values of different SigComp parameters 
that may have been returned by the remote endpoint. 

7.6.6 LZSSCompressor 
LZSSCompressor inherits the Compressor class. It contains a modified implementation 
of the Lempel-Ziv-Storer-Szymanski (LZSS) compression algorithm, which is 
described in Section 7.8. 

7.6.7 PartialStateId 
PartialStateId is a simple class whose instances are used to hold the values and lengths 
of state identifiers. The value of a state identifier contains either a complete SHA-1 hash 
or its first six, nine or twelve bytes. 

7.6.8 SecureHashAlgorithm 
Class SecureHashAlgorithm implements the Secure Hash Algorithm 1 (SHA-1) [RFC 
3174, FIPS 180-1], which is used to calculate the hash or message digest values 
identifying SigComp state items. The SHA-1 hash is a condensed representation of the 
content of a SigComp state item, which typically holds a SIP message or the contents of 
UDVM memory. The SHA-1 algorithm always produces an output of 20 bytes despite 
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the length of the input sequence. The SHA-1 is called secure because it is 
computationally infeasible to find a message, which corresponds to a given hash, or to 
find two different messages, which produce the same hash value. Any change to a 
transmitted message, for example a decompression or compression error or corruption 
of the message content during transport, will, with very high probability, result in a 
different message digest than the one calculated for the original message.  
 
For example, when endpoint A sends a message to endpoint B, it calculates an SHA-1 
hash over the uncompressed SIP message X before compressing it. It includes the SHA-
1 hash in the returned parameters of the SigComp message that carries the compressed 
version of message X in its payload. If shared compression is used, then after having 
received and decompressed the message, endpoint B calculates an SHA-1 over it. By 
comparing the hash it calculated to the one in the returned parameters, endpoint B can 
deduce whether the message was received correctly. If the hashes match, endpoint B 
can use the received message, i.e. the shared state, in the compression process of the 
next message it sends. 

7.6.9 SigCompDispatcher 
The class SigCompDispatcher is responsible for implementing the producers and 
consumers paradigm. It uses the Singleton design pattern. The main function of the 
SigComp prototype is included in the class file of SigCompDispatcher. The main 
function is responsible for creating the pool of worker threads. It also creates the socket 
and listens to it. As new messages arrive to the socket, new receive tasks are generated 
and added to the shared buffer. 

7.6.10 SigCompState, Idle, Waiting SigCompStateFactory and 
SigCompStateMachine 

Classes SigCompState, Idle, Waiting SigCompStateFactory and SigCompStateMachine 
use the Flyweight design pattern defined in [Gamma 1995]. The Flyweight is a 
structural design pattern and its intent is to use sharing to support large numbers of fine-
grained objects efficiently. A flyweight is a shared object that can be used in multiple 
contexts simultaneously. Therefore, flyweights cannot make any assumptions about the 
context in which they operate. They can only store intrinsic state information, which is 
independent of the flyweight’s context.  When a client object uses a flyweight, it has to 
pass any required extrinsic state information to the flyweight as an argument. The use of 
flyweight objects results in storage space savings. This is because sharing reduces the 
total number of instances that have to be maintained and thus also the amount of 
intrinsic state that has to be stored. 
 
The class SigCompState acts as a flyweight. It declares an interface through which 
flyweights can receive and act on extrinsic state. It has two subclasses: Idle and 
Waiting, which implement the interface and add storage to intrinsic state. Idle and 
Waiting are sharable, which means that all clients share the same instances of these two 
classes. The task of the class SigCompStateFactory is to create and manage flyweight 
objects. It ensures that they are shared properly. SigCompStateFactory uses the 
Singleton design pattern. 
 
The client that uses the flyweight objects is the class SigCompStateMachine. It uses the 
State design pattern described in [Gamma 1995] together with SigCompState and its 
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subclasses. The State is a behavioural design pattern and its purpose is to allow an 
object to alter its behaviour when its internal state changes. SigCompStateMachine 
maintains an instance of one of the subclasses of SigCompState. This instance defines 
the current state of the protocol state machine. Each of the subclasses of SigCompState 
implements a behaviour associated with a state of the state machine. The use of the 
State pattern has the following consequences: (1) all behaviour associated with a 
particular state is located in one object, (2) state transitions are explicit, because 
separate objects are used for different states and (3) state objects can be shared. 

7.6.11 SipParser 
The class SipParser implements a simple SIP message parser. It is used to extract 
information from SIP messages. 

7.6.12 StateHandler 
Class StateHandler implements the SigComp state handler described in [RFC 3320]. 
The task of the state handler is to store state items, which are instances of the class 
StateItem, and compartment-specific feedback items, which are instances of the class 
FeedbackItem. StateHandler uses the Singleton design pattern. 

7.6.13 StateItem 
StateItem objects hold SigComp state items used to store for example the messages used 
in shared compression or the contents of the UDVM memory. Each state item is 
identified by a 20-byte SHA-1 message digest, which is a hash over the contents of the 
state item. More specifically, the hash is calculated over the byte string formed by 
concatenating the fields state_length, state_address, state_instruction, 
minimum_access_length and state_value of the state item. These fields contain the 
length of the state item, the address to which the value of the state item should be 
copied, the memory address from which execution should continue when the state item 
is used, the minimum number of bytes to use when the state identifier is compared to 
other state identifiers, and the value of the state item, respectively. 

7.6.14 StaticDictionary 
StaticDictionary is a class holding the static SIP/SDP dictionary described in [RFC 
3485]. It includes functions for retrieving subsets of the dictionary and fields for 
holding its state parameters. 

7.6.15 Task 
The producer thread creates a new Task object each time it receives a message from the 
socket interface. Task objects are placed to the shared buffer, from which they are 
fetched by the worker threads. 

7.6.16 UdvmDecompressor 
Class UdvmDecompressor implements the Universal Decompressor Virtual Machine 
(UDVM) specified in [RFC 3320]. Since the SigComp implementation described here 
uses the LZSS compression algorithm, the decompression algorithm whose bytecode is 
run on the virtual machine is as well that of the LZSS algorithm. The 
UdvmDecompressor is written entirely in the C/C++ language.  
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7.6.17 UdvmMemoryImage 
The class UdvmMemoryImage is used to generate and hold an image of the memory of 
the receiving endpoint’s UDVM. By maintaining this image, the sending endpoint 
knows the contents and state of the remote UDVM’s circular buffer and the values of 
the UDVM’s registers.  
 
An example of the use of UDVM memory images is given in Figure 21, in which 
SigComp endpoint A sends a compressed INVITE request in the payload of SigComp 
message m1 to endpoint B in step (1). Endpoint B sends back a compressed 180 
Ringing response in the payload of SigComp message m2 in step (2). 
 
Before endpoint A starts to compress the INVITE in step (1), it generates a remote 
UDVM memory image, which is called UMS_B in Figure 21. The name stands for 
Udvm Memory Snapshot B. The image reflects the contents of the remote UDVM’s 
memory at the moment it has finished decompressing the INVITE message. Figure 21 
shows only the dictionary part of the UDVM’s memory. Other data in the memory, e.g. 
registers and bytecode are omitted from the figure for simplicity. At the moment the 
INVITE has been decompressed, the dictionary of endpoint B’s UDVM will contain 
only the static SIP/SDP dictionary and the decompressed INVITE message. Therefore, 
the compressor of endpoint A uses the static dictionary to compress the INVITE 
message. Endpoint A stores UMS_B and calculates an SHA-1 hash over it. Endpoint A 
also records that state UMS_B has not been acknowledged and thus cannot be used to 
compress messages. 
 
After endpoint B has decompressed the message m1, the contents of the memory of its 
UDVM correspond exactly to UMS_B. Therefore, the SHA-1 hash that endpoint B 
calculates over its memory matches the one that was calculated at endpoint A. Next, 
endpoint B saves a snapshot of its memory for future use. Since this snapshot 
corresponds to the memory image that was calculated at endpoint A, it is also called 
UMS_B in Figure 21. When endpoint B sends the message m2 to endpoint A in step (2), 
it acknowledges the creation of UMS_B in the header field acked_state_id of message 
m2. The message m2 carries a compressed 180 Ringing message in its payload. When 
endpoint A receives the message, it records that UMS_B has been acknowledged and 
can be used to compress the next message endpoint A sends. This means that when the 
next message is sent, endpoint A can initialise the dictionary of its compressor with the 
dictionary that is retrieved from UMS_B.  
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Figure 21 - Use of UDVM memory images 

7.7 Classes of Universal Decompressor Virtual Machine Interpreter 
Implementation 

In this section, the architecture of the UDVM interpreter that was implemented as a part 
of this thesis is described. The class diagram of the interpreter is presented in Figure 22. 

 
Figure 22 - Class diagram of the UDVM interpreter 

7.7.1 BitOperations 
The class BitOperations is a collection of functions used to manipulate binary 
sequences, i.e. to get and set bits, shift bits, carry out logical operations and so forth. 
This class is the same one that the SigComp prototype uses. 



Performance of Signalling Compression in the Third Generation Mobile Network 
 

 
Jouni Mäenpää                                                                                                           48                     

7.7.2 Instruction 
Instruction objects store the instructions that are read from the UDVM assembly being 
interpreted. Each Instruction object contains the name of certain instruction and the 
operation code and operands of the instruction. 

7.7.3 Interpreter 
The UDVM interpreter is responsible for compiling the human readable UDVM 
assembly to the binary bytecode that can be executed on the virtual machine. The 
Interpreter class contains the main function of the UDVM interpreter. The Interpreter 
maintains three instances of the class VariableArray, one for labels, one for label 
references and one for variables. The main function of the UDVM interpreter program 
first reads an input file containing the UDVM assembly and then stores all lines 
containing instructions, directives and declarations for labels and variables to separate 
string arrays. After this, it processes the lines that contained variables and for each 
declared variable, creates a Variable object to hold the variable. Variable objects are 
stored in an instance of the class VariableArray. In the next step, the instruction lines 
are encoded. When this step is over, a preliminary version of the bytecode has been 
constructed. The reason for the version being only preliminary is that at this point, the 
final positions of different labels cannot be known for sure. An example illustrating this 
is shown in Figure 23. In the figure, the STATE-ACCESS instruction is the first 
instruction in the assembly and the label dictionary_id is the last label in the assembly. 
The dictionary_id is referenced by the STATE-ACCESS instruction. Between the 
STATE-ACCESS and the dictionary_id, there can be an arbitrary number of lines 
containing instructions, label declarations, variable declarations and directives. When 
the STATE-ACCESS instruction is initially encoded, the final value of the 
dictionary_id label is unknown, because the length of the bytecode between the 
instruction and the label is not known. Therefore, the interpreter has to use an estimate 
when it encodes the reference to the dictionary_id. After all the remaining instructions 
have been encoded in a similar manner, the UDVM interpreter enters a loop in which, 
during each iteration, it recalculates the values of the labels and updates their references. 
The loop terminates after the first iteration during which the values of all the labels 
remain unchanged. Multiple iterations are typically needed, because when the value of a 
label changes, the new value cannot always be encoded using the same number of bytes 
as the old value. This is because each operand of a UDVM instruction is compressed 
using variable-length encoding. The problem is illustrated in Figure 23. In step (1) of 
the figure, the value of the label example changes. Because of this, the length of the 
encoded value of the reference to example in instruction JUMP changes also in step (2). 
This, in turn, has an effect on the position of the label dictionary_id in the bytecode in 
step (3). And because the position of the dictionary_id changes, the value of its 
reference in STATE-ACCESS (4) needs to be updated. This may result in a situation in 
which the length of the reference to dictionary_id changes and thus also the positions of 
labels example and dictionary_id have to be shifted. 
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Figure 23 - Processing of UDVM assembly 

7.7.4 StringOperations 
The class StringOperations is a collection of functions that are used to process the data 
that are read from the file containing the UDVM assembly. 

7.7.5 Variable, Label, LabelReference and StandardVariable. 
Variable is a super class for the classes Label, LabelReference and StandardVariable. 
Label objects are used to store the labels that are declared in the UDVM assembly. A 
label assigns a memory address to a text name. The position of a label may change as 
the assembly is interpreted to bytecode. A LabelReference object is created for each 
reference to a label that is encountered in the assembly. This is done in order to track 
the position of the reference as the interpretation proceeds. Finally, instances of the 
StandardVariable objects are used to store variables declared by set directives. The set 
directive is used to assign values to text names in the UDVM assembly language. The 
values of such text names remain constant during the interpretation process, i.e. their 
values do not depend on the position in which they are declared.  

7.7.6 VariableArray 
VariableArray is a class whose instances store StandardVariable, Label and 
LabelReference objects, i.e. the objects that inherit the Variable class. 

7.8 Compression Algorithm 
The compression algorithm that is used in the SigComp implementation is based on the 
Lempel-Ziv-Storer-Szymanski (LZSS) algorithm. LZSS in turn is a variation of the 
Lempel-Ziv 1977 (LZ77) algorithm, which is based on a paper by Jacob Ziv and 
Abraham Lempel in 1977 [Ziv 1977]. Before the operation of the modified LZSS 
algorithm is explained, an introduction is given to the LZ77 and LZSS algorithms. Also 
the basics of dictionary compression techniques are covered. 

7.8.1 Dictionary Techniques 
In many applications, the output of the source consists of recurring patters. This is also 
the case with SIP messages, in which certain patterns recur constantly. A very 
reasonable approach to encoding such sources is to keep a list or dictionary of 
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frequently occurring patterns. When the patterns reappear in the input, they are encoded 
with a reference to the dictionary. 
 
There are two approaches to dictionary compression: a static approach and an adaptive 
approach. The use of a static dictionary [Sayood 1996] is most appropriate when 
considerable prior knowledge is available about the source. The static dictionary 
approach is most suitable for use in specific applications. Since our task is to compress 
the session initiation protocol, the static dictionary approach is an efficient solution 
because we know ahead of time that certain words such as “FROM”, “SIP” and 
“CALL-ID” are going to appear in almost all of the messages to be compressed. This is 
the very purpose of the static SIP/SDP dictionary; to offer a collection of strings relative 
to which SIP messages with SDP content can be compressed. 
 
However, using the static dictionary approach alone is unlikely to result in high 
compression ratios. After all, a great deal of the content of SIP messages is specific to a 
single session; it would not be feasible to include for instance the addresses of all of the 
potential callers and callees to the dictionary. The adaptive dictionary technique 
provides an answer. It is an efficient approach when sufficient prior knowledge about 
the source is not available. An example of an algorithm that uses the adaptive dictionary 
technique is the LZ77. 

7.8.2 LZ77 
LZ77 [Ziv 1977, Sayood 1996] uses the adaptive dictionary technique. In LZ77, the 
adaptive dictionary is a portion of the previously encoded sequence. The encoder 
examines the input sequence through a sliding window, which consists of two parts: a 
search buffer and a look-ahead buffer. The search buffer contains a portion of the 
recently encoded sequence, and the look-ahead buffer contains the next portion of the 
sequence to be encoded. To encode a sequence in the look-ahead buffer, the encoder 
moves a search pointer back through the search buffer until it encounters a match to the 
first symbol in the look-ahead buffer. The distance of the pointer from the start of the 
look-ahead buffer is called the offset. Next the encoder examines the symbols following 
the symbol at the pointer location to see whether they match consecutive symbols in the 
look-ahead buffer. The number of consecutive symbols in the search buffer matching 
consecutive symbols in the look-ahead buffer is called the length of the match. The 
search buffer is searched for the longest match that can be found. Once such a match 
has been found, it is encoded with a triple <o, l, c>, where o is the offset, l is the length 
and c is the codeword corresponding to the symbol in the look-ahead buffer that follows 
the match. The reason why the third element in the triple is used is to take care of the 
situation in which no match for the symbol in the look-ahead buffer can be found in the 
search buffer. In this case, the offset and length values are set to zero and the third 
element of the triple is the code for the symbol itself. An example of the operation of 
the LZ77 algorithm is illustrated in Figure 24 and Figure 25. 
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Figure 24 - Operation of the LZ77 algorithm, part I 

 
In step (1) of Figure 24, the search buffer is initially empty and the look-ahead buffer 
contains the first five characters of the input sequence, which is the string ‘abracadabra’. 
The size of the search buffer is 7 symbols and the size of the look-ahead buffer is 5 
symbols. In practice, the sizes of the buffers would be significantly larger. The first 
encoded character is the first character in the look-ahead buffer, i.e. a in step (1). 
Because the search buffer is empty, no match can be found. Therefore, the encoder 
outputs the triple <0,0,a> and moves the sliding window one position right, ending up 
to the situation shown in step (2). In step (2), symbol b is not found from the search 
buffer, and code for the symbol itself is output in the same way as in the previous step. 
Symbol r is encoded in a similar manner in step (3). In step (4), the first symbol in the 
look-ahead buffer is a, which is also present in the search buffer. Therefore, instead of 
outputting the symbol a, the encoder outputs the position of the match, namely the triple 
<3,1, ->. In step (5), no match is found from the search buffer for symbol c and the 
encoding proceeds in a similar way as in step (2). The remaining steps of the encoding 
process are shown in Figure 25. 
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Figure 25 - Operation of the LZ77 algorithm, part II 

 
In step (6), two matches for symbol a are found in the search buffer. In the case of both 
of these matches, the next symbol is different from the symbol that follows a in the 
look-ahead buffer. Therefore, it does not matter which one of the matching symbols is 
encoded. The encoder chooses the nearest symbol and outputs the triple <2,1,->. In step 
(7), no match is found for symbol d. In the next step, the first symbol in the look-ahead 
buffer is symbol a. Two matches can be found in the search buffer. However, in the 
case of the first match, the three consecutive symbols in the look-ahead following a are 
the same as the three consecutive symbols following a in the search buffer. Therefore, 
we can encode the sequence abra using the triple <7,4,->. In step (9), the look-ahead 
buffer is empty, since we have encoded the entire sequence. Note that when the sliding 
window was moved four positions left after the sequence abra was encoded in step (8), 
the four first symbols in the search buffer got pushed out, since the capacity of the 
search buffer is only 7 symbols. 
 
When the LZ77 algorithm is used, three different possibilities may be encountered 
during the coding process: 

• There is no match for the next character to be encoded in the sliding window 
• There is a match 
• The matched string extends inside the look-ahead buffer 

The third case occurs when the last character of the matching sequence is in the last slot 
of the search buffer and the next symbol or symbols of the sequence in the look-ahead 
buffer match to the first symbol or symbols in the look-ahead buffer. This is illustrated 
in Figure 26. In the first step of the figure, a match for sequence cab is found in the 
search buffer. In the second step, the search is continued in the look-ahead buffer. It is 
observed that instead of coding a match of length three, the triple can actually code a 
match of five characters by extending the match to the look-ahead buffer. 
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Figure 26 - Match that extends to look-ahead buffer 

 

7.8.3 LZSS 
The LZ77 algorithm is very inefficient when it comes to encoding references to single 
symbols. For example, in step (4) of Figure 24, the symbol a is encoded using the triple 
<3,1,->. This is highly inefficient, since the encoded triple is actually longer than the 
code for the symbol itself. For example, the ASCII-representation of a takes only 8 bits, 
while the triple might require 16 bits assuming that 12 bits are used to encode the offset 
value and 4 bits to encode the length value. Using triples to encode single symbols is 
highly inefficient if a large number of characters occur infrequently. The LZSS 
algorithm eliminates the situation in which a triple is used to encode a single character 
by using a flag bit to indicate whether what follows is a codeword or a single symbol. 
The flag bit also makes it possible to get rid of the third element in the triple.  

7.8.4 The Modified LZSS Algorithm 
In the SigComp prototype, the following modifications were made to the LZSS 
algorithm: 
 

• In addition to the adaptive dictionary approach, also the static dictionary 
approach is used 

• Support for external dictionaries was added 
• A circular buffer is used instead of a linear buffer 
• 14 bits are used to encode offset values (to enable the use of a decompression 

memory of up to 16384 bytes) 
• The number of bits that is used to encode length values can be configured 
• Hashing is used to speed up searches from the circular buffer 

 
The static dictionary approach of the static SIP/SDP dictionary assumes that we have 
prior knowledge about the source, while the adaptive dictionary technique of the LZSS 
algorithm assumes no prior knowledge of the source. These two approaches are 
combined in the modified LZSS algorithm. By using the static dictionary approach, it is 
possible to encode in an efficient way the patterns that are common across all SIP 
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messages. On the other hand, by using the adaptive dictionary approach together with 
the support for external dictionaries, we can make use of the similarities between the 
messages that belong to a single SIP dialog, for example the user’s name, email address 
and URL. 
 
The adaptive dictionary of the unmodified LZSS algorithm is the previously encoded 
sequence, i.e. the portion of the SIP message that has already been compressed. Each 
message is encoded independently. The modified LZSS algorithm has the ability to load 
external dictionaries to its search buffer and thus compress the new message relative to 
their contents. This allows the use of acknowledged and shared states in the 
compression process. 
 
The search buffer and thus also the sliding window of the modified LZSS algorithm is 
circular, which means that once the right boundary of the buffer is reached, characters 
will be added to the front of the buffer. Because of this, the offset values may be greater 
than the value of the current search pointer. This is illustrated in Figure 27, in which the 
current value of the search pointer is 3 and the offset of the match is 7. The use of a 
circular buffer is necessary, since when using dynamic compression, the contents of the 
search buffer are saved between the compressions of consecutive messages. When the 
next message is compressed, the search buffer is initialised by using the contents of a 
previous search buffer. This also means that eventually the search buffer will fill up, 
provided that the combined size of the messages is greater than the capacity of the 
buffer. This will usually be the case; it is not feasible to maintain a large buffer firstly 
because the use of a large buffer typically results in longer compression and 
decompression times, and secondly because the memory capacity can sometimes be a 
restrictive factor, especially in mobile terminals. When the buffer fills up, it is far more 
reasonable to start again from the front of the buffer than to start again with an empty 
buffer. The use of a circular buffer is also necessitated by the fact that the UDVM uses a 
circular buffer as well. In fact, the size of the search buffer of the modified LZSS 
algorithm has to be the same as that of the UDVM to make sure that both of them see 
their buffers in a similar state. 
 
 

c a d a b r a a b r a

search pointer = 3

0 1 2 4 5 6 7 8 9 10

offset = 7, length = 4

 
Figure 27 - Circular buffer 

 
The number of bits that the modified LZSS algorithm uses to encode offset values 
depends on the size of the decompressor’s circular buffer. 12 bits are sufficient for a 
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circular buffer of the size 212 = 4096 bytes, 13 bits for a buffer of the size 213 = 8192 
bytes and 14 bits for a buffer of the size 214 = 16384 bytes. In a similar way, the number 
of bits that are used to encode length values restricts the maximum length of a match 
that can be taken from the dictionary. If 5 bits are used to encode length values, then the 
maximum length of a match is 25 + 3 = 35 bytes. The factor 3 is added, because LZSS 
never encodes matches whose length is two bytes or less. If a match of length two were 
encoded as an offset/length pair, then the number of bits needed to encode the value 
would be 1+14+5 = 20, provided that 1 bit is used by the flag bit, 14 bits are used to 
encode the offset and 5 bits to encode the length. If the two characters are encoded 
using their own codes and the flag bits, then their length is 1+8+1+8=18. Therefore, it 
would be wasteful to encode matches of length two or less as offset/length pairs. 

7.8.5 Hash Function of the Modified LZSS Algorithm 
The hash function h that the compression algorithm uses is implemented as a 
composition of two functions f and g. Given a set of keys, K, and a hash table of size M, 
a hash function is a function of the form 
 

{ }1...,,1,0: −MKh a .  (7.1) 
 

The function f maps keys into integers: 
 

+ΖaKf : ,   (7.2) 
 
where Z+ is the set of non-negative integers. The function g maps non-negative integers 
into the range from 0 to M-1: 
 

{ }1...,,1,0: −Ζ+ Mg a .  (7.3) 
 
The hash function h is defined as follows: 
 
 fgh o= ,   (7.4) 
 
meaning that the hash value of a key x is given by g(f(x)). The function f [Preiss 1997] is 
shown below: 
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where s is a character string, wW 2=  such that w is word size of the machine and 

bB 2=  such that b is the number of bits in the input characters. Assuming the value 32 
for w and the value 6 for b, the following code [Preiss 1997] presents an optimised way 
to implement the function f:  
 

unsigned const int shift = 6; 
unsigned const int mask = ~0U << (32 – shift); 
 
unsigned int hash = 0, i = 0; 
for(i=0; s[i] != ‘\0’; ++i) 
 hash = (hash & mask) ^ (hash << shift) ^ s[i]; 
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return hash; 
 
Value 6 can be used for b if it is assumed that letters and digits are the most common 
characters in strings; all the information in the ASCII codes of these characters is in the 
six least significant bits. The code contains one additional step compared to function f: 
the six most significant bits are retained and inserted back to the shifted hash variable 
through an exclusive or (^) operation. 
 
The task of function g is to map the values produced by function f into the interval [0, 
M-1]. For this, a method called the Fibonacci hashing [Preiss 1997] is used. In 
Fibonacci hashing, the hash function has the form 
 

 ( ) ( )⎥⎦
⎤

⎢⎣
⎡= Wax
W
Mxg mod ,  (7.6) 

 
where x is the result of function f and a is a carefully chosen constant, whose value is 
closely related to the number called golden ratio. The value of the golden ratio is 
 

 
2

51+
=φ .   (7.7) 

 
The value of factor a in Equation (7.6) is given by Wa 1−= φ . When this value is used, 
the function g has two favourable properties. First of all, each subsequent hash value 
divides the interval into which it falls according to the golden ratio. Second of all, the 
hash value for each subsequent key falls between the two widest spaced hash values 
already computed. This is illustrated in Figure 28 for a hash table whose size is 100. We 
can observe from the figure that consecutive keys spread out quite efficiently. 
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Figure 28 - Fibonacci hashing 

7.9 Decompression Algorithm 
In this section, the decompression algorithm used in the SigComp prototype is 
described. The way the bytecode of the decompression algorithm organizes the memory 
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of the UDVM is illustrated in Figure 29. In the figure, it is assumed that the size of the 
decompression memory is 8192 bytes. The first 128 bytes of the memory are reserved 
for the values of various registers. Addresses 128 - 400 are reserved for the bytecode. 
Rest of the memory is used as a circular buffer. The static SIP/SDP dictionary is 
considered to be a part of the buffer, meaning that once the buffer reaches its right 
boundary (i.e. byte_copy_right), the static dictionary will be overwritten. This is 
because in the SigComp prototype, the content of previous messages is considered to be 
more valuable than the information in the static dictionary; it is more likely to help in 
achieving higher compression ratios. The string subset of the static dictionary is initially 
loaded to the beginning of the circular buffer. The first byte of the string subset is 
copied to address 400, which is the left boundary of the circular buffer and is pointed to 
by the register byte_copy_left. 
 

Bytecode … Static
Dictionary

0 128 400

Rest of the circular buffer

3868 8192

Byte_copy_rightByte_copy_left

Circular buffer

 
Figure 29 - Organization of the UDVM's memory 

 
The UDVM assembly of the LZSS decompression algorithm is presented in [Draft 
Price]. This assembly is included in Appendix B. The assembly that is used in the 
SigComp prototype includes a few modifications to the original assembly, including 
support for the modified LZSS algorithm, changes to the way the UDVM memory is 
organized, changes to the use of shared states and other minor modifications. A 
description of the original assembly is given below. 
 
Rows 1-34 of the assembly are used to reserve registers in the memory of the UDVM. 
As an example, on line 3 the label index is associated with memory addresses 32-33. 
The at(32) directive on line 1 appends 32 padding bytes to the bytecode. Because index 
is the first label that is declared after the at(32) directive, index is associated with 
memory address 32. The pad(2) directive on line 3 appends two padding bytes to the 
bytecode starting from address 32. This means that the length of the index field becomes 
two bytes. 
 
The STATE-ACCESS instruction on line 40 loads the string subset of the static 
SIP/SDP dictionary to the memory of the UDVM starting from address 1024. The 
partial state identifier of the static dictionary is read from the memory address specified 
by the operand dictionary_id, which will, by the time the bytecode is loaded to the 
memory of the UDVM, contain the six bytes that are declared on line 126 of the 
assembly. These bytes present the partial state identifier of the static dictionary. 
 
The MULTILOAD instruction on line 45 initialises the values of the registers in 
memory locations 64-71, i.e. registers byte_copy_left, byte_copy_right, input_bit_order 
and decompressed_pointer. The registers byte_copy_left and byte_copy_right specify 
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the bounds of the circular buffer, while the register decompressed_pointer contains a 
value that points to the location to which the next uncompressed byte should be copied. 
 
The INPUT-BYTES instruction on line 49 reads the s-bit of the SigComp header. The 
value of the s-bit is checked on line 50 by the COMPARE instruction. If the value is 
zero, the UDVM continues execution on line 57. On the other hand, if the value is ‘1’, 
then the shared state identifier is read by the INPUT-BYTES instruction on line 54 and 
the state with this state identifier, i.e. the shared state, is loaded to the UDVM memory 
on line 55. 
 
The MULTILOAD instruction on line 59 loads new values to registers 
minimum_access_length, announcement_location, decompressed_start and 
decompressed_length. 
 
On line 60, the COPY-LITERAL instruction appends eight padding bytes to the front of 
the area to which the message will be decompressed. Later in the assembly, the length 
of the decompressed message and the contents of the register minimum_access_length 
will be written to these eight bytes. The purpose is to leave room for the eight bytes that 
are a part of all state items: state_length, state_address, state_instruction and 
minimum_access_length. When an SHA-1 hash is created for the decompressed 
message, these eight bytes will be included in the string over which the hash is 
calculated. 
 
The instructions on lines 62 and 63 read the a-bit of the SigComp header and take the 
following actions depending on its value: if the value is zero, the execution of the 
bytecode continues from line 71. If the value is one, execution moves to line 67. In the 
latter case, the UDVM starts to write information to the location of returned parameters, 
which contains the list of returned remote partial state identifiers. The instructions on 
lines 67 and 68 write the length and value of the state identifier specifying the remote 
UDVM memory snapshot state to the returned parameters location. The LOAD 
instruction on line 69 ensures that the shared state identifier, which is calculated later in 
the assembly, is stored in the next free byte after the state identifier of the remote 
UDVM memory snapshot. 
 
The actual decompression algorithm starts from line 75. The INPUT-HUFFMAN 
instruction on line 75 reads the first nine bits of the decompressed message. It goes 
through one or two iterations depending on the value of the sequence of 9 bits that are 
read. As was explained earlier, in the LZSS compression algorithm, each compressed 
character begins with a 1-bit indicator flag specifying whether the character is a literal 
or an offset/length pair. If the flag is ‘0’, then the eight-bit sequence that follows the 
flag contains a literal. A literal is an uncompressed ASCII character and its value is 
within the range 0-255. If the sequence following the flag is a literal, the INPUT-
HUFFMAN instruction returns after the first iteration. On the other hand, if the flag is 
‘1’, the sequence of sixteen bits that follows the flag contains an offset/length pair. In 
this sequence, 12 bits are reserved for the offset and 4 bits for the length value. If the 
flag is ‘1’, the instruction reads the indicator flag and the first eight bits of the offset in 
the first iteration, and the six remaining bits of the offset during the second iteration. 
 
If the indicator flag was ‘0’, the execution continues from line 82. The instructions on 
lines 82 and 83 output one character, and also copy the character to the decompressed 
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message. The JUMP instruction on line 84 moves execution back to line 75, i.e. to the 
beginning of the decompression algorithm. 
 
If the indicator flag was ‘1’, the execution continues from line 88. The INPUT-BITS on 
that line reads the length value of an offset/length pair from the compressed message. 
The ADD instruction on line 89 increments the length by 3. This is done because the 
LZSS algorithm never encodes sequences whose length is less than 3 bytes as 
offset/length pairs. If length 0 is read from the message, it should be interpreted as 
length 3, whereas length 1 should be interpreted as length 4 and length n as length n+3. 
The COPY-OFFSET instruction on line 91 counts backwards a total of offset memory 
addresses, starting from the next byte following the most recent decompressed byte. 
Starting from the resulting address, it appends a total of length bytes to the 
decompressed message. This happens for example whenever a byte string is fetched 
from the static SIP/SDP dictionary. On line 92, the fetched byte string is output and on 
line 93, the JUMP instruction moves execution back to the beginning of the 
decompression algorithm. 
 
The instructions on lines 97 and 98 read the r-bit of the SigComp header. Next, one of 
the following actions is taken depending on the value of the r-bit: value ‘0’ indicates 
that the sender did not save a state corresponding to the decompressed message. In this 
case, the execution continues from line 118. If the r-bit is ‘1’, then the sender saved a 
state corresponding to the decompressed message. If this is the case, the shared state 
identifier is calculated on lines 102-112. 
 
The LOAD instruction on line 118 stores some flag bits and the length of the requested 
feedback field to the location of requested feedback in the memory of the UDVM. The 
MULTILOAD instruction on the next line loads four two-byte blocks to the front of the 
state value of the UDVM memory snapshot that will be calculated. These two-byte 
blocks include the length of the sequence over which the hash is calculated, the address 
to which the snapshot value should be loaded, the instruction from which the execution 
should continue once the snapshot is loaded and the minimum access length of the state 
item. On line 120, a hash is calculated over the UDVM memory. This hash value is 
placed to the field acked_state_id of the SigComp header when the next message is sent 
by this endpoint.  
 
Finally, the END-MESSAGE instruction on line 122 terminates the UDVM. It ensures 
that the feedback data, the shared state and the UDVM memory snapshot will be saved 
once the SIP application provides a valid compartment identifier. 

7.10 State and Sequence Diagrams 
In this section, the state diagram and various sequence diagrams of the SigComp 
prototype are presented by means of Unified Modelling Language (UML) diagrams 
[Doldi 2003]. 
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7.10.1 State Diagram 
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Figure 30 - SigComp state diagram 

 
The state diagram of the SigComp state machine is shown in Figure 30. It illustrates the 
states that a worker thread can occupy during its lifecycle. The execution begins at the 
initial pseudo-state: the state machine goes to state Idle. In this state, three events can be 
received: sendMessage, receiveMessage and closeCompartment. The events 
sendMessage and closeCompartment do not change the state of the state machine. 
However, the event receiveMessage moves the state machine to state Waiting if the 
received message is a SigComp message. If the message is a SIP message, the state 
machine stays in the state Idle. When the event compartmentId is received in the 
Waiting state, the state machine returns to the Idle state. 
 
The event sendMessage is used to request the sending of a new message. When it is 
received, a message is compressed and placed into the payload of a SigComp message, 
which is passed to the transport layer. The event closeCompartment occurs when the 
SIP application wants to close a compartment and release its resources. When the event 
receiveMessage is received, a SigComp message is decompressed and the resulting 
message is passed to the SIP application. After this, the state machine makes a transition 
to the state Waiting, in which it waits for the SIP application to provide a compartment 
identifier. The identifier arrives in the form of a compartmentId event. Once this event 
occurs, state information can be saved, after which the state machine returns to the state 
Idle. The following subsections describe in detail what happens when each of the events 
is received. 
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7.10.2 Event SendMessage 

 
Figure 31 – Sequence diagram for event sendMessage 

 
A Unified Modelling Language (UML) diagram illustrating the actions taken when the 
event sendMessage is received is shown in Figure 31. Only the most important 
messages are included in the figure. The purpose of each message is explained below. 
In the figure, it is assumed that shared compression and dynamic compression are used 
and that the compartment has already saved state items in the state handler. 
 
1: sendMessage The worker thread calls the function sendMessage of the 

state object Idle. 
1.1.1: getCompressor If the message is to be sent compressed, the Idle object 

fetches a compressor from the compressor array using 
the compartment identifier provided as an argument to 
the function sendMessage. 

1.1.2: compressMessage The state Idle orders the compressor, which is an 
instance of the class LZSSCompressor, to compress the 
SIP message provided by the worker thread. 

1.1.2.1: getFeedback The LZZS compressor retrieves a feedback item from 
the state handler. The correct feedback item is identified 
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using the compressor’s compartment identifier. 
1.1.2.2: saveSharedState The LZSS compressor orders the state handler to save 

the uncompressed SIP message as a shared state. 
1.1.2.3.1: <constructor> If the remote UDVM snapshot identifier that is read 

from the feedback item is empty, the opposite endpoint 
has not yet acknowledged any UDVM memory 
snapshots. Therefore, the LZSS compressor creates a 
new instance of the class UdvmMemoryImage, the 
purpose of which is to present the contents of the remote 
UDVM’s memory. 

1.1.2.3.2 initialise The UdvmMemoryImage object is initialised by setting 
the values of UDVM registers and loading the static 
SIP/SDP dictionary to the circular buffer of the memory 
image. 

1.1.2.3.3: insertSharedState The contents of the shared state are inserted to the 
UDVM memory image. 

1.1.2.3.4: getSearchBuffer The contents of the search buffer of the compression 
algorithm are read from the memory image.  The search 
buffer is initialised using the retrieved value. 

1.1.2.3.5: 
insertDecompressedMessage

The memory image is updated to reflect the situation in 
which the message this endpoint is about to send has 
been decompressed. Also the values of affected registers 
are updated. 

1.1.2.4.1:  
loadOldMemoryImage 

If the state identifier of the remote UDVM memory 
snapshot that was read from the FeedbackItem object 
contained a value, the corresponding memory image is 
retrieved from the compressor’s memory image table. 

1.1.2.4.2: <constructor> A new UdvmMemoryImage object is created. 
1.1.2.4.3: 
initialiseFromOldImage 

The contents of the old memory image are copied to the 
new one. 

1.1.2.4.4: insertSharedState The memory image is updated to contain the new shared 
state. 

1.1.2.4.5. getSearchBuffer The compressor’s search buffer is fetched from the 
memory image. 

1.1.2.4.6: 
insertDecompressedMessage

The memory image is updated to reflect the situation in 
which the new message has been decompressed. 

1.1.2.5: saveMemoryImage The new UDVM memory image is stored in the 
compressor’s memory image table 

1.1.2.6: compress The SIP message is compressed using the modified 
LZSS algorithm. 

1.1.2.7: 
createSigCompMessage 

The LZSS compressor calls the function 
createSigCompMessage of its super class, Compressor. 
This function creates a SigComp message header and 
places the compressed SIP message into the payload of 
the message. 

1.1.2.7.1: 
getListOfLocalStates 

The Compressor object accesses the state handler to get 
a list of locally available state identifiers. This list is 
included in the header of the SigComp message. 

1.3: sendToSocket The SigComp message that was created is sent to a UDP 
socket. 
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1.4: setNextState The Idle object sets the next state of the state machine. 
 

7.10.3 Event ReceiveMessage 

 
Figure 32 – Sequence diagram for event receiveMessage 

 
Figure 32 illustrates the sequence of actions that takes place when the event 
receiveMessage is received by the state machine of the SigComp prototype. 
 
1: receiveMessage The worker thread calls the function receiveMessage of the 

class Idle after having fetched a receive task from the shared 
buffer. 

1.1: 
processReceivedMessage

The function processReceivedMessage of the class Idle is 
called. This function either reads the header fields and the 
payload of the SigComp message or identifies the message 
to be an uncompressed SIP message. In the latter, case the 
message requires no processing. Whether a message is a SIP 
or a SigComp message is determined by inspecting the first 
five bits of the first byte of the message. If the first five bits 
are all ‘1’s, the message is guaranteed to be a SigComp 
message, since this bit sequence never occurs in UTF-8 
encoded text messages. If some other bit sequence is found, 
the message is considered to be a SIP message, in which 
case the next action taken is the function call 1.2: 
setNextState. Otherwise the next action is the creation of a 
new Udvm object in step 1.1.1.1 or 1.1.2.1. 

1.1.1.1: <constructor> If the SigComp message header contained bytecode, a new 
Udvm object is created by calling the constructor that takes 
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the bytecode as an argument. This constructor initialises the 
UDVM’s memory from scratch. 

1.1.1.2: 
decompressMessage 

The payload of the SigComp message is passed to the Udvm 
object created in the previous step. The Udvm object starts 
executing the bytecode. 

1.1.1.2.1: getState The bytecode contains an instruction that orders the UDVM 
to load the static SIP/SDP dictionary from the state handler. 

1.1.1.2.2: getState The state handler is accessed to load the shared state. 
1.1.2.1: <constructor> If the message does not contain bytecode but instead a 

partial state identifier of an earlier UDVM memory 
snapshot, a new Udvm object is created by calling the 
second constructor of the class Udvm. This constructor 
initialises the memory using a previous UDVM memory 
snapshot, which is loaded from the state handler. 

1.1.2.2: 
decompressMessage 

The compressed message is handed to the UDVM. The 
UDVM starts executing the bytecode included in the 
snapshot loaded from the state handler. 

1.1.2.2.1: getState The state handler is accessed to load the shared state. There 
is no need to load the static dictionary, because it was 
included in the snapshot loaded by the constructor of the 
class Udvm in step 1.1.2.1. 

1.2: setNextState The Idle object sets the next state of the state machine, 
which is the state Waiting. 

7.10.4 Event ReceiveCompartmentId 

 
Figure 33 – Sequence diagram for event receiveCompartmentId 

 
Figure 33 shows what happens when the state machine receives the event 
receiveCompartmentId. It is assumed that the compartment already has a feedback item. 
 
1: receiveCompartmentId A worker thread calls the function 

receiveCompartmentId of a Waiting object. A pointer to 
a Udvm object and a compartment identifier are passed to 
the function as arguments. 

1.1: provideCompartmentId The compartment identifier is provided to the UDVM. 
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This allows the UDVM to save state information. 
1.1.1: saveMemorySnapshot The UDVM orders the state handler to create a new state 

item, which contains the contents of its memory. 
1.1.2: saveSharedState The UDVM saves the message that it decompressed in 

the state handler as a new state item. 
1.1.3: saveFeedbackData Next, the UDVM orders the state handler to save the 

feedback information that the message possibly 
contained. 

1.1.3.1: getFeedbackItem The state handler fetches the feedback item of the 
compartment. 

1.1.3.2: writeFeedbackData The feedback item is updated to contain the most recent 
feedback information. 

1.2.setNextState The Waiting object sets the next state of the state 
machine, which is the state Idle. 

7.10.5 Event CloseCompartment 

 
Figure 34 - Sequence diagram for the event closeCompartment 

 
The sequence of actions that takes place when the state machine receives the event 
closeCompartment is illustrated in Figure 34. The purpose of each message in the 
diagram is explained below. 
 
1: closeCompartment A worker thread calls the function closeCompartment of 

the object Idle. The identifier of the compartment that is 
to be closed is passed to the function as an argument. 

1.1: removeCompartment The state items and the feedback item that were created 
by the specified compartment are removed from the state 
handler. 

1.2: removeCompressor The compressor of the specified compartment is deleted 
from the compressor array. 

1.3: setNextState The next state of the state machine is set. 
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7.11 Implementation of Extended Operations 
In this section, the way the SigComp prototype implements the SigComp extended 
operations is illustrated through an example of a SIP session establishment message 
sequence, in which all messages are compressed using SigComp and extended 
operations. The example is depicted in Figure 35, which contains messages 1-3 and in 
Figure 36, which includes messages 4-6. The notation used in the figures is presented in 
Table 7. 
 

Table 7 - Notation that is used in the figures 

Notation Meaning 
m1 Message 1 
SD The SIP/SDP Static Dictionary 
200 OK (N) The Nth 200 OK message that is exchanged between the 

endpoints 
ums_A(m1) UDVM Memory Snapshot (UMS) of a UDVM created at 

endpoint A, reflecting the situation in which message 1 has just 
been decompressed. 

m2: 180 Ringing [SD + m1] m2, which contains a compressed 180 Ringing message, is 
compressed using the SIP/SDP static dictionary and 
information from message 1 

 
It is assumed both in Figure 35 and Figure 36 that the circular buffers of the UDVMs of 
endpoint A and B will not reach their maximum sizes and thus all data that are written 
to the buffer remain there. It is also assumed that the state memories are large enough to 
hold all the states that are established and that UDP is used for transport. 
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SigComp A SigComp B

m1: INVITE [SD]

m2: 180 Ringing [SD + m1]

m1 contains:
- Bytecode
- Returned parameters = [m1]
- No acked_state_id
- No shared_state_id
- r-bit acknowledges m1

m2 contains:
- Bytecode
- Returned parameters = [m2]
- acked_state_id = ums_B(m1)
- shared_state_id = m1
- r-bit acknowledges m2

m3: 200 OK (1) [SD + m1]

m3 contains:
- Bytecode
- Returned parameters = [m3]
- acked_state_id = ums_B(m1)
- shared_state_id = m1
- r-bit acknowledges m3

SD

Compressor’s dictionary:

SD INVITE

Compressor’s dictionary:

SD INVITE

Compressor’s dictionary:

SD

UDVM’s dictionary:

SD

UDVM’s dictionary:

INVITE

shared

shared

shared

Local states:
INVITE

ums_B(m1)

Local states:
INVITE

180 Ringing
ums_B(m1)
ums_A(m2)

Local states:
INVITE

180 Ringing
ums_A(m2)
ums_B(m1)

Local states:
INVITE

180 Ringing
200 OK (1)
ums_B(m1)
ums_A(m2)
ums_A(m3)

SD

UDVM’s dictionary:

INVITE

shared

 
Figure 35 - Extended operations part I 

 
m1 The first message shown in Figure 35 is a compressed INVITE message sent 

from endpoint A to endpoint B. The process of sending the INVITE begins 
when the SIP application of endpoint A hands an INVITE message to the 
SigComp service running at the same endpoint. Since the INVITE is the first 
message of the compartment, the SigComp message that is created has to 
contain bytecode, i.e. the decompression algorithm uploaded to endpoint B. The 
field acked_state_id is empty, because there are no states to acknowledge yet, 
i.e. this endpoint has not saved any UDVM memory snapshots. Shared 
compression cannot be applied yet because endpoint A has not received any 
messages from endpoint B. Therefore, the field shared_state_id of the 
SigComp message does not contain a state identifier. The r-bit of the SigComp 
header is set to indicate that the INVITE message was saved at endpoint A. The 
state identifier of the INVITE message is also included in the list of returned 
parameters. This allows endpoint B to check the integrity of the shared state by 
comparing the hash it calculated over the message to the value in the returned 
parameters. Before compressing the INVITE, endpoint A has to construct an 
image of the memory of endpoint B’s UDVM. This memory image reflects the 
moment endpoint B has decompressed the message m1. Since there are not any 
shared or acknowledged states available, the only states that are loaded to the 
memory image are the static SIP/SDP dictionary and the INVITE message. 
Next, the memory image, called ums_B(m1), is saved by endpoint A. The 
search buffer of endpoint A’s compressor is initialised using the contents of the 
constructed memory image excluding the INVITE message. Upon receiving 
m1, endpoint B creates a new UDVM instance and initialises it with the 
bytecode that was included in m1. The bytecode loads the static SIP/SDP 
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dictionary to the memory of the UDVM. It also instructs endpoint B to save the 
decompressed INVITE message and a snapshot of the memory of the UDVM 
as new states. The compressor of endpoint B will use the decompressed 
INVITE as a shared state when it compresses the next SIP message it sends. 
The snapshot can be used by endpoint B to initialise the contents of the memory 
of a UDVM instance that is invoked to decompress the next SigComp message 
endpoint B receives. 
 

m2 The next message sent in Figure 35 is m2, which contains a compressed 180 
Ringing message. Since endpoint B may use a different compression algorithm 
than endpoint A, a bytecode containing endpoint B’s decompression algorithm 
is included in the message. The only state identifier that is included in the list of 
returned parameters is that of the next shared state (i.e. the message that is 
being sent), because (1) the creation of snapshot ums_B(m1) is already 
acknowledged by including its state identifier in the field acked_state_id and 
(2) the creation of shared state, i.e. the INVITE message, is acknowledged by 
including its state identifier in the field shared_state_id. The presence of a state 
identifier in the field shared_state_id also indicates to endpoint A that shared 
compression was used to compress the 180 Ringing message. The state 
identifiers are calculated by using the SHA-1 algorithm. Since both endpoints 
use this algorithm and the same data to calculate the identifiers (i.e. in this case 
the INVITE message and the UDVM memory image/snapshot), both endpoints 
are guaranteed to have similar state identifier values, assuming there are no 
transmission or decompression errors. To utilise shared compression, endpoint 
B loads the INVITE message, i.e. the most recent message it has received, to 
the remote UDVM memory image ums_A(m2) it constructs. Naturally, also the 
static SIP/SDP dictionary is loaded to the memory image as well as the 180 
Ringing message. Since the search buffer is initialised using the memory image, 
the search buffer will also contain the shared state.  Therefore, the INVITE 
message will be used in the compression process of the 180 Ringing message. 
Before sending the message m2, endpoint B saves the uncompressed message 
and the memory image ums_A(m2) it created.  
 
Upon receiving m2, endpoint A initialises a UDVM instance with the bytecode 
that is included in the message and starts executing the bytecode. The bytecode 
loads the static SIP/SDP dictionary to the memory of the UDVM. It also reads 
the field shared_state_id, which contains the state identifier of the INVITE 
message, and loads this message to the circular buffer of the UDVM. Having 
decompressed the message, endpoint A saves the uncompressed 180 Ringing 
message. It also records to the feedback item of this compartment the 
acknowledged state and shared state identifiers and the indication that the 
sender has saved the uncompressed message (as indicated by the r-bit).  
 

m3 The process of sending the third message, which is a 200 OK sent from 
endpoint B to endpoint A, is presented in Figure 35. When endpoint B starts to 
compress the message 200 OK, it cannot know whether endpoint A has 
successfully received the previous message, m2, and created state ums_A(m2), 
assuming that unreliable transport is used. This is because it has not received 
anything from endpoint A after it sent the message m2. Therefore, endpoint B 
has to include the bytecode also in message m3. The contents of the message 
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are identical to those of m2, except for the payload, which this time contains the 
compressed 200 OK message. 
 

m4 The process of sending the fourth message, m4, is shown in Figure 36. 
Endpoint B acknowledged the creation of the UDVM memory snapshot state 
ums_B(m1) by including the state identifier of this state to the field 
acked_state_id of message m3 (and message m2). Because of this, endpoint A 
can be sure that this state is available at endpoint B. It uses the state identifier of 
ums_B(m1) to find the corresponding memory image, which was saved when 
message m1 was created. Endpoint A updates the image by loading the new 
shared state, i.e. the 200 OK message, and the message that is to be compressed 
and sent, ACK, to the circular buffer of the memory image. Because endpoint A 
utilises an old image in the compression process, endpoint A has to indicate to 
endpoint B that endpoint B should initialise the UDVM it creates using an old 
memory snapshot. This is done by writing the state identifier of the old memory 
image, ums_B(m1), to the field partial_state_id. The creation of state 
ums_A(m3) is acknowledged in the field acked_state_id and the identifier of the 
new shared state, 200 OK, is included in the field shared_state_id. Returned 
parameters contain only two state identifiers, that of ums_A(m2) and the 
identifier of the ACK message; all other states available at endpoint A get 
acknowledged in the other fields. When the ACK message is compressed, the 
search buffer of the compressor contains the static SIP/SDP dictionary, the 
INVITE message and the 200 OK message. These are the states that are used in 
the compression process. Message m3 does not contain bytecode, because by 
acknowledging state ums_B(m1), endpoint B also indicated that it has received 
the bytecode. The reason for this is that because ums_B(m1) is a snapshot of the 
memory of endpoint B’s UDVM, it also contains the bytecode. When the state 
ums_B(m1) is loaded to the memory of endpoint B’s UDVM, the bytecode 
comes together with it. 
 
When endpoint B receives the message m4, it notices the state identifier the 
field partial_state_id contains. This is the state identifier of the state 
ums_B(m1). Endpoint B creates a new UDVM instance, retrieves the snapshot 
state corresponding to the state identifier of ums_B(m1) from the state handler, 
and initialises the UDVM’s memory using the snapshot. Therefore, at this 
point, the contents of the memory of the UDVM contain an exact copy of the 
memory from the time when message m1 was decompressed. The circular 
buffer of the UDVM contains the static SIP/SDP dictionary and the 
decompressed INVITE. When the UDVM starts executing, the bytecode loads 
the shared state, which is the decompressed version of message m3, to the 
circular buffer directly after the INVITE message. Now the contents of the 
memory match exactly to those used when compressing the ACK at endpoint 
A, and the UDVM can successfully decompress the message. Finally, the 
bytecode saves the decompressed ACK message and a snapshot of the 
UDVM’s memory, ums_B(m4), as new states. 
 

m5 When endpoint B decides to terminate the session, it sends a BYE message to 
endpoint A. The BYE is carried in the payload of message m5 shown in Figure 
36. It is assumed that the BYE request and the 200 OK response belong to the 
same compartment as the previous messages.  
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Endpoint A acknowledged the UDVM memory snapshot state ums_A(m3) in 
the previous message it sent to endpoint B. It also acknowledged the creation of 
a state holding the payload of message m4, namely the ACK message, by 
setting the r-bit. Therefore, endpoint B can order endpoint A to use the old 
snapshot state by setting the field partial_state_id to contain the state identifier 
of ums_A(m3). In addition, endpoint B can order endpoint A to load the shared 
state, ACK, to the UDVM’s circular buffer. These are also the states endpoint B 
uses to construct a new remote UDVM memory image ums_A(m5), and to 
initialise its compressor’s search buffer. Since the snapshot state ums_A(m3) 
contains the static SIP/SDP dictionary and messages m1 and m3 (i.e. INVITE 
and 200 OK), the BYE is compressed using these three states and the shared 
state, ACK. The state that is acknowledged in message m5 is ums_B(m4). The 
returned parameters contain the state identifier of the message that is being sent 
and the identifier of the state ums_B(m1). 
 
Upon receiving message m5, endpoint A initialises its UDVM instance with 
ums_A(m3) and the shared state. Having decompressed the message it saves a 
new snapshot state ums_A(m5) and the decompressed message. 
 

m6 The last message exchanged between the two endpoints is the 200 OK sent 
from endpoint A to endpoint B. It is carried in the payload of the message m6 
shown in Figure 36. Endpoint A orders endpoint B to initialise the memory of 
its UDVM with snapshot state ums_B(m4) by including the state identifier of 
this state to the field partial_state_id. It also announces that BYE is the new 
shared state, acknowledges state ums_A(m5) and indicates the creation of a state 
containing the 200 OK (2) message. Returned parameters that are carried in the 
message m6 include the state identifier of the 200 OK (2) message and the 
identifiers of the memory snapshots that were acknowledged previously, 
ums_A(m2) and ums_A(m3). The 200 OK (2) is compressed using the static 
SIP/SDP dictionary, the messages that are in the circular buffer of ums_B(m4), 
i.e. INVITE, 200 OK (1), ACK and BYE, and, in addition to these, the new 
shared state. 
 
When endpoint B receives the message m6, it initialises a new UDVM with the 
memory snapshot state ums_B(m5) and the shared state, i.e. BYE, and 
decompresses the message. 
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m4: ACK [SD + m1 + m3]

m4 contains:
- partial_state_id = ums_B(m1)
- Returned parameters = [ums_A(m2), m4]
- acked_state_id = ums_A(m3)
- shared_state_id = m3
- r-bit acknowledges m4

m5: BYE [SD+m1+m3+m4]

m5 contains:
- partial_state_id = ums_A(m3)
- Returned parameters = [ums_B(m1), m5]
- acked_state_id = ums_B(m4)
- shared_state_id = m4
- r-bit acknowledges m5

SD INVITE

Compressor’s dictionary:

200

UDVM’s dictionary:

SD INVITE 200

UDVM’s dictionary:

SD ACK

m6: 200 OK (2)  [SD+m1+m3+m4+m5]

m6 contains:
- partial_state_id = ums_B(m4)
- Returned parameters = [ums_A(m2), ums_A(m3), m6]
- acked_state_id = ums_A(m5)
- shared_state_id = m5
- r-bit acknowledges m6

SD INVITE

Compressor’s dictionary:

BYE

SD

Compressor’s dictionary:

ACK

UDVM’s dictionary:

SD INVITE

shared

200

shared

shared

200

shared

ACK

ACK

shared

shared
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INVITE

200 BYE

200

Local states:
INVITE
180 Ringing
200 OK (1)
ACK
ums_A(m2)
ums_A(m3)
ums_B(m1)
ums_B(m4)

Local states:
INVITE
180 Ringing
200 OK (1)
ACK, BYE
ums_B(m1)
ums_B(m4)
ums_A(m2)
ums_A(m3)
ums_A(m5)

Local states (A):
INVITE, 180 Ringing
200 OK (1), ACK
BYE, 200 OK (2)
ums_A(m2) 
ums_A(m3)
ums_A(m5)
ums_B(m1)
ums_B(m4)
ums_B(m6)

Local states (B):
INVITE, 180 Ringing
200 OK (1), ACK
BYE, 200 OK (2)
ums_B(m1), 
ums_B(m3)
ums_B(m6)
ums_A(m2)
ums_A(m3)
ums_A(m5)

 
Figure 36 - Extended operations part II 



Performance of Signalling Compression in the Third Generation Mobile Network 
 

 
Jouni Mäenpää                                                                                                           72                     

8 Measurements 
The approach used to describe the measurements carried out consists of a systematic 
approach to performance evaluation introduced in [Jain 1991]. This chapter presents the 
steps of the approach and describes the way they were applied to the measurements of 
this thesis. 

8.1 System Definition 
The goal of this study is to measure the performance of the SigComp protocol. The key 
components under study are SigComp compressor and the UDVM. The test 
configuration consists of three computers connected to a closed network via a hub as 
shown in Figure 37. Each of the computers executes either a UE process or a P-CSCF 
process. The UE process is used to generate compressed SIP signalling traffic initiating 
from the access network side. The P-CSCF process decompresses the traffic generated 
by the UE process and forwards the traffic to the core network side. The P-CSCF 
process also receives SIP traffic coming from the core network side, compresses the 
traffic and forwards it to the access network side. As shown in Figure 37, computer A 
acts as the access network side, computer C as the P-CSCF and computer B as the core 
network side. Both computer A and computer B execute the UE process, while 
computer C runs the P-CSCF process. The system under study consists of the P-CSCF 
process running on computer C. 

P-CSCF

Access
network

side
(UEs)

Core
network

side

Hub

SystemA

C

B

 
Figure 37 - System definition 

8.2 Services 
The system offers two services: compression of a SIP message and decompression of a 
SigComp message. The system either receives a SigComp message from the A-side 
(access network), decompresses the message and sends the resulting SIP message to the 
B-side (core network), or receives a SIP message from the core network, compresses the 
message and sends the resulting SigComp message to the access network. The traffic 
sent between the access network and the P-CSCF is always compressed, whereas all the 
traffic exchanged between the P-CSCF and the core network is uncompressed. 
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8.3 Metrics 
For both of the services defined in the previous section, the following issues are studied: 
(1) responsiveness: the amount of CPU time consumed to compress and decompress a 
SIP message, (2) productivity: the rate at which the service can be performed, i.e. the 
throughput of the system, (3) resource utilization and (4) achievable compression ratios.  
This leads to the following performance metrics: CPU time per compressed message 
and decompressed message, compressed and decompressed bit rates per unit of time, 
memory utilization of the SigComp process, state memory utilization of different 
SigComp mechanisms and finally, the number of bytes sent per compressed message 
compared to the number of bytes sent per uncompressed message. The 
compressed/decompressed bit rate is equivalent to the time required to 
compress/decompress a sequence of n bits. 
 
The definition of CPU time used is discussed below. CPU time [Patterson 1998] is the 
time the CPU spends computing for a particular task and does not include the time spent 
waiting for I/O or running other programs. It can be further divided into the CPU time 
spent in the program, called user CPU time and the CPU time spent in the operating 
system performing tasks on behalf of the program, called system CPU time. The system 
CPU time depends on the operating system on which the program is run. It may be 
inaccurate, because of the inaccuracy of an operating system’s self-measurement. 
However, no program runs without some operating system running on the hardware, so 
a case can be made for using the sum of user CPU time and system CPU time as the 
measure of program execution time. In this thesis, the term CPU time always refers to 
the sum of the user CPU time and the system CPU time. 

8.4 Parameters 
The system parameters that affect the performance are discussed below. Perhaps the 
single most important parameter is the speed of the CPU. On the other hand, also the 
multithreading technique used by the CPU is likely to have an impact, since the 
SigComp prototype uses multiple threads. Another interesting parameter is the 
decompression memory size (DMS) of the UDVM. The DMS dictates the length of the 
circular buffer on the compressor side, meaning that it has a major impact on the 
efficiency of the compression. Other parameters that are likely to have an effect on 
performance are the length of the compressor’s look-ahead buffer, the SigComp 
mechanisms used, the length of shared states, the search technique used by the 
compression algorithm, the size of the portion of the SIP/SDP static dictionary used and 
the number of messages that can be compressed and decompressed concurrently. 
 
The workload parameters affecting the performance are time between successive 
messages, time between calls, total number of calls, the content and sizes of the 
messages, type of the message sequence, number of messages in the message sequence, 
and other loads on the CPU. 

8.5 Factors 
In this thesis, both the performance of the SigComp protocol in general and the 
performance of the SigComp prototype that was implemented are studied. The key 
factors chosen for the study of the SigComp protocol’s performance are the SigComp 
mechanisms used and decompression memory size. However, also the impact of the 
other factors mentioned in the previous section is studied. The following SigComp 
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mechanisms and their combinations are compared: the basic SigComp protocol, the 
static SIP/SDP dictionary, dynamic compression and shared compression. The 
following sizes are used for the decompression memory: 4096, 8192 and 16384 bytes. 
 
The key factors chosen for the study of SigComp prototype’s performance are the type 
of the message sequence and the CPU type used. Two different CPUs are compared: 
Intel Pentium 4 2.66 GHz and Intel Pentium Hyper-Threading (HT) 3.0 GHz. 

8.6 Evaluation Technique 
Since a SigComp prototype is implemented as a part of this thesis, measurements will 
be used for evaluation. One of the most important metrics studied is the CPU time. The 
use of Linux system calls, like getrusage(), to record the CPU time is not enough for 
our purposes, because the accuracy with which the Linux kernel reports the CPU time 
consumed by a process is only one millisecond. Therefore, wall-clock time is used as an 
estimate of the real CPU time consumed. The wall-clock time is monitored using Linux 
command strace, the accuracy of which is one microsecond. Since all the measurements 
are performed in an unloaded system, the wall-clock time is very close to the actual 
CPU time. The measurement of memory consumption is carried out by examining the 
information in file /proc/<$pid>/statm, which is maintained by the Linux operating 
system. The throughput of the system is monitored using Ethereal, which is a network 
protocol analyser. 

8.7 Workload 
The workload consists of synthetic SIP user agent clients and user agent servers 
exchanging messages. The user agent clients are located on computer A, while the user 
agent servers reside on computer B. Seven different session types are examined: 

• Basic voice call 
• Basic video call 
• Registration in a 3GPP release 5 network taken from [3GPP TS 24.228] 
• Voice and video call in a 3GPP release 5 network taken from [3GPP TS 24.228] 
• An alternative message sequence for voice and video call in a 3GPP release 5 

network with a RE-INVITE request 
• An alternative message sequence for voice and video call in a 3GPP release 5 

network with a RE-INVITE request and reliable delivery of provisional 
responses 

• Push-to-Talk over Cellular (PoC) session 

8.8 Experimental Design 
The experiments are conducted in three phases. The first and second phases focus on the 
performance of the SigComp protocol, whereas in the third phase, the performance of 
the SigComp prototype is measured. In the first phase, the goal is to determine the 
relative effects of various factors and choose optimal values for these factors. A single-
threaded version of the SigComp prototype is used. In the second phase, the factors 
determined during the first phase are used to measure compression time, decompression 
time and compression ratios of the session types defined in the previous section. In the 
third phase, the factors determined during the first phase are used to measure the 
performance of the multi-threaded SigComp prototype. 
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8.9 Data Analysis 
Analysis of variability will be used where appropriate to take into account the 
variability of the results. 

8.10 Data Presentation 
The final results will be presented in graphic form and also in table form where 
necessary. The results of the measurements are included in Appendixes A-N. 

8.11 Materials and Apparatus 
The first and second phases of the measurements are conducted on an Intel Pentium 
Hyper-Threading 3.0 GHz platform. In the third phase of the measurements a three-
computer 100 Mbit/s Ethernet network is constructed. The computers are connected via 
an OfficeConnect Dual Speed Hub 8 10/100 Mbit/s hub. One of these computers acts as 
a P-CSCF, one executes the UEs and one acts as the core network side. The CPU of the 
computer acting as the P-CSCF is either an Intel Pentium 3,0 GHz supporting the 
Hyper-Threading technology or an Intel Pentium 4 2.66 GHz. The CPU of the computer 
executing the UEs is an Intel Pentium Mobile 1.6 GHz and that of the computer acting 
as the core network side is an Intel Pentium III 600 MHz. The computer with the least 
CPU power is used on the core network side because it does not need to compress or 
decompress SigComp traffic. All the computers use SuSE Linux as the operating 
system. The C++ compiler that is used is GNU project C and C++ compiler version 
3.3.3. The POSIX threads library is used to implement threads. The computers used in 
the measurements are presented in Table 8. 
 

Table 8 - Computers used in the measurements 

 Intel 
Pentium 4 
Hyper-
Threading 
3,0 GHz 

Intel 
Pentium 4 
2,66 GHz 

Intel 
Pentium 4 
1.8 GHz 

Intel 
Pentium 
Mobile 1,6 
GHz 

Intel 
Pentium III 
600 MHz 

Role in the 
measurements 

P-CSCF P-CSCF - UEs Core network 
side 

Operating 
system 

SuSE Linux 
9.2 
professional 

SuSE Linux 
9.0 
professional 

SuSE Linux 
9.1 
professional 

SuSE Linux 
9.1 
professional 

SuSE Linux 
9.0 
professional 

Linux kernel 
version 

2.6.8-24.14-
smp 

2.4.21-99-
default 

2.6.4-52-
default 

2.6.5-7.151-
default 

2.4.21-99-
default 

Main memory 1024 MB 504 MB 1024 MB 512 MB 192 MB 
Free main 
memory 

783 MB 316 MB 33 MB 296 MB 8 MB 

Type of 
memory 

DDR 400 
MHz 

DDR 333 
MHz 

DDR 333 
MHz 

DDR 333 
MHz 

SDRAM 

L2 Cache 
memory 

1 MB 512 KB 512 KB 2 MB 256 KB 

Front side bus  800 MHz 400 MHz 400 MHz 400 MHz 100 MHz 
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8.12 Assumptions 
In this section, some common values and assumptions that are used throughout the 
measurements are listed. Firstly, it is always assumed that partial state identifiers are of 
the minimum length, i.e. six bytes. A complete list of locally available state items is 
always included in the SigComp messages whenever stateful compression is applied. 
State memory size, i.e. the number of bytes offered to a particular compartment for the 
creation of state, is set to the maximum value, 131072 bytes. The parameter 
cycles_per_bit, which specifies the number of UDVM cycles available to decompress 
each bit in a SigComp message is set to value 32.  
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9 Phase One – Effects of Different Factors 
The goal of the measurements performed in the first phase is to determine the relative 
effects of various factors and choose optimal values for these factors. In the 
measurements, different combinations of the following SigComp mechanisms are used: 
the static SIP/SDP dictionary, dynamic compression and shared compression. The 
signalling flow is taken from [3GPP TS 24.228]. The flow is illustrated in Figure 1 and 
its messages are shown in Table 9. The messages are those exchanged between a UE 
and a P-CSCF during the establishment of a video call in a 3GPP Release 5 network. 
All the measurements of the first phase are performed on the Intel Pentium 4 3.0 GHz 
platform unless otherwise stated. 
 

Table 9 - Message sequence 

Message number Message Length [bytes] 
1 INVITE 1437 
2 100 Trying 254 
3 183 Session progress 1440 
4 PRACK (1) to 183 Session progress 1318 
5 200 OK (1) to PRACK (1) 904 
6 UPDATE 1291 
7 200 OK (2) to UPDATE 865 
8 180 Ringing 563 
9 PRACK (2) to 180 Ringing 717 
10 200 OK (3) to PRACK (2) 260 
11 200 OK (4) to INVITE 1133 
12 ACK 358 

9.1 Linear Search versus Hashing 
Two different versions of the LZSS compressor were implemented for the purposes of 
this thesis. The first version uses linear searching, while the second version uses a hash 
table to speed up searches. The goal of this measurement is to compare these two 
approaches. 
 
The results of the measurements are shown in Table 10. The values for the compression 
times are averages calculated over seven measurements. The results imply that the hash 
table is 2.8 times faster than linear searching. However, it uses six times more memory 
than linear searching does. 
 

Table 10 - Linear search versus hashing 

Approach Compression time [ms] Memory requirement for N-byte message 
[bytes] 

Linear search 32,12 N 
Hashing 11,47 6*N 
 
Before analysing the differences between hashing and linear search, the compressibility 
of the message sequence used in the measurements is examined. The compression ratio 
for each message in the sequence of 12 SIP messages is shown in Figure 38. Naturally, 
the compression ratios are identical for both linear searching and hashing since the 
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compression algorithm does not change. The compression ratios shown in Figure 38 
were calculated without taking into account the overhead added by the SigComp 
protocol. We can observe that there are two messages that cannot be compressed as well 
as the others, namely messages 1 and 3. Message 1 is the initial INVITE sent from 
endpoint A to endpoint B. The only information that can be utilised in the compression 
of the INVITE is the SIP/SDP static dictionary, which explains the low compressibility 
of the message. Message two, i.e. 100 Trying, is the first message sent from endpoint B 
to endpoint A. In addition to the static dictionary, also the INVITE message can be used 
when the 100 Trying is compressed. Because of the similarity of the content of the 
INVITE and the content of the 100 Trying, compression is efficient. Message number 3, 
i.e. 183 Session progress, sent from endpoint B to endpoint A is compressed exactly the 
same way as the 100 Trying. However, this time there are not as much similarities 
between the content of the INVITE and the content of the 183 Session progress. 
Therefore, the compression is less efficient than in the case of the second message. All 
the remaining messages starting from the fourth message achieve relatively good 
compression ratios. This is because dynamic compression and shared compression can 
be efficiently utilised as the amount of state information grows. 
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Figure 38 - Compression ratio of each message without SigComp overhead 

 
The compression time of each message is shown in Figure 39. The values in Figure 39 
are averages calculated over seven measurements and include both linear search and 
hashing. We can observe that the compression of the messages 1, 3, 6, 7 and 8 seems to 
constitute a bottleneck for linear searching. Linear search compares the look-ahead 
buffer with each of the positions in the search buffer and selects the maximum match. 
The worst case of linear searching is performed in O(NM), where N is the size of the 
search buffer and M the size of the look-ahead buffer. However, in most cases linear 
searching can complete in O(M+N) time. Linear searching is inefficient when (a) there 
are only few matches in the search buffer, or (b) the matches are located in such a 
position that a lot of searching is required to find them (for instance near the end of the 
buffer). In case of the first and the third messages, most of the content in the search 
buffer is useless, which results in poor performance when linear searching is applied. 
When messages 6, 7 and 8 are compressed, most of the useful content, i.e. the most 
recent received and sent messages, are near the end of the search buffer. Therefore 
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many comparisons are required and the compression consumes a lot of time. On the 
other hand, we can also observe that linear searching performs better than hashing in the 
case of messages 2, and 9-12. Messages 2 and 10 are fast to compress because they are 
the smallest ones in the sequence, 254 and 260 bytes. Linear searching performs well 
for messages 9, 11 and 12 firstly because most of the content that can be utilised in the 
compression is located at the beginning of the buffer. Secondly, these are also messages 
with very good compression ratios as can be seen from Figure 38. Compression is fast 
because long matches can be found in a short time. 
 

0,00
1000,00
2000,00
3000,00
4000,00
5000,00
6000,00
7000,00
8000,00
9000,00

1 2 3 4 5 6 7 8 9 10 11 12

Message

C
om

pr
es

si
on

 ti
m

e 
[u

s]

Hash table Linear search
 

Figure 39 - Linear search versus hashing 

 
Thus, in some cases linear searching can outperform hashing, which is rather surprising. 
The reason for this is that when a hash table is used, most of the compression time is 
spent in organizing the table, the average being roughly 60%. This is illustrated in 
Figure 40, which shows the building blocks of the total compression time for our SIP 
sequence. When messages 1 and 2 are compressed, the hash table must be constructed 
from scratch. Both the static dictionary and the compressed message need to be inserted, 
which takes a lot of time. The other case in which hash table updates require a lot of 
time is when content must be deleted in order to make room for new one. Such 
behaviour takes place when messages 8-12 are compressed and partially when messages 
6-7 are encoded. Deletion of old content is the reason hashing becomes slower than 
linear searching. However, if the search buffer were bigger, hashing would most likely 
outperform linear searching under all circumstances. In the rest of the measurements 
presented in this thesis, the compression algorithm utilising hashing is used. 
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Figure 40 - Hash table updates 

9.2 Length of Look-ahead Buffer 
The purpose of this measurement is to determine the optimal size for LZSS 
compressor’s look-ahead buffer. The average values for compression and 
decompression times were calculated over seven measurements. The size of the look-
ahead buffer depends on the number of bits the compressor uses to encode the length of 
matches and can be calculated as follows: 
 
 22 +n ,   (9.1) 
 
where n is the number of bits used to encode the length of matches. The maximum 
length of a match equals to the size of the look-ahead buffer. Thus, when 4 bits are used 
to encode length values, the maximum length of a match is 18 bytes. The more bits are 
used, the longer the offset/length pairs become. Therefore, it is wasteful to allow very 
long matches. Three look-ahead buffer lengths are examined: 18, 66 and 258 bytes. 
Matches longer than 258 bytes are unlikely to occur in SIP messages. On the other 
hand, if the maximum length of a match is restricted to less than 18 bytes, the 
compression becomes highly inefficient. 
 
The results are shown in Table 11. We can observe that the compression ratio improves 
as the length of the look-ahead buffer grows. This is because we can encode longer 
matches using a single offset/length pair. Secondly, both the compression and 
decompression times decrease when the length of the buffer increases. When longer 
matches are allowed, the amount of UDVM cycles consumed to decompress a message 
is less than in the case of shorter matches. This is because the UDVM can retrieve 
longer sequences from its circular buffer during a single fetch operation. When 
compressing, the use of longer matches means that to find a match of maximum length, 
more bytes in the search buffer need to be compared with the bytes in the look-ahead 
buffer, i.e. more work needs to be done. However, the use of longer matches also means 
that less search operations are required in total. This has the effect of slightly reducing 
the compression time. Based on the results, a look-ahead buffer of length 258 appears to 
be the best choice. All the remaining measurements presented in this thesis use a look-
ahead buffer of this size. 
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Table 11 - Length of the look-ahead buffer 

Size of look-ahead 
buffer [bytes] 

Bits in length 
values [bits] 

Compression 
ratio 

Compression 
time [ms] 

Decompression 
time [ms] 

18 4 0,224 11,97 14,47 
66 6 0,164 11,58 11,75 

258 8 0,155 11,47 11,27 

9.3 Length of Shared States 
The SigComp prototype described in this thesis uses fixed lengths for shared states in 
order to simplify the calculation of shared state lengths in the bytecode. In this 
measurement, the optimum length for the shared states is determined. Four different 
lengths are used: 500, 750, 1000 and 1500 bytes in such a way that if the maximum 
length of the shared state is n and the state that is used is longer than n, only n first bytes 
of the shared state are inserted to the circular buffer. On the other hand, if the shared 
state is shorter than n, the rest of the n-byte sequence in the circular buffer reserved for 
the shared state is left untouched. The results of the measurements are show in Table 12. 
The average values for compression and decompression times were calculated over 
seven measurements. The compression ratios presented in Table 12 were calculated 
without taking the SigComp overhead into account. By studying the results of Table 12, 
we can observe that as the size of the shared states increases, the compression ratios 
improve, compression time increases and decompression time decreases. Compression 
ratios are better when longer shared states are used because there is more previous data 
against which to compress. Decompression time decreases slightly because better 
matches are found and the UDVM needs to do less work. However, compression time 
increases because once the buffer has become full, previous data need to be deleted 
from the hash map to make room for new data. The longer shared states are used the 
more data must be deleted. If the maximum length of shared states is 1500 bytes, 1500 
entries must be deleted from the hash map in the worst case. Based on these results, it 
seems that the most appropriate value for the maximum length of the shared state 
depends highly on the context of use.  If CPU time is not an issue, large shared states 
should be used to obtain the best compression ratios. However, if CPU time is scarce, it 
is recommendable to use shorter shared states. 

Table 12 - Shared state length 

Shared state length 
[bytes] 

Compression ratio Compression time 
[ms] 

Decompression time 
[ms] 

500 0,155 11,47 11,27 
750 0,148 13,40 10,76 
1000 0,141 14,68 10,74 
1500 0,128 17,85 10,62 

9.4 Static Dictionary Priorities 
Each string in the SIP/SDP static dictionary has a priority ranging from one to five. The 
LZSS algorithm offers an increased efficiency when the most commonly used strings 
are located at the bottom of the dictionary. The goal of this measurement is to determine 
the effects of different static dictionary priorities on compression ratios, compression 
time and decompression time. The average values for compression and decompression 
times were calculated over seven measurements. 
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The results of the measurements are reported in Table 13. The values presented for 
compression ratios do not include the SigComp overhead. The results indicate that as a 
bigger portion of the dictionary is used, compression ratios improve and compression 
time and decompression time increase. Based on these results, it appears that the best 
performance is achieved by using priorities 1-2 or 1-3, provided that we wish to 
minimise compression and decompression times and still achieve satisfactory 
compression ratios. 
 

Table 13 - Static dictionary priorities 

Priorities Length of static 
dictionary 
[bytes] 

Compression 
ratio 

Compression 
time [ms] 

Decompression 
time [ms] 

1 only 218 0,194 7,03 11,43 
1-2 1132 0,164 7,73 10,98 
1-3 1492 0,161 8,11 10,81 
1-4 3335 0,154 11,01 11,10 
1-5 3468 0,155 11,47 11,27 
 
The average compression time of each message in the sequence of 12 SIP messages is 
shown in Figure 41. The use of different priorities seems to have the greatest impact in 
the case of messages 1 and 2, the first messages sent in each direction. This is because 
when these messages are sent, the search buffer has to be constructed from scratch. The 
more priorities are used, the more insertions must be done to the hash table and the 
more time is required. We can also observe that the compression time of messages 6-12 
is considerably longer for priorities 1-4 and 1-5 than for the other priorities. The reason 
for this is that when a bigger portion of the static dictionary is used, the circular buffer 
becomes full earlier; at endpoint A this occurs during the compression of message 6 and 
at endpoint B during message 7. As soon as the buffer becomes full, time must be spent 
deleting entries from the hash map to make room for new ones. Finally, although the 
use different static dictionary priorities has a clear impact on the compression time, the 
same is not true for the decompression time; it was observed that the effect of different 
priorities on the decompression time is negligible.  
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Figure 41 - Effects of different priorities on messages 

9.5 Secure Hash Algorithm 
The use of both dynamic and shared compressions necessitates the calculation of SHA-
1 hashes both at the compressing and decompressing endpoints. In dynamic 
compression, an SHA-1 hash is calculated over the contents of UDVM’s memory and in 
shared compression, another SHA-1 hash is calculated over the SIP message. The 
purpose of this measurement is to analyse the performance of the SHA-1 algorithm, 
which was implemented as part of the SigComp prototype. 
 
The results of the measurement are shown in Figure 42. In the measurement, SHA-1 
hashes were calculated over three UDVM memory snapshots of lengths 4096, 8192 and 
16384 bytes and six SIP messages having lengths 260, 458, 717, 904, 1133 and 1440 
bytes. The values shown in Figure 42 are averages calculated over ten measurements. 
From the figure, we can observe that for a 1440-byte message and a DMS of 8192 
bytes, the combined overhead added by the calculation of an SHA-1 hash over the 
message and over the UDVM’s memory is 580 microseconds. This is roughly 25 
percent of the total compression time. For the other messages, the calculation of the 
SHA-1 hashes requires 30-41 percent of the total compression time. A similar impact is 
experienced on the decompressing side. Thus, we can conclude that especially in the 
case of shared compression, a considerable part of the total compression time is spent in 
calculating the SHA-1 hash values. We can expect that because of the calculation of 
SHA-1 hash values, dynamic and shared compressions are likely to use more CPU time 
than basic and static compressions. 
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Figure 42 - Calculation time of SHA-1 hash 

9.6 SigComp Mechanisms 
The SigComp mechanisms studied in this section include stateless and stateful basic 
compressions, stateless and stateful static compressions, dynamic compression and 
shared compression. In stateless basic compression, only basic, i.e. message-by-
message compression is applied. State information is not stored, meaning that bytecode 
must be provided in the header of each SigComp message. In stateful basic 
compression, the only state information that is stored is the bytecode, which therefore 
needs to be provided only in the header of the first messages. In stateless static 
compression, basic compression is applied together with the SIP/SDP static dictionary. 
Bytecode is provided in each message. In stateful static compression, the bytecode is 
stored and provided only in the first messages. In dynamic compression, the SIP/SDP 
static dictionary and dynamic compression are used. Finally, in shared compression, the 
SIP/SDP static dictionary, dynamic compression and shared compression are used. 
 
The compression ratio that each mechanism achieves for the 3GPP session initiation 
sequence is shown in Figure 43 and Table 14. The SigComp overhead like the bytecode 
is included in the values shown in the figure and the table. Since the purpose here is to 
compare various SigComp mechanisms, maximum values were used for the factors 
affecting the compression efficiency of these mechanisms. In particular, the messages 
were compressed against the entire SIP/SDP static dictionary (i.e., priorities 1-5) and 
the shared state length was set to 1500 bytes. Three different values were used for the 
DMS: 4096, 8192 and 16384 bytes. In addition, it was assumed that the underlying 
transport layer protocol is unreliable. The session initiation sequence was taken from 
[3GPP TS 24.228] and it contains the messages exchanged between a UE and the P-
CSCF. 
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Figure 43 - Compression ratios, UDP, SD priorities 1-5 and shared state length 1500 bytes 

 
From Figure 43, we can observe that both the stateless and stateful versions of the basic 
compression scheme offer very poor compression ratios and are thus practically useless. 
Stateless and stateful static compressions offer a clear improvement over the basic 
compression scheme. The best compression ratio achieved by the stateful static 
compression is 0.56, while that of stateful basic compression is 0.80. Thanks to static 
compression, we can reduce the size of the messages being compressed by referring to 
strings in the SIP/SDP static dictionary. 
 

Table 14 - Compression ratios, UDP, SD priorities 1-5, shared state length 1500 bytes 

Compression ratio [%] Compression mechanism 
DMS 4096 bytes DMS 8192 bytes DMS 16384 bytes 

Stateless basic compression 85,75 85,75 85,86 
Stateful basic compression 79,92 79,92 79,94 
Stateless static compression 65,02 63,83 63,93 
Stateful static compression 57,03 55,84 55,85 
Dynamic compression 29,16 28,69 28,81 
Shared compression 28,21 24,04 24,09 
 
The next mechanism shown in Figure 43 is dynamic compression, which is able to 
achieve a compression ratio of 0.29. This is enabled by the ability of dynamic 
compression to use previously sent messages in the decompression process; it is 
possible to substitute portions of the message being compressed with pointers to 
previously sent messages. The final improvement is offered by shared compression, 
which achieves a compression ratio of 0.24 by using also received messages in the 
compression process. Shared compression is clearly the most efficient compression 
scheme with regard to achievable compression ratios. 
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Figure 44 - Compressibility of SIP messages 

 
The compressibility of each SIP message in the 3GPP session initiation sequence is 
shown in Figure 44. The picture clearly indicates the superiority of dynamic and shared 
compressions, especially when PRACK (1) and the later messages in the sequence are 
compressed. The first three messages in the sequence, INVITE, 100 Trying and 183 
Session Progress have rather modest compression ratios despite of the mechanism used. 
This is firstly because the bytecode has to be sent in the header of the first three 
SigComp messages, assuming that unreliable transport is used. The bytecode introduces 
an overhead of 69-220 bytes depending on the mechanism and decompression memory 
size used, as shown in Table 15. Secondly, there is not much state information available 
when the first three messages are compressed. When the INVITE is processed, only the 
static dictionary can be used in the compression process. Dynamic compression does 
not have an effect until the fourth message in the sequence. However, shared 
compression can be applied already to the second and the third messages. The second 
message, 100 Trying is the most difficult message for all of the mechanisms, because it 
is the shortest message in the sequence and the first message sent from endpoint B to 
endpoint A. The size of the 100 Trying is 245 bytes while the size of the SigComp 
overhead is 79-249 bytes depending on the mechanism used. This means that in the 
worst case, the size of the SigComp header of the compressed 100 Trying message is 
bigger than the entire uncompressed 100 Trying message. 
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Table 15 - Bytecode lengths 

Length of bytecode [bytes] Mechanism 
DMS 4096 bytes DMS 8192 bytes DMS 16384 bytes 

Stateful and stateless basic 
compressions 

69 69 70 

Stateful and stateless static 
compressions 

86 86 87 

Dynamic compression 216 216 220 
Shared compression 216 216 220 
 
We can observe from Figure 44 the poor performance of stateless and stateful basic 
compressions. When the stateless basic compression is applied, there are five SigComp 
messages that have almost the same size or are longer than the uncompressed SIP 
message. Static compression offers a clear improvement over the basic compression 
scheme, but still achieves only modest compression ratios. Another interesting finding 
we can make from Figure 44 is that in the case of messages 4-12, dynamic compression 
performs actually better than shared compression. This is because shared compression 
uses much more buffer space than dynamic compression and has to overwrite the static 
dictionary and the oldest messages in the buffer during its second iteration over the 
circular buffer. When a DMS of 8192 bytes is used, shared compression uses 15129 
bytes of buffer space at endpoint B, while dynamic compression consumes only 9129. 
In practice, this means that dynamic compression can keep almost its entire dictionary 
in the circular buffer at once.  
 
The improved compression ratios of the more advanced compression mechanisms do 
not come without a cost. This can be observed from Figure 45, which shows the average 
compression times of basic, static, dynamic and shared compressions. The average 
compression times were calculated over ten measurements. When the size of the 
decompression memory is 8192 bytes, shared compression requires twice as much time 
as basic compression, whereas dynamic compression is 1.4 times slower than basic 
compression. Static compression consumes more time than basic compression because 
the static dictionary needs to be hashed in the search buffer. The difference between the 
compression times of these two mechanisms is small because even though the hashing 
of the static dictionary consumes some time, the dictionary also helps to save time 
because longer substitutions can be used. Encoding one long match is in most cases 
faster than encoding many short matches because less searching is required. The 
compression time of dynamic compression is clearly longer than that of static or basic 
compressions, because dynamic compression requires additional time for the calculation 
of SHA-1 hashes over the UDVM memory images. Shared compression requires even 
more time than dynamic compression because one additional SHA-1 message digest 
needs to be calculated for the shared state and because the shared state needs to be 
hashed in the search buffer. Dynamic and shared compressions consume also time when 
they delete content from the search buffer after it has become full. 
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Figure 45 - Compression time 

 
The average decompression time of the compressed 3GPP session initiation sequence is 
shown in Figure 46 for basic, static, dynamic and shared compressions. The averages 
were calculated over ten measurements. The results imply that in the case of 
decompression memory sizes of 4096 and 8192 bytes, the decompression of the output 
of dynamic compression consumes the least time. This is because the output of dynamic 
compression is better compressed than the output of basic and static compressions. The 
higher the compression ratio, the more pointers the compressed sequence contains and 
the longer are the strings that these pointers substitute. Because longer matches can be 
fetched from the dictionary during a single fetch operation, less UDVM cycles are 
required to decompress the entire message. Even though the UDVM must calculate an 
SHA-1 hash over its memory when dynamic compression is applied, the performance 
improvement enabled by longer matches is more than enough to cover this additional 
cost. However, when the shared compression scheme is used, the UDVM needs to 
calculate another SHA-1 hash for the shared state. Therefore the decompression 
consumes more time than in the case of dynamic compression.  
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Figure 46 - Decompression time 

 
The state memory usage of dynamic compression and shared compression is shown in 
Figure 47 for the case that the 3GPP session initiation sequence is being compressed. 
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The state memory consumption of stateless and stateful basic and static compressions is 
not shown in the figure, because it is negligible. Since the only state information these 
mechanisms save is the bytecode, the state memory usage of both of them is below 100 
bytes. The size of UDVM memory images constructed by the compressor are not 
included in the state memory usage. The maximum amount of state memory was limited 
to 131 kilobytes per compartment. However, neither dynamic nor shared compression 
reached this limit. We can observe from the figure that for instance with a 
decompression memory size of 4096 bytes, shared compression uses roughly 1.4 times 
more state memory than dynamic compression. This is because when shared 
compression is used, shared state items need to be created and stored. Since the shared 
state items consist of uncompressed messages, the difference in the state memory usage 
between dynamic compression and shared compression equals to the size of the SIP 
message sequence for all decompression memory sizes. 
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Figure 47 - State memory usage 

9.7 Decompression Memory Size 
When basic compression is used, all decompression memory sizes produce the same 
compression ratio, as indicated by Figure 43. This is because all the content fits into the 
search buffer and nothing needs to be replaced. However, when static compression and 
a DMS of 4096 bytes are used, the static dictionary occupies the first 3468 bytes of the 
buffer. If the message is long enough, it does not fit into the free space at the end of the 
buffer and must replace some existing content. However, this has only a minor effect on 
the compression ratio because the content being replaced consists of the static 
dictionary’s lowest-priority strings: a DMS of 4096 bytes results in a compression ratio 
of 0.65, while the use of a larger decompression memory results in a compression ratio 
of 0.64. Replacement of content is also the reason static compression with a DMS of 
4096 is slower than with the larger decompression memory sizes, as indicated by Figure 
45. 
 
We can observe from Figure 45 that the size of the decompression memory does not 
have a significant impact on the compression ratio dynamic compression achieves. The 
reason for this is the same as in the case of static compression: although previous 
content needs to be overwritten in the circular buffer when the smallest buffer size is 
used, the deleted content consists of the lowest-priority strings of the static dictionary. 



Performance of Signalling Compression in the Third Generation Mobile Network 
 

 
Jouni Mäenpää                                                                                                           90                     

On the other hand, a DMS of 8192 bytes is large enough to store all the dictionaries 
required by dynamic compression. This means that dynamic compression can use a 
larger dictionary and does not have to spend time replacing strings in the dictionary. 
Therefore, the compression requires one millisecond less time when the DMS is 8192 
bytes than when it is only 4096 bytes. However, the use of a larger decompression 
memory than 8192 bytes does not help to improve the compression ratio of dynamic 
compression: a DMS of 16384 bytes only slows down the compression process, because 
the calculation of the SHA-1 hash over the UDVM memory image requires more time. 
 
Much like in the case of the other mechanisms, also when shared compression is 
applied, decompression memory sizes of 8192 and 16384 bytes tend to produce almost 
identical results. With shared compression and a DMS of 8192 bytes, the size of the 
compressed sequence is 1361 bytes and the aggregate size of SigComp messages is 
2558 bytes. On the other hand, when a DMS of 16384 bytes is used, the values are 1354 
and 2563 bytes, respectively. Thus, with a DMS of 16384 bytes, the size of the 
compressed sequence not including SigComp overhead is only 7 bytes less than when 
the DMS is 8192 bytes. However, if we include the SigComp overhead and compare the 
aggregate sizes of the SigComp messages, the DMS of 16384 bytes performs worse. 
The reason behind this is that when a DMS of 8192 bytes is used, the bytecode that is 
included in the header of the first three messages is four bytes shorter. We can also 
observe from Figure 45 that shared compression is the only mechanism that clearly 
benefits from the use of a decompression memory larger than 4096 bytes. This is 
because shared compression requires so much buffer space that it overwrites the content 
of a 4096-byte buffer two times during the compression process. When a DMS of 16384 
bytes is used, nothing needs to be deleted from the buffer. This is the reason shared 
compression is fastest with a 16384-byte decompression memory. 
 
When the sequence is decompressed, decompression memory size has no significant 
impact on the decompression time of the output of basic or static compression, as can be 
observed from Figure 46. This is because these two mechanisms do not calculate SHA-
1 hashes over the UDVM’s memory. The situation is different when dynamic and 
shared compressions are applied: the larger the decompression memory the more time is 
required to calculate the hash. Because the calculation of the hash requires more time, 
also the amount of decompression time required increases when larger decompression 
memory sizes are used. 
 
Figure 47 indicates that the state memory usage of dynamic and shared compressions 
depends highly on the size of the decompression memory. This is because the length of 
the state items containing UDVM memory snapshots equals to the decompression 
memory size. Thus, doubling the decompression memory size has the effect of doubling 
the size of the state items containing UDVM memory snapshots. When for instance 
dynamic compression is applied, this means that the entire state memory usage is 
doubled. 
 
Figure 48 shows the results of using another signalling flow for the session 
establishment, namely a basic voice session initiation sequence. It is rather different 
from the 3GPP Release 5 sequence because it consists of only 5 messages, the 
combined size of which is less than one fourth from that of the 12 messages of the 
3GPP sequence. The figure implies that for a small sequence, a DMS as small as 2048 
produces only slightly worse compression rations than the larger decompression 
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memory sizes. In addition, the compression and decompression times were always at 
least as good for the DMS of size 2048 bytes than for the larger decompression 
memories, 4096 and 8192 bytes. Therefore, we can conclude that the combined size of 
the messages in the sequence is an important factor when selecting the most appropriate 
decompression memory size. 
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Figure 48 - Compression ratio for a basic voice session establishment sequence 

9.8 Unreliable versus Reliable Transport 
The purpose of the measurement presented in this chapter is to study the effects of using 
reliable instead of unreliable transport. TCP is used as the reliable transport layer 
protocol. All the results presented so far were collected using an unreliable transport 
layer protocol, namely UDP. The first advantage of using TCP is that if stateful 
compression is applied, the bytecode needs to be sent only once in each direction. An 
example of this are the first two messages of the 3GPP session initiation sequence 
received by endpoint A: 100 Trying and 183 Session Progress. When unreliable 
transport is used, the P-CSCF must send bytecode together with each of these messages. 
This is because after sending the 100 Trying, the P-CSCF does not have the information 
whether the message was received successfully. In contrast, the use of reliable transport 
eliminates the need to send the bytecode in the header of the compressed 183 Session 
Progress message, because the P-CSCF can be certain that the SigComp message 
carrying the 100 Trying message was received. 
 
The second advantage of reliable transport also has to do with messages that are sent 
consecutively. The 100 Trying and 183 Session Progress messages serve again as an 
example. When an unreliable transport layer protocol is used, explicit state 
announcements must be used. This means that the P-CSCF has to acknowledge the 
reception of the INVITE message in the headers of both the compressed 100 Trying and 
the compressed 183 Session Progress messages. In addition, the P-CSCF cannot apply 
dynamic compression to compress the 183 Session progress, because it has not received 
an acknowledgement indicating the reception of the 100 Trying message. When the 
transport is reliable, dynamic compression can be applied already to the 183 Session 
Progress message. In addition, explicit state announcements are not required, meaning 
that the identifiers of these states do not need to be carried in the SigComp message 
headers. Both the possibility to use dynamic compression earlier and the absence of 
explicit state announcements help to reduce the size of SigComp messages. 
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The performance of UDP and TCP is compared in Figure 49. The sequence used in the 
measurements is the 3GPP session initiation sequence consisting of 12 SIP messages. A 
DMS of 8192 bytes and the entire static dictionary were used and the size of shared 
states was not restricted. Figure 49 implies that TCP clearly achieves better compression 
ratios. In the case of dynamic compression, TCP achieves a compression ratio of 24.6% 
and UDP a compression ratio of 28.7%. When shared compression is applied, the 
compression ratios are 22.3% for TCP and 24.0% for UDP. The compression and 
decompression times are nearly identical for both TCP and UDP based transports, the 
only exception being compression time of shared compression, which is 32.8 ms with 
TCP and 31.7 ms with UDP. 
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Figure 49 - Reliable versus unreliable transport, 3GPP session initiation sequence 

 
Figure 50 shows the performance of UDP and TCP based transports when SigComp is 
used to compress the SIP messages of a basic voice session initiation sequence. A DMS 
of 8192 bytes and static dictionary priorities from one to three were used and the size of 
shared states was restricted to 500 bytes. In the case of dynamic compression, the use of 
TCP has the effect of reducing the size of the compressed sequence by 914 bytes 
compared to the size with UDP. The compression ratios of TCP and UDP are 47.8% 
and 85.4% for dynamic compression, respectively. In the case of shared compression, 
the compression ratio is 43.1% with TCP and 70.6% with UDP. With both dynamic and 
shared compressions, the compression and decompression is slightly faster when TCP 
based transport is used. The significant performance improvement enabled by TCP is 
due to the more efficient compression of the first three messages sent by the P-CSCF. 
The compression benefits from the use of TCP because these messages are sent 
consecutively without receiving anything from the UE between them; when TCP is 
used, the bytecode needs to be included only in the first message sent in each direction 
and dynamic compression can be applied earlier. 
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Figure 50 – Reliable versus unreliable transport, basic voice call 

9.9 Central Processor Unit 
In this measurement, the compression and decompression times of two SIP message 
sequences are studied on five different CPUs: Pentium 4 Hyper-Threading 3.0 GHz, 
Pentium 4 2.66 GHz, Pentium 4 1.8 GHz, Pentium M 1.6 GHz and Pentium III 600 
MHz. The SIP signalling sequences used are the establishment of a video call in a 
release 5 network and the establishment and release of a basic voice call. 
 

22,14 22,33

32,59

23,80

76,48

20,64 20,45
28,78

21,41

69,59

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

Pentium 4
Hyper-Threading

3.0 GHz

Pentium 4 2.66
GHz

Pentium 4 1.8
GHz

Pentium M 1.6
GHz

Pentium III 600
MHz

CPU

Ti
m

e 
[m

s]
   

 

Compression time Decompression time
 

Figure 51 - Compression and decompression times on different CPUs, video sequence 

 
The combined compression and decompression times of the messages of the video call 
establishment sequence are presented in Figure 51. We can observe from the figure that 
the performance of the Pentium 4 processors having clock rates of 3.0 and 2.66 GHz is 
almost identical. The Hyper-Threading technology of the 3.0 GHz CPU has no effect in 
this measurement, because the messages were not processed concurrently. The Pentium 
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M 1.6 GHz CPU is only slightly slower than the Pentium 4 processors having clock 
rates of 3.0 and 2.66 GHz; the compression takes 1.5 milliseconds longer and the 
decompression one millisecond longer than in the case of the Pentium 4 2.66 GHz CPU. 
The Pentium 4 1.8 GHz is over 1.4 times slower than the Pentium 4 2.66 GHz, while the 
Pentium III processor is nearly 3.5 times slower than the other CPUs. 
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Figure 52 - Compression and decompression times on different CPUs, voice sequence 

 
The compression and decompression times of the basic voice call establishment and 
release signalling flow are shown in Figure 52. We can observe that the Pentium III and 
Pentium 4 1.8 GHz are again clearly slower than the other CPUs. The Pentium 4 
processor having the 1.8 GHz clock rate is over 1.4 times slower than the Pentium 4 
processor having the 2.66 GHz clock rate with regard to both compression and 
decompression performance. The Pentium M 1.6 GHz is faster than any of the Pentium 
4 processors regarding compression performance, although the two fastest Pentium 4 
processors outperformed it in the previous measurement, in which the video session 
establishment sequence was used. One reason for the high performance of the Pentium 
M processor is that it has twice as much L2 cache memory as the Pentium 4 3.0 GHz 
and four times more L2 cache memory than the Pentium 4 2.66 GHz processor. The 
Pentium M 1.6 GHz CPU is the second fastest with regard to decompression 
performance. The Pentium 4 Hyper-Threading 3.0 GHz is slightly slower than the 
Pentium M and Pentium 4 2.66 GHz CPUs although it has the highest clock rate.  
 
It should be taken into consideration that the differences between the computers used in 
this measurement are not limited to the CPU. The computers had also different amounts 
of main memory and cache memory, different main memory and fronts side bus speeds, 
and different operating system and Linux kernel versions. Although the clock rate of the 
CPU has the greatest impact on the compression and decompression times, also the 
other factors are likely to have some effect. 



Performance of Signalling Compression in the Third Generation Mobile Network 
 

 
Jouni Mäenpää                                                                                                           95                     

9.10 Impact of Signalling Compression on Radio Access Network 
Delay 

The one-way RAN delay experienced by the 12 messages of the SIP session initiation 
signalling flow taken from [3GPP TS 24.228] was estimated in Section 2.1. In this 
section, these calculations are repeated, this time assuming that the messages are 
compressed using SigComp. The same signalling link bit rates are used as in Section 
2.1, namely 9.6, 12.2, 16, 32, 64, 128 and 256 kbps. It is assumed that the underlying 
transport protocol is reliable, that the size of the decompression memory is 8192 bytes, 
that the entire static dictionary is used, and that the size of the shared states is limited to 
1500 bytes. The overhead added by the layers below SigComp is not included in the 
calculations. The results are depicted in Figure 53, which also includes the RAN delay 
of the uncompressed SIP sequence. 
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Figure 53 - Impact of SigComp on one-way RAN delay 

 
We can observe from Figure 53 that the improvement SigComp offers decreases as the 
bit rate of the signalling link increases. The improvement in RAN delay is 6.9 seconds 
for a bit rate of 9.6 kbps. With a bit rate of 64 kbps the improvement is 1.0 seconds and 
with the bit rate of 256 kbps it is only 0.26 seconds. These values suggest that when the 
bit rate of the signalling link is more than 64 kbps, the performance improvement 
offered by SigComp may not be great enough to justify the use of the protocol. 
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10 Phase Two – Compression of Different Message Sequences 
The goal of the measurements presented in this chapter is to study the compressibility, 
compression time and decompression time of different SIP message sequences. All the 
measurements were carried out on the Intel Pentium 4 3.0 GHz platform. The seven SIP 
signalling sequences listed in Section 8.7 are examined. 
 
Figure 54 shows the SIP messages exchanged between a UAC and a proxy when a basic 
voice or video session is established. The SIP messages of both the basic voice and 
basic video session establishment sequences were taken from real SIP clients. Only the 
information required by SigComp was inserted to the messages. A PoC session 
establishment does not include the 180 Ringing message, but is otherwise identical to 
the sequence presented in Figure 54. The PoC messages were taken from [OMA-TS-
POC]. The session establishment sequence for a video call in a 3GPP release 5 network 
was taken from [3GPP TS 24.228] and is illustrated in Figure 1.  
 

Proxy

1. INVITE

2. 100 Trying

3. 180 Ringing

4. 200 OK

5. ACK

UAC

 
Figure 54 - Messages of a basic voice or video session establishment 

 
A registration signalling flow in a 3GPP Release 5 network [3GPP TS 24.228] is 
illustrated in Figure 55. The figure shows the exchange of messages between a UE and 
a P-CSCF. The P-CSCF should not create a SigComp compartment until the user 
registration has completed successfully. Therefore, the 401 unauthorized response is 
sent to the UE uncompressed without involving SigComp, and the compression of the 
second REGISTER request can make use of neither shared nor dynamic compression.  
 

P-CSCF

1. REGISTER

2. 401 Unauthorized

3. REGISTER

4. 200 OK

UE

 
Figure 55 - Messages of a 3GPP Release 5 registration sequence 
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The last two SIP message sequences in the list of signalling flows studied in this 
measurement are alternatives to the 3GPP Release 5 session establishment sequence. 
The contents of the messages were taken from [3GPP TS 24.228]. The goal is to study 
whether the use of the alternative signalling flows would result in a better performance 
when SigComp compression is applied. The first alternative is depicted in Figure 56. It 
uses a RE-INVITE request instead of an UPDATE request and does not offer reliable 
delivery of provisional responses. The second alternative uses a RE-INVITE request 
and reliable delivery of provisional responses. The signalling flow is similar to the one 
in Figure 56 with the exception that a PRACK message and a 200 OK response to the 
PRACK are exchanged after the 180 Ringing message. 
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3. 180 Ringing

4. 200 OK

5. ACK

UE

6. INVITE

7. 200 OK

8. ACK

 
Figure 56 - Session establishment signalling flow with RE-INVITE 

 
The values of various factors that are used in this measurement are discussed below. 
The results presented in Section 9.3 imply that compression is fastest when short shared 
states are used. In order to minimize compression time while still being able to achieve 
reasonable compression ratios, the size of shared states was restricted to 500 bytes. 
Static dictionary priorities from one to three are used, because in Section 9.4, it was 
concluded that the use of these priorities seems to result in good overall performance. 
Size 4096 is selected for the decompression memory for the reason that the aggregate 
sizes of the messages in different sequences range from 2766 to 10640 bytes. For the 
shortest sequences, the use of a DMS of 8192 would slow down compression and 
decompression. On the other hand, the cost of using a small decompression memory is 
bearable in the case of the longest sequences. The shared compression scheme is used 
because it is the one that will most likely be used in various SigComp implementations. 
TCP is used as the transport layer protocol. 
 
Compressed and uncompressed sizes of the different sequences are shown in Figure 57. 
The compression ratios of the sequences are reported in Table 16. The results imply that 
the signalling flows having the largest combined message sizes benefit the most from 
SigComp compression. A high number of messages results in a good compression ratio 
for the entire sequence, because the compressibility of the last messages is very high. 
When the signalling flow consists of only four messages, as is the case with PoC and 
registration signalling, the compressibility of the messages is rather low. The 
registration sequence is, of course, a special case, since its second message is sent 
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uncompressed. However, even if we did not include the second message in the 
calculations, the compression ratio of the registration sequence would still be only 
0.875. Therefore, one could question whether it is worth the effort to compress the 
registration sequence at all. 
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Figure 57 - Sizes of uncompressed and compressed sequences, TCP 

 
From Table 16, we can observe that the 3GPP video call achieves the best compression 
ratio. However, the compressed size of the alternative sequence using RE-INVITE and 
reliable delivery of provisional responses is 19.4% less and the size of the sequence 
using RE-INVITE and unreliable delivery of provisional responses 34.6% less than the 
compressed size of the original 3GPP sequence. The sequences making use of the RE-
INVITE request would thus be faster to transmit over the air interface. In addition, from 
Figure 58 we can observe that these sequences also consume less CPU time during 
compression and decompression. Therefore, if CPU time and the transmission time over 
the air interface are an issue, the use of the alternative sequences is more efficient. 
 

Table 16 - Compression ratios 

Message sequence Number of 
messages 

Compression 
ratio, TCP [%] 

Compression 
ratio, UDP [%] 

Basic voice call 5 43,08 70,63 
Basic video call 5 45,56 61,82 
PoC session establishment 4 59,01 68,91 
Registration 4 89,66 89,66 
3GPP video call 12 28,36 28,24 
3GPP video call with RE-INVITE 8 32,13 43,99 
3GPP video call with RE-INVITE and 
reliable delivery of provisional 
responses 

10 31,83 33,6 
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The average compression and decompression times of the various sequences are shown 
in Figure 58. The averages were calculated over ten measurements. We can observe that 
the registration sequence consumes less time than the other sequences consisting of five 
or less messages, although its aggregate message size is the biggest. The reason is that 
the second message in the registration sequence is sent uncompressed and thus its 
compression and decompression times are both zero. Otherwise the results offer no big 
surprises; the larger the content of the sequence is and the more messages it has, the 
longer are the compression and decompression times. For example, the use of reliable 
delivery of provisional responses can be directly seen in the increased compression and 
decompression times. Another similar issue is the exchange of SDP content. If the SDP 
content needs to be transferred in multiple SIP messages before the endpoints are able 
to agree upon the set of codecs they will use, compression and decompression times of 
the entire sequence increase. Although the compression of the SDP content becomes 
more efficient with each new message exchanged, compression and decompression of 
the extra content still require additional time. 
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Figure 58 - Compression and decompression times, TCP 
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11 Phase Three – Measurements on the SigComp Prototype 
In this chapter, the results of measurements carried out on the multithreaded SigComp 
prototype are presented and analysed. The chapter begins with a study of the effects of 
using different number of threads on the time messages stay in the system.  Also the 
throughput of the system and the average time a message stays in the system are 
examined using realistic workloads. Also the memory consumption of the SigComp 
prototype is studied. The chapter ends with a simulation of a Denial-of-Service (DoS) 
attack, in which looping code is sent to the SigComp prototype acting as a P-CSCF. 

11.1 Parameters Used in the Measurements 
The SigComp prototype acts as a P-CSCF in the measurements presented in this 
chapter. Two SIP message sequences are used: a basic voice session establishment 
sequence and a video session establishment sequence in a 3GPP release 5 network. A 
decompression memory of size 4096 bytes is used for the former sequence and a DMS 
of 8192 bytes for the latter sequence. UDP based transport is used. The following 
SigComp mechanisms are used: static dictionary, dynamic compression and shared 
compression. The length of shared states is restricted to 500 bytes and strings with 
priorities ranging from one to three are used from the static dictionary. It is assumed 
that the duration, i.e. holding time, of voice calls is 180 seconds and the duration of 
video calls 300 seconds. The duration of a call is equal to the time between the 200 OK 
message sent in response to the initial INVITE request, and the BYE request.  Knowing 
the duration of a call and the amount of simultaneous calls in the system, we can 
calculate the average call intensity λ using Little’s theorem [Iversen 2005]: 
 

WL λ= ,   (11.1) 
 
where L is the average number of calls in the system and W is the mean holding time in 
the system per call. The interval between successive calls is 1/ λ. The call answer delay 
of each call, i.e. the time between the 180 Ringing message and the 200 OK response to 
INVITE, is five seconds. The measurement period is 10 minutes, starting from the 
moment the first call arrives to the system. In the measurements, the number of 
simultaneous ongoing calls is varied, which has a direct impact on the load of the 
system. The minimum number of simultaneous calls used is 50 for video calls and 250 
for voice calls.  The maximum number of simultaneous calls that can be used depends 
on the amount of physical memory available on the computer. If it was observed that 
the computer under study started to run out of physical memory and had to use virtual 
memory, experiments with higher number of simultaneous ongoing calls were not 
continued. The computer with the Intel Pentium 4 2.66 GHz processor had only 512 
megabytes of main memory, of which 270 was available for the use of SigComp 
prototype process and the network protocol analyser program used. With this amount of 
free memory available, the SigComp prototype was able to process the signalling of 
1500 simultaneous voice calls and 500 simultaneous video calls. On the other hand, the 
computer with the Intel Pentium 4 3.0 GHz Hyper-Threading CPU had 1024 megabytes 
of main memory and was therefore able to support a higher number of calls in the 
system. 
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11.2 Number of Workers 
The aim of this measurement is to study the effects of increasing the amount of 
concurrency in the system. A limit can be placed on the maximum number of messages 
that can be processed concurrently by restricting the number of threads in the thread 
pool of the SigComp prototype’s thread dispatcher. In the measurement, the time a 
single message stays in the system is monitored. This time consists of two parts: the 
time the message stays in the buffer waiting for service, and the time the message is 
being processed. The signalling of 5000 simultaneous ongoing voice calls is used as the 
workload. 
 

0

2000

4000

6000

8000

10000

12000

1 2 3 5 7 10 11 12 15 25 50 100 250 500

Size of thread pool

Ti
m

e 
[u

s]
   

Processing time Time in buffer
 

Figure 59 - Time in system for different thread pool sizes, 5000 simultaneous voice calls 

 
The results of the measurements are presented in Figure 59. We can observe that as 
more threads are added to the thread pool, the time the messages stay in the buffer 
decreases and the time the messages are being processed increases. When the size of the 
thread pool is for instance one hundred threads, all of the one hundred threads might be 
active during large traffic bursts. In this case, the available CPU time is divided among 
the threads and each of them gets one percent of the speed of the CPU. In addition, the 
threads compete for access to the shared resources. When one thread holds exclusive 
access to a shared resource, other threads willing to access the resource have to wait. 
Waiting increases the average processing time of messages: if there are a large number 
of threads willing to write data to the state handler at the same instant, only one thread 
at a time can access the state handler and the rest of the threads have to wait. The last 
thread in the queue has to wait until all the other threads have completed their write 
operations. Unfortunately, some operations requiring exclusive access to the state 
handler take a lot of time. An example of this is the deletion of the state items a 
compartment has created, which has to be done each time a compartment is closed. In 
case of a video call, this typically means that 28 state items have to be located and 
deleted. Also the memory allocated to the state items has to be freed.  
 
When there is only one worker, it can execute on the CPU without other workers 
interrupting it, and it never needs to wait for access to the shared resources. However, 
the average time a message stays in the buffer is substantial, because only one message 
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at a time can be processed and the other messages in the buffer have to wait. Therefore, 
we clearly want the system to have more than one worker. 
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Figure 60 - Processing time and time in buffer for different thread pool sizes 

 
The development of the processing time of the messages and the time the messages stay 
in the buffer is shown in Figure 60. The processing time increases steeply between 
thread pool sizes 1 and 50, until it begins to gradually level off. Both the processing 
time and the time in buffer start levelling off after the pool size 50, because the effects 
of adding more threads to the system decrease as the size of the thread pool gets closer 
to the maximum traffic burst size. There are only a few cases in which the number of 
messages being processed concurrently is 50 or larger. When thread pool sizes larger 
than 100 are used, the behaviour of the system does not change with the traffic load that 
was used; the average number of active threads in the system remains the same although 
the size of the thread pool is increased. 
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Figure 61 - Ratio of average processing time and average number of threads in system 

 
The ratio of the average processing time and average number of threads is depicted for 
different thread pool sizes in Figure 61.  In an ideal system, the ratio would remain 
constant regardless of the average number of active workers the system has, meaning 
that thread switches and queuing times to shared resources would not add any overhead. 
If the average processing time was 1 millisecond when the system has one worker 
thread, the average processing time with ten worker threads would be 10 milliseconds in 
an ideal single-processor system. In reality, the average processing time with ten 
workers is slightly more because of the overhead. This can also be observed from 
Figure 61: the ratio is at minimum when the size of the thread pool is three, and starts to 
grow from the value three onwards. When the size of the thread pool is grown from the 
value three to value five, the average number of active workers increases from 2.13 to 
2.96 and the average per-message overhead caused by thread switches and queuing 
times to shared resources increases by 10 microseconds. When the average number of 
active workers increases from 2.13 to 9.80, i.e. the size of the thread pool is changed 
from 3 to 50, the average per-message overhead increases by 100 microseconds. With 
9.80 active workers, the overhead caused by thread switches and queuing for access to 
the shared resources constitutes 12 percent of the processing time. 
 
The average number of active threads, i.e. the average number of messages being 
processed concurrently, is depicted in Figure 62 for different thread pool sizes. We can 
observe that starting from the thread pool size 100, the average number of messages 
being processed concurrently remains at 10.7 messages. However, the momentary 
number of concurrently processed messages varies greatly; for example with 500 
available workers the momentary number of active workers is between 1 and 140. The 
reason for the large variance is the bursty nature of the traffic, which is illustrated in 
Figure 66. The Hyper-Threading CPU used in the measurements can execute two 
threads in parallel on its logical processors. Therefore, we can expect that the average 
time messages stay in the system is at minimum when the average number of messages 
being processed simultaneously is near the value two. From Figure 62, we can observe 
that when the size of the thread pool is three, the average number of active workers is 
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2.14. Figure 59 indicates that the time in system decreases until the thread pool size 
three is reached and starts to grow from the size three onwards, meaning that the time in 
system is indeed at minimum when there are on average two active workers. However, 
with this amount of concurrency in the system, the waiting time constitutes 80 percent 
of the time in system. In addition, it has a great variance. The waiting time and its 
variance can be reduced dramatically by adding more threads to the system. Because we 
want to keep the waiting times low, a thread pool that has enough threads to serve even 
the largest traffic bursts is used in the rest of the measurements of this chapter. 
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Figure 62 - Average number of active workers, 5000 calls in system 

11.3 Time in System 
In the measurements presented in this section, the time a single message stays in the 
SigComp prototype is monitored. The measurements are performed on the Intel 
Pentium 4 3.0 GHz Hyper-Threading platform.  
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Figure 63 – Average time in system, voice calls, Intel Pentium 4 Hyper-Threading 3.0 GHz 
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The average time a single message stays in the system under different loads is shown in 
Figure 63 for voice calls and in Figure 64 for video calls. We can observe that as the 
number of simultaneous calls increases, also the time a single message stays in the 
system increases. As the load of the system increases, both the time a single message 
stays in the buffer and the time the message is being processed increase. When the 
number of simultaneous calls increases, a higher number of SIP and SigComp messages 
arrive to the system during each second. Therefore, there are also more active threads in 
the system. If there are for example ten active threads, each thread gets one tenth of the 
CPU time. The more active threads the system has, the smaller part of the CPU time is 
allocated to each of them, which increases the delay a single message experiences. 
Additional time is also required because the operating system has to perform thread 
switches. One further reason for the messages staying longer in the system with higher 
number of active threads is that each thread needs to get exclusive access to the state 
handler at some point during the compression and decompression of a message. This 
occurs when the thread needs to carry out an operation that modifies a shared data 
structure. In addition, exclusive access to compressor array is required when a 
compartment is created and destroyed. It is of vital importance to minimise the amount 
of time each thread holds exclusive access to a shared resource, and to use right 
scheduling policies to control access to the shared resources. As an example, the initial 
implementation of the state handler used a regular array to hold the state items created 
by SigComp compartments. This was found to be a poor approach, because if there are 
thousands of simultaneous ongoing sessions, the state handler’s state item table must 
store tens of thousands of state items. The use of a regular array meant that for example 
find and delete operations required a linear time to complete. Therefore, the state 
handler was modified to use a hash table. This resulted in a significant performance 
improvement, because the use of a hash table allows insert, find and remove operations 
to be performed in a constant average time. We observed that the heaviest operation 
requiring exclusive access takes place when the state items a compartment has created 
are removed from the state handler. This happens whenever a compartment is deleted. 
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Figure 64 - Average time in system, video calls, Intel Pentium 4 Hyper-Threading 3.0 GHz 
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We can observe from Figure 63, which shows the average time in system for video calls 
that the time a single message stays in the system remains constant for traffic loads 
ranging from 1250 to 1875 calls in the system. In addition, when the traffic load 
increases from 1875 to 2000 simultaneous calls, the average time in system more than 
doubles. This behaviour is explained by an increase in the number of active workers in 
the system, as illustrated in Figure 65. The average number of active worker threads 
remains constant between 1250 and 1875 calls in the system, but starts to increase from 
the value 1938 onwards. With 2000 simultaneous calls, there are on average almost two 
times more active threads in the system than with 1875 calls. This results in longer 
processing times for the messages, because the time a thread processes a message 
depends directly on the number of other threads being executed at the same instant. The 
less active threads the system has, i.e. the lighter the load of the system is, the less time 
each message stays in the system. From Figure 65, we can also see that the maximum 
number of active threads increases rapidly as the traffic load grows. The increase in the 
number of active threads is because there is more traffic to process and because 
increased traffic results in bigger traffic bursts. 
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Figure 65 - Number of active workers 

 
Figure 64 indicates that the system behaves in a similar way with the signalling of video 
calls as it did in the case of the voice calls: the time in system stays flat for traffic loads 
between 50 and 375 and 500 and 750 calls in system, and starts to increase rapidly when 
the load becomes higher than 750 calls in the system.  This behaviour can again be 
explained by the increase in the number of active threads. 
 
Figure 66 shows the delays consecutive signalling messages experience in a system 
serving 1000 simultaneous calls. In the figure, delays of 175 consecutive messages, 
starting from the 10289th message arriving to the system, are shown. We can observe 
that the delay of the most of the messages is below 1000 microseconds; these are 
messages processed by a thread that has gotten the CPU entirely to itself, i.e. there are 
no other messages being processed at the same time. However, certain messages 
experience delays much longer than 1000 microseconds. Such messages appear as 
peaks in the figure. We can observe that the wider the peaks are, the longer are the 
delays experienced by the messages constituting the peak. The peaks are formed by 
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messages that are being processed concurrently. These messages experience longer 
delays, because they get only a fraction of the CPU time to themselves. The more 
messages are being processed simultaneously, the longer is the delay that each of the 
messages experiences. As an example, it seems that messages 64, 65, 66, 67 were 
processed concurrently, meaning that each of the workers processing the messages got 
only one fourth of the CPU time. 
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Figure 66 - Time in system, 1000 simultaneous voice calls 

11.4 Hyper-Threading Processor versus a Regular Processor 
Because the SigComp prototype uses multiple threads, it is supposed to benefit from the 
use of a CPU supporting the Hyper-Threading technology. In this measurement, the 
performance of two CPUs, Intel Pentium 4 Hyper-Threading 3.0 GHz and Intel Pentium 
4 2.66 GHz is compared. Different traffic loads ranging from 50 to 1500 simultaneous 
calls in the system are used. The low amount of free main memory available on the 
computer having the 2.66 GHz CPU limited the number of simultaneous calls that could 
be used. 
 



Performance of Signalling Compression in the Third Generation Mobile Network 
 

 
Jouni Mäenpää                                                                                                          108                    

0

500

1000

1500

2000

2500

3000

3500

4000

50 100 250 375 500

Number of simultaneous video calls

Ti
m

e 
in

 s
ys

te
m

 [u
s]

   
 

Intel Pentium 4 Hyper-Threading 3.0 GHz Intel Pentium 4 2.66 GHz
 

Figure 67 - Hyper-threading Pentium 4 versus a regular Pentium 4, video calls 

 
The time the signalling messages stay in the system on average is presented in Figure 67 
for video calls and in Figure 68 for voice calls. We can observe from the figures that the 
Hyper-Threading processor performs always better than the regular Pentium 4 
processor. In addition, the difference between the processors seems to increase as the 
traffic load increases. As the load increases, the number of active threads the system has 
increases as well, meaning that a processor that can execute threads in parallel becomes 
more and more efficient compared to a processor executing only one thread at a time. 
For example, when the traffic load consists of 1500 simultaneous voice calls, the 
average number of messages being processed concurrently is roughly 2.5, and the 
Hyper-Threading CPU benefits from its ability to execute two threads in parallel on 
separate logical processors. On the other hand, when the traffic load is only 500 calls in 
system, the average number of messages being processed concurrently is close to 1.2. In 
this case, the gains of using a Hyper-Threading CPU are smaller, because there are on 
average only 1.2 threads being executed concurrently. 
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Figure 68 - Hyper-threading Pentium 4 versus a regular Pentium 4, voice calls 

 
In Section 9.9, we saw that if messages are not processed concurrently, the performance 
of the regular Pentium 4 and the Pentium 4 with the Hyper-Threading technology is 
very close to being identical.  On the other hand, Figure 68 indicates that if there are for 
instance 1500 simultaneous voice calls, the average time in system per message is 1.43 
times longer on the computer having the regular Pentium 4 processor than on the 
computer with the Hyper-Threading Pentium 4 processor. Therefore, we can conclude 
that the use of a CPU applying the Hyper-Threading technology seems to have a 
positive impact on performance. However, it should be taken into consideration that the 
performance gap between the two computers is not necessarily explained by the use of 
the Hyper-Threading technology alone; the computer with the Pentium 4 3.0 GHz 
processor also had other advantages: a faster front side bus, larger L2 cache memory, 
higher clock rate and larger and faster main memory. 

11.5 Throughput 
The throughput of the system under different loads is shown in Figure 69 for video calls 
and in Figure 70 for voice calls. The throughput is presented in terms of average-size 
SIP messages. The throughput values were collected using the network protocol 
analyser software Ethereal. 
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Figure 69 - Throughput of the system, video calls 

 
We can observe from Figure 69 and Figure 70 that the throughput of the system grows 
in a linear fashion as the number of calls in the system increases. The throughput does 
not begin to level off as the traffic load increases, meaning that the maximum capacity 
of the system has not been reached. The greatest throughput, 0.448 Mbit/s, is achieved 
when there are 1500 video calls in the system. With this traffic load, the maximum load 
level of the two logical processors of the Intel Pentium 4 Hyper-Threading 3.0 GHz 
CPU was 43.1% for CPU 1 and 31.2 for CPU 2. The maximum CPU loads of the 
Hyper-Threading and regular Pentium 4 CPUs are presented in Table 17 for different 
traffic loads. 
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Figure 70 - Throughput of the system, voice calls 

 
Table 17 indicates that for example the maximum load caused by 1000 simultaneous 
video sessions is significantly larger than the load caused by 1000 voice calls in the 
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system. This is true also for all other cases in which the number of voice and video calls 
in the system is equal. The higher load caused by the video calls is because the SIP 
messages of the video calls are longer and the total number of messages per dialog is 
greater. A minor contributing factor is that a larger decompression memory size was 
used for the video calls. Finally, we can also observe from Table 17 that the maximum 
load of the Pentium 4 2.66 GHz CPU is always substantially larger than the maximum 
load of the Hyper-Threading CPU with the same number of calls in the system. This 
suggests that the Hyper-Threading CPU benefits from the ability to schedule threads on 
different logical processors. 
 

Table 17 - Maximum CPU load 

Maximum CPU load [%], Intel 
Pentium 4 Hyper-Threading 3.0 GHz 

Number of 
calls in the 

system 

Call type Maximum CPU load 
[%], Intel Pentium 4 

2.66 GHz CPU 1 CPU 2 
50 video 17.7 1.0 1.0 

100 video 21.1 1.0 1.7 
250 video 30.7 2.7 3.4 
500 video 44.9 4.4 6.1 
750 video - 7.1 7.5 

1000 video - 10.5 12.5 
1250 video - 34.1 14.6 
1500 video - 43.1 31.2 
250 voice 13.3 1 1.4 
500 voice 17.4 1.4 2.7 

1000 voice 27 3.7 4.1 
1500 voice 32.9 4.4 5.7 
2500 voice - 9.2 10.2 
3000 voice - 15.6 16.6 

11.6 Memory Consumption 
In the measurements the results of which are presented in this section, the memory 
usage of the SigComp prototype is studied under different loads for both video and 
voice calls. The memory usage of voice calls is shown in Figure 71 and the memory 
usage of video calls in Figure 72. 
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Figure 71 - Memory consumption of voice calls 
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We can see from Figure 71 that when there are 1500 voice calls in the system, the 
SigComp prototype uses 218 megabytes of memory. However, if the system serves the 
same number of video calls, considerably larger amount of memory, 781 megabytes, is 
required. The reasons for the difference between video and voice calls include that the 
video sessions have twice as much SIP messages as voice calls, the average size of the 
messages of the video sequence is twice the average size of the messages of the voice 
sequence, and that the decompression memory size of the video calls is two times larger 
than that of the voice calls. By comparing the values of Figure 71 and Figure 72, we can 
observe that video calls use 2.8 - 3.6 times more memory than voice calls. 
 
We can conclude that the memory requirement of the SigComp prototype is relatively 
large. This is because for each decompressed message, a UDVM memory snapshot and 
a shared state need to be stored. For each compressed message, a UDVM memory 
image and a shared state need to be stored. The data structures of the state handler, 
shared buffer and the compressor array require storage space. In addition, a compressor 
object together with the hash table it uses and a feedback object must be stored for each 
compartment. A state memory of size 131 kilobytes and a decompression memory size 
of 8192 or 4096 bytes were used. The use of smaller values for decompression memory 
size and state memory size would help in reducing the memory consumption. However, 
this would also result in worse compression ratios. One additional way to reduce 
memory usage at the cost of achievable compression ratios would be to switch off 
shared compression, dynamic compression or both of them. This way UDVM memory 
snapshots, UDVM memory images and shared states would not need to be stored. 
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Figure 72 – Memory consumption of video calls 

 
The way the memory usage of the SigComp prototype develops is illustrated in Figure 
73, which shows the memory consumption of 1500 simultaneous voice calls during a 
ten-minute measurement period. The holding time of each call is 180 seconds. During 
the first 180 seconds of the measurement, no calls exit the system, which is the reason 
the memory consumption grows steeply. When calls start exiting the system the 
memory usage levels off. The reason the memory usage does not stay completely flat, 
but grows slightly towards the end of the measurement period is that new memory has 
to be allocated to hold for example the delay and memory usage values; the SigComp 
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prototype stores some information for each message arriving and leaving the system. In 
addition, the time difference between the first and last signalling messages of a call is 
longer than the duration of a call, meaning that the average number of calls in the 
system grows slightly towards the end of the measurement period. 
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Figure 73 - Memory usage, 1500 voice calls in the system 

11.7 Performance under Denial-of-service Attack 
In the final measurement of this thesis, a Denial-of-Service (DoS) attack is simulated by 
sending looping code to the SigComp prototype acting as a P-CSCF. The aim of the 
measurement is to test whether the protection offered by the UDVM cycle limit is 
sufficient. The bytecode corresponding to the following program written in the UDVM 
assembly language is used: 
 

:start 
INPUT-BITS(16, 1024, loop) 
JUMP(start) 
:loop 
SHA-1(0, 1, 1024) 
JUMP(loop) 

 
The assembly contains two loops formed by the JUMP instructions. During each 
iteration of the first loop, 16 bits are read from the compressed message using the 
INPUT-BITS instruction. [RFC 3320] specifies that if the UDVM reads successfully n 
bits of compressed data, the number of available UDVM cycles is increased by n times 
cycles_per_bit. The cycles_per_bit parameter specifies the number of UDVM cycles 
available to decompress each bit in a SigComp message, and its value can be 16, 32, 64 
or 128. In this measurement, the minimum value, 16, is used, meaning that each 
successful INPUT-BITS instruction increments the number of available UDVM cycles 
by 256. The first loop is over when the last complete 16-bit block has been read.  In the 
second loop, SHA-1 message digest values are calculated over one-byte sequences until 
all the available UDVM cycles have been used. The cost of each SHA-1 instruction is 1 
+ length, i.e. two UDVM cycles in this case.  
 
In the measurement, SigComp messages carried the bytecode of the assembly presented 
above in the message header and an INVITE message in the payload of the message. 
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The length of the INVITE message used was 1437 bytes. The measurement was carried 
out on the Pentium 4 3.0 GHz Hyper-Threading platform. It was observed that the 
looping code managed to use on average 274 milliseconds of CPU time per message 
before running out of UDVM cycles. In addition, a rate of at least eight messages per 
second was sufficient to place a CPU load of one hundred percent, i.e. consume all 
capacity of the P-CSCF. 
 
The only protection the SigComp specifications offer against DoS attacks is the UDVM 
cycle limit. However, this protection is clearly not enough. It can only limit the amount 
of damage that can be caused, but does not remove the problem. If our DoS attack was 
repeated in a system using a larger value for the parameter cycles_per_bit than the 
minimum, and using a longer SIP message in the payload of the SigComp message, the 
attack would have been even more successful. What SigComp needs is additional 
protection mechanisms. One such mechanism is a bytecode verifier; even the simplest 
kind of verifier would be able to detect the malicious nature of our bytecode. 
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12 Conclusion 
The main goal of this thesis was to examine the performance of the SigComp protocol 
through measurements performed on the SigComp prototype implemented as a part of 
the thesis work. The secondary goals were (1) to describe the way SigComp 
functionality can be implemented and (2) to examine the way to minimise the load 
SigComp places on the network node performing compression and decompression. 
 
In this thesis, a SigComp prototype was implemented and its performance was 
evaluated. The performance measurements were divided into three phases. In the first 
and second phases of the measurements, the performance of the SigComp protocol was 
studied. In the third phase of the measurements, the focus was on the performance of the 
SigComp prototype. In the measurements, the prototype acted as a P-CSCF, 
decompressing SIP signalling traffic initiated from the RAN side and compressing SIP 
traffic terminating to the RAN side. 
 
A modified version of the LZSS compression algorithm was implemented and a 
decompression algorithm written in the UDVM assembly language to process the output 
of the modified LZSS algorithm. Also a UDVM interpreter, which compiles UDVM 
assembly language programs into UDVM bytecode, was implemented. The SigComp 
prototype was implemented as a multithreaded application. Also another program was 
designed to generate SIP signalling traffic for the SigComp prototype. 
 
To the author’s best knowledge, SigComp performance on the core network side has not 
been evaluated and techniques for optimising SigComp performance have not been 
studied in detail before. In addition, this thesis is the first to describe how SigComp 
functionality can be implemented. We implemented a SigComp prototype and evaluated 
its performance through measurements. The results obtained in the first phase of the 
measurements carried out for this thesis show how SigComp should be configured to 
optimise its performance and minimise the load SigComp places. The results of the 
second phase of the measurements demonstrate SigComp performance in various 
contexts. Finally, the results obtained in the third phase of the measurements 
demonstrate the performance of a network node performing compression and 
decompression of SIP messages. 

12.1 Advantages and Limitations of Signalling Compression 
SigComp has numerous advantages. It is generic: besides SIP, it can be used to 
compress any text-based protocol, for example the Real Time Streaming Protocol 
(RTSP). The UDVM approach allows SigComp to be flexible; since the decompression 
algorithm is supplied together with the first message, any compression algorithm can be 
used. SigComp can run on a variety of platforms including mobile terminals, because of 
the possibility to select the amount of memory, compression algorithm and compression 
mechanisms used at the sending endpoint. Also other services than SIP-based call setup 
can benefit from the use of SigComp. It can be used to decrease the delay of SIP-based 
services like push-to-talk over cellular, instant messaging and presence information. 
Finally, SigComp is able to coexist with other compression mechanisms such as robust 
header compression. 
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SigComp also has a number of limitations. Although the UDVM brings flexibility to 
SigComp, it also introduces some challenges. Firstly, the ability to upload the 
decompression algorithm to the network node performing SIP message decompression 
makes SigComp vulnerable to Denial-of-Service attacks. The use of UDVM cycle 
limits does not remove this problem, although it limits the amount of damage that a 
malicious user can cause. Some additional mechanism is likely to be required. An 
example of such a mechanism is the bytecode verifier used in the Java Virtual Machine 
approach.  Secondly, a virtual machine like the UDVM is rather complex. It is 
challenging to design a UDVM that is robust and fast enough. In addition to the UDVM 
being complex, also the entire protocol is getting more and more complex with each 
new Internet Draft that is published to fix the problems that have been found in 
SigComp. 
 
Because SigComp builds compression dictionaries dynamically and also uses the static 
SIP/SDP dictionary, most existing compression algorithms cannot be used with 
SigComp without modifying or even redesigning them. Many compression algorithms 
are also proprietary and there may be patent issues restricting their usage. Most well-
known compression algorithms have countless different variations. A UDVM bytecode 
written for one variation will not work with a different version of the same algorithm. In 
addition to the modifications required to existing compression algorithms, SigComp 
also requires changes to existing SIP implementations. 
 
SigComp increases the amount of state information that has to be stored for each 
ongoing session. In addition, the system must be able to access this information rapidly 
in order to keep the compression and decompression times as low as possible. The 
maximum amount of state memory that can be used by a single session is 131 kilobytes. 
It was observed that if shared compression and a decompression memory of sufficient 
size are used, this limit can be reached without difficulties. 
 
It remains to be seen whether the use of SigComp alone will be sufficient. It can only 
affect the RAN delay; the core network delay, bearer establishment and the overhead 
added by lower protocol layers will not be affected. Compression ratios that would 
reduce the size of SIP signalling messages to the same level as in the case of GSM seem 
unachievable.  

12.2 Considerations 

12.2.1 Performance of SigComp Protocol 
The following considerations were made: 

1. The compression time of the compressor and the decompression time of the 
UDVM depend highly on the length of the uncompressed message, SigComp 
mechanisms used, the amount of previous state information available, search 
technique used by the compression algorithm, size of the decompression 
memory, amount of bytes used from the static SIP/SDP dictionary, length of the 
compressor’s look-ahead buffer etc. For instance, on an Intel Pentium 4 3.0 GHz 
platform, the compression time of a single message varied between 669 and 
3730 microseconds, and the decompression time of a single message between 
843 and 3329 microseconds. Depending on the type of the message sequence 
and the issues listed above, the compression time of the entire sequence varied 
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between 5091 and 32865 microseconds, while the decompression time of the 
entire sequence was between 5875 and 25410 microseconds. 

2. The overhead added by the UDVM approach is considerable compared to the 
use of a fixed decompression algorithm. It is not unusual that the decompression 
time of a message is longer than its compression time. 

3. The use of hashing in the compressor of the SigComp prototype reduced the 
amount of compression time consumed by 64% compared to linear searching. 
When hashing is used, most of the compression time is spent in organizing the 
hash map. It is beneficial to store the hash tables between messages instead of 
re-generating the hash table each time a new message is compressed.  

4. It was observed that compression is most efficient when the maximum size of 
substituted strings is 258 bytes. Although as much as eight bits are required to 
encode length values, this additional overhead is minor compared to the savings 
achieved because longer matches can be encoded using a single offset/length 
pair. The use of long matches also allows reductions in compression and 
decompression times. 

5. Most of the content in the static SIP/SDP dictionary is likely to be useless when 
compressing any SIP sequence. If too large part of the static dictionary is 
inserted to the search buffer, the penalty in compression time is significant. It 
was found out that the best results are achieved by using static dictionary 
priorities from one to two or from one to three. 

6. When dynamic compression, shared compression, or both of them are applied, 
the calculation of SHA-1 hashes constitutes a considerable part of the 
compression and decompression times. It was observed that the calculation of 
the hash constitutes 25-40 percent of the compression time, depending on the 
message. It has an effect of the same magnitude on decompression times. 

7. Basic, i.e. message-by-message compression is practically useless, because it 
offers very poor compression ratios. The use of static compression with the 
ability to save the bytecode clearly improves the efficiency of the compression. 
However, only dynamic compression and shared compression offer satisfactory 
compression ratios. The best compression ratio, 22.3%, was achieved by shared 
compression. 

8. The better performance of dynamic and shared compressions regarding the 
achievable compression ratios does not come without a cost: when compressing, 
shared compression can be two times slower and dynamic compression 1.4 
times slower than basic compression. However, when decompressing, dynamic 
and shared compressions perform slightly better than the less advanced 
compression mechanisms. 

9. The use of shared compression has a negative impact on compression time, 
especially when a technique like hashing is used. It was observed that in the 
worst case, the compression time of shared compression is 1.58 times the 
compression time of dynamic compression, while the improvement in 
compression ratio is only 8.4%. However, restricting the length of the shared 
states can reduce the negative impact of shared compression on compression 
time.  

10. Because shared compression uses considerably more buffer space than dynamic 
compression, dynamic compression can achieve higher compression ratios in the 
case of the last messages of a large sequence. Therefore, it might be beneficial to 
switch off shared compression after the first few messages of the sequence have 
been sent. 
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11. The combined size of the messages in a sequence and the mechanisms used are 
important factors when selecting the most appropriate decompression memory 
size. For instance, when a message sequence with a size of 10640 bytes was 
being compressed, shared compression was the only mechanism that was found 
to benefit from a decompression memory larger than 4096 bytes. A 
decompression memory of size 16384 is too large for most SIP signalling flows. 

12. SigComp benefits greatly from the use of reliable transport instead of unreliable 
transport, especially in the case of message sequences with a low number of 
messages. It was found out that when shared compression is applied, the 
combined size of compressed messages of a basic voice session initiation 
sequence transmitted over TCP was only 61% of the size achieved with UDP 
based transport. 

13. SigComp has been designed especially for narrowband links. When the bit rate 
of the signalling link is more than 64 kbps, the performance improvement 
offered by SigComp may not be great enough to justify the use of compression. 
With a signalling link bit rate of 9.6 kbps, SigComp is able to reduce the RAN 
delay by approximately 70%. In contrast, with a bit rate of 256 kbps the 
improvement is only about 20%. 

14. It was observed that the more messages a signalling flow has and the larger is 
the combined size of the messages, the better compression ratios can be 
achieved. 

15. The compression ratio achieved for a registration sequence in a 3GPP release 5 
network was only 0.88. Therefore, it might not be worth the effort to compress 
the registration sequence at all. 

16. The use of alternative signalling flows for a video call in a 3GPP release 5 
network resulted in lower compression and decompression times and smaller 
compressed size for the entire session initiation sequence. This suggests that 
considerable improvements can be achieved by redesigning inefficient signalling 
flows. 

12.2.2 SigComp Prototype 
1. The shared resources, i.e. the state handler and the compressor array can become 

the bottlenecks of the SigComp architecture unless they are not carefully 
designed. This is because threads require exclusive access when they modify the 
content of the shared resources. It is of vital importance to minimise the amount 
of time each thread holds exclusive access to a shared resource, and to use right 
scheduling policies to control access to the shared resources. It is also important 
to use data structures that minimise the cost of insert, delete and find operations. 

2. Overhead caused by thread switches and especially queuing for access to the 
shared resources increases considerably as more concurrency is allowed in the 
system. However, a high number of threads are required to keep the time 
messages wait for service low. Under the maximum traffic load and with the 
maximum amount of concurrency in the system used, the per-message overhead 
added by thread switches and queuing time to the shared resources formed 
almost 17 percent of the total time messages stay in the system.  

3. The SigComp prototype benefits from the use of a CPU supporting Intel’s 
Hyper-Threading technology. The gains of using a Hyper-Threading CPU are 
the bigger the more simultaneously active threads the system has. It was 
observed that two CPUs, of which only one supported the Hyper-Threading 
technology, had equal performance when messages were not processed 
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concurrently. However, when a workload of 1500 simultaneous voice calls was 
used and messages were processed concurrently, the time in system per message 
was 1.43 times less for the Hyper-Threading CPU. 

4. The memory requirement of SigComp is relatively large: the signalling of 1500 
simultaneous voice calls uses 218 megabytes of memory, and the signalling of 
the same number of video calls consumes 781 megabytes of memory. However, 
the memory requirement can be reduced at the cost of achievable compression 
ratios by using less advanced compression mechanisms and smaller 
decompression memory size. 

5. The time in system, CPU load and memory usage depend highly on the type of 
the SIP signalling traffic being compressed and decompressed. The video call 
establishment and release sequence in a 3GPP release 5 network that was used 
placed a higher load on the CPU, had longer delays and used more memory than 
a basic voice call establishment and release sequence. 

6. A Denial-of-Service attack, in which SigComp messages containing looping 
code were send to the P-CSCF, was simulated. It was observed that a constant 
stream of eight messages per second was enough to consume all CPU power of 
the P-CSCF with the parameters and messages that were used. 

12.3 Future Research 
This thesis focused on SigComp performance on the core network side. Another equally 
interesting topic is the performance of SigComp in the 3G mobile terminals supporting 
SIP. It would be interesting to see whether the same algorithms that perform well in the 
core network nodes performing compression and decompression are optimal for use in 
the mobile terminals. After all, since the performance of the terminals keeps increasing 
all the time, there might actually be more resources available on the UE side than in the 
core network element which may have to take care of thousands of simultaneous 
sessions.  
 
SigComp security risks are another issue that has not yet been studied in detail. Much is 
to be learned from for instance the Java programming language, since both the UDVM 
and Java Virtual Machine use uploadable bytecodes. The design of a UDVM bytecode 
verifier might become a necessity. 
 
The use of highly optimised data structures in SigComp-aware compression algorithms 
is another issue worth studying. Besides hash tables, there are a number of other data 
structures that can be used in longest-match string searching. These include for example 
linked lists, search tries and binary search trees. Also the hash table approach can be 
improved by storing keys of different lengths. The performance of algorithms relying on 
linear searching can be improved significantly by organizing carefully their search 
buffers. 
 
Since SigComp makes heavy use of shared resources, access to these resources is worth 
optimising. One way of achieving performance improvements is through the use of 
highly optimised scheduling policies. 
 
Yet another topic for further work is the parallel use of payload compression like 
SigComp and header compression like ROHC. In the measurements of this thesis, 
header compression was not applied. 
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14 Appendices 

14.1 Appendix A – The UDVM Instruction Set 
Instruction Bytecode 

value 
Cost in  

UDVM cycles 
DECOMPRESSION-FAILURE 0 1 
AND 1 1 
OR 2 1 
NOT 3 1 
LSHIFT 4 1 
RSHIFT 5 1 
ADD 6 1 
SUBTRACT 7 1 
MULTIPLY 8 1 
DIVIDE 9 1 
REMAINDER 10 1 
SORT-ASCENDING 11 ( )( )( )nkceilingk +×+ 2log1  
SORT-DESCENDING 12 ( )( )( )nkceilingk +×+ 2log1  
SHA-1 13 length+1  
LOAD 14 1 
MULTILOAD 15 n+1  
PUSH 16 1 
POP 17 1 
COPY 18 length+1  
COPY-LITERAL 19 length+1  
COPY-OFFSET 20 length+1  
MEMSET 21 length+1  
JUMP 22 1 
COMPARE 23 1 
CALL 24 1 
RETURN 25 1 
SWITCH 26 n+1  
CRC 27 length+1  
INPUT-BYTES 28 length+1  
INPUT-BITS 29 1 
INPUT-HUFFMAN 30 n+1  
STATE-ACCESS 31 lengthstate _1+  
STATE-CREATE 32 lengthstate _1+  
STATE-FREE 33 1 
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OUTPUT 34 lengthoutput _1+  
END-MESSAGE 35 lengthstate _1+  

 

14.2 Appendix B – LZSS Assembly 
1   at (32)   
2         
3   :index                            pad (2) 
4   :length_value                     pad (2) 
5   :old_pointer           pad (2) 
6         
7   at (42)   
8        
9   :requested_feedback_location      pad (1) 
10   :requested_feedback_length       pad (1) 
11   :requested_feedback_field  pad(12) 
12   :hash_start                   pad(8) 
13         
14   at (64)   
15         
16   :byte_copy_left                   pad (2) 
17   :byte_copy_right                pad (2) 
18   :input_bit_order                 pad (2) 
19   :decompressed_pointer           pad (2) 
20         
21   :returned_parameters_location     pad (1) 
22   :returned_sigcomp_version         pad (1) 
23   :length_of_partial_state_id_a    pad (1) 
24   :partial_state_identifier_a       pad (6) 
25   :length_of_partial_state_id_b     pad (1) 
26   :partial_state_identifier_b       pad (20) 
27   :extended_flags                   pad (2) 
28   :shared_state_id                 pad (6) 
29   :padding                        pad (6) 
30   :minimum_access_length           pad (2) 
31   :announcement_location           pad (2) 
32   :decompressed_start               pad (2) 
33   :decompressed_length              pad (2) 
34   :shared_hash_length              pad (2) 
35         
36   align (64)   
37         
38   :initialize_memory   
39     
40   STATE-ACCESS (dictionary_id, 6, 0, 0, 1024, 0)   
41         
42   set (udvm_memory_size, 8192)   
43   set (state_length, (udvm_memory_size - 64))   
44         
45   MULTILOAD (64, 4, circular_buffer, udvm_memory_size, 0, circular_buffer)   
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46         
47   :decompress_sigcomp_message   
48     
49   INPUT-BYTES (1, extended_flags, !)   
50 

  
COMPARE ($extended_flags, 32768, initialize_state_announcement, 
access_shared_state, access_shared_state)   

51     
52   :access_shared_state   
53         
54   INPUT-BYTES (6, shared_state_id, !)   
55   STATE-ACCESS (shared_state_id, 6, 0, 0, $decompressed_start, 0)   
56         
57   :initialize_state_announcement   
58         
59 

  
MULTILOAD (minimum_access_length, 4, 6, length_of_partial_state_id_a, 
$decompressed_pointer, 5120)   

60   COPY-LITERAL (padding, 8, $decompressed_pointer)   
61         
62   LSHIFT ($extended_flags, 1)   
63 

  
COMPARE ($extended_flags, 32768, algorithm_start, announce_acked_state_id, 
announce_acked_state_id)   

64         
65   :announce_acked_state_id   
66         
67   LOAD (length_of_partial_state_id_a, 1536)   
68   INPUT-BYTES (6, partial_state_identifier_a, !)   
69   LOAD (announcement_location, length_of_partial_state_id_b)   
70         
71   :algorithm_start  
72        
73   :next_character   
74         
75 

  
INPUT-HUFFMAN (index, end_of_message, 2, 9, 0, 255, 16384, 4, 4096, 8191, 1)  

 
76   COMPARE ($index, 8192, length, end_of_message, literal)   
77         
78   :literal   
79         
80   set (index_lsb, (index + 1))   
81         
82   OUTPUT (index_lsb, 1)   
83   COPY-LITERAL (index_lsb, 1, $decompressed_pointer)   
84   JUMP (next_character)   
85         
86   :length  
87     
88   INPUT-BITS (4, length_value, !)   
89   ADD ($length_value, 3)   
90   LOAD (old_pointer, $decompressed_pointer)   
91   COPY-OFFSET ($index, $length_value, $decompressed_pointer)   
92   OUTPUT ($old_pointer, $length_value)   
93   JUMP (next_character)   
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94         
95   :end_of_message   
96         
97   LSHIFT ($extended_flags, 1)   
98 

  
COMPARE ($extended_flags, 32768, end, announce_shared_state, 
announce_shared_state)   

99         
100   :announce_shared_state   
101         
102   COPY-LITERAL (decompressed_length, 1, $announcement_location)   
103         
104   set (buffer_size, (udvm_memory_size - circular_buffer))   
105         
106   MULTILOAD (decompressed_length, 2, 65528, $decompressed_pointer)   
107   SUBTRACT ($shared_hash_length, $decompressed_start)   
108   REMAINDER ($shared_hash_length, buffer_size)   
109   ADD ($decompressed_length, $shared_hash_length)   
110         
111   LOAD ($decompressed_start, $decompressed_length)   
112 

  
SHA-1 ($decompressed_start, $shared_hash_length, $announcement_location)  

 
113         
114   :end   
115         
116   set (hash_length, (state_length + 8))   
117         
118   LOAD (requested_feedback_location, 1158)   
119 

  
MULTILOAD (hash_start, 4, state_length, 64, decompress_sigcomp_message, 6)  

 
120   SHA-1 (hash_start, hash_length, requested_feedback_field)   
121         
122 

  

END-MESSAGE (requested_feedback_location, returned_parameters_location, 
state_length, 64, decompress_sigcomp_message, 6, 0)   

123     
124   :dictionary_id   
125         
126   byte (0xfb, 0xe5, 0x07, 0xdf, 0xe5, 0xe6)   
127     
128   :circular_buffer  
 

14.3 Appendix C – SIP Message Sequences 

14.3.1 Basic Voice Call 

14.3.1.1 INVITE 
INVITE sip:7040005004@192.168.55.54 SIP/2.0 
Via: SIP/2.0/UDP 192.168.55.61;comp=sigcomp 
Route: <sip:131.160.31.19;comp=sigcomp> 
Call-ID: b0957730@192.168.55.61-1000 
CSeq: 48733 INVITE 
Contact: <sip:8881003@192.168.55.61;comp=sigcomp> 
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User-Agent: 3Com ICD 1.0.1.2.7 
From: <sip:8881003@192.168.55.61>;tag=f3d981df 
To: <sip:7040005004@192.168.55.54> 
Proxy-Authorization: Digest 
username="8881003",realm="192.168.55.61",nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093
",opaque="",uri="sip:7040005004@192.168.55.54",response="6629fae49393a0539745097850
7c4ef1" 
Content-Length: 105 
Content-Type: application/sdp 
 
v=0 
o=username 0 48732 IN IP4 192.168.55.61 
s= 
c=IN IP4 192.168.55.61 
t=0 0 
m=audio 7206 RTP/AVP 0 

14.3.1.2 100 Trying 
SIP/2.0 100 Trying 
Via: SIP/2.0/UDP 192.168.55.61:5060;comp=sigcomp;received=192.168.55.61 
From: <sip:8881003@192.168.55.61>;tag=f3d981df 
To: <sip:7040005004@192.168.55.54>;tag=124871409 
Call-ID: b0957730@192.168.55.61-1000 
CSeq: 48733 INVITE 
Content-Length: 0 

14.3.1.3 180 Ringing 
SIP/2.0 180 Ringing 
Via: SIP/2.0/UDP 192.168.55.61:5060;comp=sigcomp;received=192.168.55.61 
Record-Route: 131.160.31.19;comp=sigcomp 
From: <sip:8881003@192.168.55.61>;tag=f3d981df 
To: <sip:7040005004@192.168.55.54>;tag=124871409 
Call-ID: b0957730@192.168.55.61-1000 
CSeq: 48733 INVITE 
Contact: <sip:192.168.55.54:5060> 
Allow: INVITE, ACK, CANCEL, BYE, OPTIONS, PRACK 
Accept: application/sdp 
Content-Length: 161 
Content-Type: application/sdp 
 
v=0 
o=username 0 48732 IN IP4 192.168.55.61 
s=Basic Session 
c=IN IP4 192.168.55.15 
t=0 0 
m=audio 20000 RTP/AVP 0 103 19 
a=rtpmap:103 telephone-event/8000 

14.3.1.4 200 OK to INVITE 
 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP 192.168.55.61:5060;comp=sigcomp;received=192.168.55.61 
Record-Route: 131.160.31.19;comp=sigcomp 
From: <sip:8881003@192.168.55.61>;tag=f3d981df 
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To: <sip:7040005004@192.168.55.54>;tag=124871409 
Call-ID: b0957730@192.168.55.61-1000 
CSeq: 48733 INVITE 
Contact: <sip:192.168.55.54:5060> 
Allow: INVITE, ACK, CANCEL, BYE, OPTIONS, PRACK 
Accept: application/sdp 
Content-Length: 161 
Content-Type: application/sdp 
 
v=0 
o=username 0 48732 IN IP4 192.168.55.61 
s=Basic Session 
c=IN IP4 192.168.55.15 
t=0 0 
m=audio 20000 RTP/AVP 0 103 19 
a=rtpmap:103 telephone-event/8000 

14.3.1.5 ACK 
ACK sip:192.168.55.54:5060 SIP/2.0 
Via: SIP/2.0/UDP 192.168.55.61;comp=sigcomp 
Route: <sip:131.160.31.19;comp=sigcomp> 
Call-ID: b0957730@192.168.55.61-1000 
CSeq: 48733 ACK 
User-Agent: 3Com ICD 1.0.1.2.7 
From: <sip:8881003@192.168.55.61>;tag=f3d981df 
To: <sip:7040005004@192.168.55.54>;tag=124871409 
Proxy-Authorization: Digest 
username="8881003",realm="192.168.55.61",nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093
",opaque="",uri="sip:192.168.55.54:5060",response="6629fae49393a05397450978507c4ef1" 
Content-Length: 0 

14.3.1.6 BYE 
BYE sip:192.168.55.54:5060 SIP/2.0 
Via: SIP/2.0/UDP 192.168.55.61;comp=sigcomp 
Route: <sip:131.160.31.19;comp=sigcomp> 
Call-ID: b0957730@192.168.55.61-1000 
CSeq: 48734 BYE 
User-Agent: 3Com ICD 1.0.1.2.7 
From: <sip:8881003@192.168.55.61>;tag=f3d981df 
To: <sip:7040005004@192.168.55.54>;tag=124871409 
Proxy-Authorization: Digest 
username="8881003",realm="192.168.55.61",nonce="1cec4341ae6cbe5a359ea9c8e88df84f",op
aque="",uri="sip:192.168.55.54:5060",response="4767ead078938ad80e7b3a49defdcd64" 
Content-Length: 0 

14.3.1.7 200 OK to BYE 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP 192.168.55.61:5060;comp=sigcomp;received=192.168.55.61 
From: <sip:8881003@192.168.55.61>;tag=f3d981df 
To: <sip:7040005004@192.168.55.54>;tag=124871409 
Call-ID: b0957730@192.168.55.61-1000 
CSeq: 48734 BYE 
Content-Length: 0 
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14.3.2 Basic Video Call 

14.3.2.1 INVITE 
INVITE sip:888000@192.168.57.80:5061;transport=UDP;user=phone SIP/2.0 
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821 
Route: <sip:131.160.31.19;comp=sigcomp> 
From: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673 
To: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone> 
Call-ID: 11100604432@192.168.57.71 
CSeq: 1 INVITE 
Contact: <sip:192.168.57.71:5060;comp=sigcomp;transport=UDP> 
Allow: INVITE, ACK, CANCEL, BYE, OPTIONS, PRACK 
Accept: application/sdp 
Supported: 100rel 
Max-Forwards: 70 
Privacy: none 
P-Asserted-Identity: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone> 
Content-Length:  355  
Content-Type: application/sdp 
 
v=0 
o=- 1100604476 1100604476 IN IP4 192.168.57.111 
s=Basic Session 
c=IN IP4 192.168.57.111 
t=0 0 
a=sendrecv 
m=audio 30000 RTP/AVP 96 4 8 0 
a=rtpmap:96 AMR/8000 
m=video 30002 RTP/AVP 103 104 34 105 
a=rtpmap:103 H263-2000/8000 
a=fmtp:103 profile=0;level=10 
a=rtpmap:104 H263-1998/8000 
a=rtpmap:105 MP4V-ES/90000 
a=fmtp:105 profile-level-id=8 

14.3.2.2 100 Trying 
SIP/2.0 100 Trying 
From: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673 
To: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone> 
Call-ID: 11100604432@192.168.57.71 
CSeq: 1 INVITE 
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821 
Content-Length: 0 

14.3.2.3 180 Ringing 
SIP/2.0 180 Ringing 
From: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673 
To: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>;tag=1234 
Call-ID: 11100604432@192.168.57.71 
CSeq: 1 INVITE 
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821 
Record-Route: 131.160.31.19;comp=sigcomp 
Contact: <sip:192.168.57.80:5061> 
Allow: INVITE,ACK,CANCEL,BYE,OPTIONS,INFO 
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Accept: application/SDP 
Content-Length: 0 

14.3.2.4 200 OK to INVITE 
SIP/2.0 200 OK 
From: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673 
To: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>;tag=1234 
Call-ID: 11100604432@192.168.57.71 
CSeq: 1 INVITE 
Content-Type: APPLICATION/SDP 
Content-Length: 163 
Contact: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>;tag=1234 
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821 
Record-Route: 131.160.31.19;comp=sigcomp 
User-Agent: Pingtel/0.4.0 
 
v=0 
o=Pingtel 5 0 IN IP4 131.160.21.57 
s=phone-call 
c=IN IP4 131.160.21.57 
t=0 0 
m=audio 8766 RTP/AVP 0 
m=video 8767 RTP/AVP 96 
a=rtpmap:96 H263-1998/8000 

14.3.2.5 ACK 
ACK sip:888000@192.168.57.80:5061;transport=UDP;user=phone SIP/2.0 
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821 
Route: <sip:131.160.31.19;comp=sigcomp> 
From: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673 
To: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>;tag=1234 
Call-ID: 11100604432@192.168.57.71 
CSeq: 1 ACK 
Max-Forwards: 70 
Content-Length:  0 

14.3.2.6 BYE 
BYE sip:888000@192.168.57.80:5061 SIP/2.0 
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821 
Route: <sip:131.160.31.19;comp=sigcomp> 
From: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673 
To: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>;tag=1234 
Call-ID: 11100604432@192.168.57.71 
CSeq: 2 BYE 
Content-Length: 0 
User-Agent: Pingtel/0.6.1 

14.3.2.7 200 OK to BYE 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821 
From: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>;tag=1234 
To: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673 
Call-ID: 11100604432@192.168.57.71 
CSeq: 2 BYE 
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Content-Length:  0 

14.3.3 Push-to-talk over Cellular Session Establishment 

14.3.3.1 INVITE 
INVITE sip:PoCConferenceFactoryURI.networkA.net SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp 
Route: <sip:SIPcoreA.networkA.net:7531;comp=sigcomp> 
Call-ID: b0957730@networkA.net-1000 
CSeq: 48733 INVITE 
Contact: <sip:PoC-ClientA@networkA.net;comp=sigcomp>;+g.poc.talkburst 
User-Agent: PoC-client/OMA1.0 Acme-Talk5000/v1.01 
From: <sip:PoC-ClientA@networkA.net>;tag=f3d981df 
To: <sip:PoC_ServerA@networkA.net> 
P-Preferred-Identity: "PoC User A" <sip:PoC-UserA@networkA.net> 
Accept-Contact: *;+g.poc.talkburst; require;explicit 
Privacy: Id 
Supported: Timer 
Session-Expires: 1800;refresher=uac 
Allow: INVITE,ACK,CANCEL,BYE,REFER,MESSAGE, SUBSCRIBE,NOTIFY, PUBLISH 
Content-Length: 194 
Content-Type: application/sdp 
 
v=0 
o=username 0 48732 IN IP6 5555::aaa:bbb:ccc:ddd 
s= 
t=0 0 
c=IN IP6 5555::aaa:bbb:ccc:ddd 
m=audio 3456 RTP/AVP 97 
a=rtpmap:97 AMR 
a=rtcp:5560 
m=application 2000 udp TBCP 
a=fmtp:TBCP queuing=1; tb_priority=2; timestamp=1 

14.3.3.2 100 Trying 
SIP/2.0 100 Trying 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp 
From: <sip:PoC-ClientA@networkA.net>;tag=f3d981df 
To: <sip:PoC_ServerA@networkA.net> 
Call-ID: b0957730@networkA.net-1000 
CSeq: 48733 INVITE 
Content-Length: 0 

14.3.3.3 200 OK to INVITE 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp 
Record-Route: sip:SIPcoreA.networkA.net:7531;comp=sigcomp 
From: <sip:PoC-ClientA@networkA.net>;tag=f3d981df 
To: <sip:PoC_ServerA@networkA.net> 
Call-ID: b0957730@networkA.net-1000 
CSeq: 48733 INVITE 
Contact: <sip:Pre-establishedSessionIdentityA@PoC-ServerA.networkA.net>;+g.poc.talkburst 
Accept: application/sdp 
P-Asserted-Identity: <sip:PoC-ServerA@networkA.net> 
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Server: PoC-serv/OMA1.0 
Require: Timer 
Session-Expires: 1800;refresher=uac 
Allow: INVITE,ACK,CANCEL,BYE,REFER,MESSAGE, SUBSCRIBE,NOTIFY, PUBLISH 
Content-Length: 197 
Content-Type: application/sdp 
 
v=0 
o=username 0 48732 IN IP6 57777::eee:fff:aaa:bbb 
t=0 0 
c=IN IP6 57777::eee:fff:aaa:bbb 
m=audio 57787 RTP/AVP 97 
a=rtpmap:97 AMR 
a=rtcp:57000 
m=application 57790 udp TBCP 
a=fmtp:TBCP queuing=1; tb_priority=2; timestamp=1 

14.3.3.4 ACK 
ACK sip:PoCConferenceFactoryURI.networkA.net SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp 
Route: <sip:SIPcoreA.networkA.net:7531;comp=sigcomp> 
Call-ID: b0957730@networkA.net-1000 
CSeq: 48733 ACK 
User-Agent: PoC-client/OMA1.0 Acme-Talk5000/v1.01 
From: <sip:PoC-ClientA@networkA.net>;tag=f3d981df 
To: <sip:PoC_ServerA@networkA.net> 
Content-Length: 0 

14.3.3.5 BYE 
BYE sip:PoCConferenceFactoryURI.networkA.net SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp 
Route: <sip:SIPcoreA.networkA.net:7531;comp=sigcomp> 
Call-ID: b0957730@networkA.net-1000 
CSeq: 48734 BYE 
User-Agent: PoC-client/OMA1.0 Acme-Talk5000/v1.01 
From: <sip:PoC-ClientA@networkA.net>;tag=f3d981df 
To: <sip:PoC_ServerA@networkA.net> 
Content-Length: 0 

14.3.3.6 200 OK to BYE 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp 
From: <sip:PoC-ClientA@networkA.net>;tag=f3d981df 
To: <sip:PoC_ServerA@networkA.net> 
Call-ID: b0957730@networkA.net-1000 
CSeq: 48734 BYE 
Content-Length: 0 

14.3.4 3GPP Video Call 

14.3.4.1 INVITE 
INVITE tel:+1-212-555-2222 SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
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Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr> 
P-Preferred-Identity: "John Doe" <sip:user1_public1@home1.net> 
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11 
Privacy: none 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222> 
Call-ID: cb03a0s09a2sdfglkj490333  
Cseq: 127 INVITE 
Require: precondition, sec-agree 
Proxy-Require: sec-agree 
Supported: 100rel 
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321; 
port-c=8642; port-s=7531 
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp> 
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE 
Content-Type: application/sdp  
Content-Length: 523 
 
v=0 
o=- 2987933615 2987933615 IN IP6 5555::aaa:bbb:ccc:ddd 
s=- 
c=IN IP6 5555::aaa:bbb:ccc:ddd  
t=0 0 
m=video 3400 RTP/AVP 98 99 
b=AS:75 
a=curr:qos local none 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos none remote sendrecv 
a=rtpmap:98 H263 
a=fmtp:98 profile-level-id=0 
a=rtpmap:99 MP4V-ES 
m=audio 3456 RTP/AVP 97 96 
b=AS:25.4 
a=curr:qos local none 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos none remote sendrecv 
a=rtpmap:97 AMR  
a=fmtp:97 mode-set=0,2,5,7; maxframes=2 
a=rtpmap:96 telephone-event 

14.3.4.2 100 Trying 
SIP/2.0 100 Trying 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222> 
Call-ID: cb03a0s09a2sdfglkj490333  
Cseq: 127 INVITE 
Content-Length: 0 

14.3.4.3 183 Session Progress 
SIP/2.0 183 Session Progress 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
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Record-Route: <sip:pcscf2.visited2.net;lr>, <sip:scscf2.home2.net;lr>, 
<sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp> 
P-Asserted-Identity: "John Smith" <sip:user2_public1@home2.net>, <tel:+1-212-555-2222> 
Privacy: none 
P-Media-Authorization: 
0020000100100101706466322e76697369746564322e6e6574000c020139425633303732 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159  
Call-ID: cb03a0s09a2sdfglkj490333 
Cseq: 127 INVITE 
Require: 100rel 
Contact: <sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp> 
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE 
RSeq: 9021 
Content-Type: application/sdp 
Content-Length: 584 
 
v=0 
o=- 2987933623 2987933623 IN IP6 5555::eee:fff:aaa:bbb 
s=- 
c=IN IP6 5555::eee:fff:aaa:bbb 
t=0 0 
m=video 10001 RTP/AVP 98 99 
b=AS:75 
a=curr:qos local none 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos mandatory remote sendrecv 
a=conf:qos remote sendrecv 
a=rtpmap:98 H263 
a=rtpmap:99 MP4V-ES 
a=fmtp:98 profile-level-id=0 
m=audio 6544 RTP/AVP 97 96 
b=AS:25.4 
a=curr:qos local none 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos mandatory remote sendrecv 
a=conf:qos remote sendrecv 
a=rtpmap:97 AMR 
a=fmtp:97 mode-set=0,2,5,7; maxframes=2 
a=rtpmap:96 telephone-event 

14.3.4.4 PRACK to 183 
PRACK sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11 
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>, 
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr> 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
Cseq: 128 PRACK 
Require: precondition, sec-agree 
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Proxy-Require: sec-agree 
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321; 
port-c=8642; port-s=7531 
RAck: 9021 127 INVITE 
Content-Type: application/sdp 
Content-Length: 509 
 
v=0 
o=- 2987933615 2987933616 IN IP6 5555::aaa:bbb:ccc:ddd 
s=- 
c=IN IP6 5555::aaa:bbb:ccc:ddd 
t=0 0 
m=video 3400 RTP/AVP 98 
b=AS:75 
a=curr:qos local none 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos mandatory remote sendrecv 
a=rtpmap:98 H263 
a=fmtp:98 profile-level-id=0 
m=audio 3456 RTP/AVP 97 96 
b=AS:25.4 
a=curr:qos local none 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos mandatory remote sendrecv 
a=rtpmap:97 AMR 
a=fmtp:97 mode-set=0,2,5,7; maxframes=2 
a=rtpmap:96 telephone-event 

14.3.4.5 200 OK to PRACK 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
CSeq: 128 PRACK 
Content-Type: application/sdp 
Content-Length: 562 
 
v=0 
o=- 2987933623 2987933624 IN IP6 5555::eee:fff:aaa:bbb 
s=- 
c=IN IP6 5555::eee:fff:aaa:bbb 
t=0 0 
m=video 10001 RTP/AVP 98 
b=AS:75 
a=curr:qos local none 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos mandatory remote sendrecv 
a=conf:qos remote sendrecv 
a=rtpmap:98 H263 
a=fmtp:98 profile-level-id=0 
m=audio 6544 RTP/AVP 97 96 
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b=AS:25.4 
a=curr:qos local none 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos mandatory remote sendrecv 
a=conf:qos remote sendrecv 
a=rtpmap:97 AMR 
a=fmtp:97 mode-set=0,2,5,7; maxframes=2 
a=rtpmap:96 telephone-event 

14.3.4.6 UPDATE 
UPDATE sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>, 
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr> 
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
Cseq: 129 UPDATE 
Require: sec-agree 
Proxy-Require: sec-agree 
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321; 
port-c=8642; port-s=7531 
Content-Type: application/sdp 
Content-Length: 517 
 
v=0 
o=- 2987933615 2987933617 IN IP6 5555::aaa:bbb:ccc:ddd 
s=- 
c=IN IP6 5555::aaa:bbb:ccc:ddd 
t=0 0 
m=video 3400 RTP/AVP 98 
b=AS:75 
a=curr:qos local sendrecv 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos mandatory remote sendrecv 
a=rtpmap:98 H263 
a=fmtp:98 profile-level-id=0 
m=audio 3456 RTP/AVP 97 96 
b=AS:25.4 
a=curr:qos local sendrecv 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos mandatory remote sendrecv 
a=rtpmap:97 AMR 
a=fmtp:97 mode-set=0,2,5,7; maxframes=2 
a=rtpmap:96 telephone-event 

14.3.4.7 200 OK to UPDATE 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
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From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
Cseq: 129 UPDATE 
Content-Type: application/sdp 
Content-Length: 526 
 
v=0 
o=- 2987933623 2987933625 IN IP6 5555::eee:fff:aaa:bbb 
s=- 
c=IN IP6 5555::eee:fff:aaa:bbb 
t=0 0 
m=video 10001 RTP/AVP 98 
b=AS:75 
a=curr:qos local sendrecv 
a=curr:qos remote sendrecv 
a=des:qos mandatory local sendrecv 
a=des:qos mandatory remote sendrecv 
a=rtpmap:98 H263 
a=fmtp:98 profile-level-id=0 
m=audio 6544 RTP/AVP 97 96 
b=AS:25.4 
a=curr:qos local sendrecv 
a=curr:qos remote sendrecv 
a=des:qos mandatory local sendrecv 
a=des:qos mandatory remote sendrecv 
a=rtpmap:97 AMR 
a=fmtp:97 mode-set=0,2,5,7; maxframes=2 
a=rtpmap:96 telephone-event 

14.3.4.8 180 Ringing 
SIP/2.0 180 Ringing 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Record-Route: <sip:pcscf2.visited2.net;lr>, <sip:scscf2.home2.net;lr>, 
<sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp> 
From: <sip:user1_public1@home1.net>;tag=171828  
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
Cseq: 129 UPDATE 
Require: 100rel 
Contact: <sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp> 
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE 
RSeq: 9022 
Content-Length: 0 

14.3.4.9 PRACK 
PRACK sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11 
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>, 
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr> 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159 
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Call-ID: cb03a0s09a2sdfglkj490333 
Require: sec-agree 
Proxy-Require: sec-agree 
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321; 
port-c=8642; port-s=7531 
Cseq: 130 PRACK 
RAck: 9022 127 INVITE 
Content-Length: 0 

14.3.4.10 200 OK to PRACK 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
Cseq: 130 PRACK 
Content-Length: 0 

14.3.4.11 200 OK to INVITE 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Record-Route: <sip:pcscf2.visited2.net;lr>, <sip:scscf2.home2.net;lr>, 
<sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp> 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159  
Call-ID: cb03a0s09a2sdfglkj490333 
CSeq: 127 INVITE 
Contact: <sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp> 
Content-Type: application/sdp 
Content-Length: 584 
 
v=0 
o=- 2987933623 2987933623 IN IP6 5555::eee:fff:aaa:bbb 
s=- 
c=IN IP6 5555::eee:fff:aaa:bbb 
t=0 0 
m=video 10001 RTP/AVP 98 99 
b=AS:75 
a=curr:qos local none 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos mandatory remote sendrecv 
a=conf:qos remote sendrecv 
a=rtpmap:98 H263 
a=rtpmap:99 MP4V-ES 
a=fmtp:98 profile-level-id=0 
m=audio 6544 RTP/AVP 97 96 
b=AS:25.4 
a=curr:qos local none 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos mandatory remote sendrecv 
a=conf:qos remote sendrecv 
a=rtpmap:97 AMR 
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a=fmtp:97 mode-set=0,2,5,7; maxframes=2 
a=rtpmap:96 telephone-event 

14.3.4.12 ACK 
ACK sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>, 
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr> 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
Cseq: 127 ACK 
Content-Length: 0 

14.3.4.13 BYE 
BYE sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>, 
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr> 
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
Require: sec-agree 
Proxy-Require: sec-agree 
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321; 
port-c=8642; port-s=7531 
CSeq: 153 BYE 
Content-Length: 0 

14.3.4.14 200 OK to BYE 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP pcscf2.visited2.net:5088;branch=z9hG4bK361k21.1, SIP/2.0/UDP 
scscf2.home2.net;branch=z9hG4bK764z87.1, SIP/2.0/UDP 
scscf1.home1.net;branch=z9hG4bK332b23.1, SIP/2.0/UDP 
pcscf1.visited1.net;branch=z9hG4bK240f34.1, SIP/2.0/UDP 
[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
CSeq: 153 BYE 
Content-Length: 0 

14.3.5 3GPP Video Call with RE-INVITE and Unreliable Delivery of 
Provisional Responses 

14.3.5.1 INVITE 
INVITE tel:+1-212-555-2222 SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
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Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr> 
P-Preferred-Identity: "John Doe" <sip:user1_public1@home1.net> 
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11 
Privacy: none 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222> 
Call-ID: cb03a0s09a2sdfglkj490333  
Cseq: 127 INVITE 
Require: sec-agree 
Proxy-Require: sec-agree 
Supported: 100rel 
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321; 
port-c=8642; port-s=7531 
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp> 
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE 
Content-Type: application/sdp  
Content-Length: 319 
 
v=0 
o=- 2987933615 2987933615 IN IP6 5555::aaa:bbb:ccc:ddd 
s=- 
c=IN IP6 5555::aaa:bbb:ccc:ddd  
t=0 0 
m=video 3400 RTP/AVP 98 99 
b=AS:75 
a=inactive 
a=rtpmap:98 H263 
a=fmtp:98 profile-level-id=0 
a=rtpmap:99 MP4V-ES 
m=audio 3456 RTP/AVP 97 96 
b=AS:25.4 
a=rtpmap:97 AMR  
a=fmtp:97 mode-set=0,2,5,7; maxframes=2 
a=rtpmap:96 telephone-event 

14.3.5.2 100 Trying 
SIP/2.0 100 Trying 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222> 
Call-ID: cb03a0s09a2sdfglkj490333  
Cseq: 127 INVITE 
Content-Length: 0 

14.3.5.3 180 Ringing 
SIP/2.0 180 Ringing 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Record-Route: <sip:pcscf2.visited2.net;lr>, <sip:scscf2.home2.net;lr>, 
<sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp> 
From: <sip:user1_public1@home1.net>;tag=171828  
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
Cseq: 129 UPDATE 
Require: 100rel 
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Contact: <sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp> 
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE 
RSeq: 9022 
Content-Type: application/sdp 
Content-Length: 360 
 
v=0 
o=- 2987933623 2987933623 IN IP6 5555::eee:fff:aaa:bbb 
s=- 
c=IN IP6 5555::eee:fff:aaa:bbb 
t=0 0 
m=video 10001 RTP/AVP 98 99 
b=AS:75 
a=conf:qos remote sendrecv 
a=rtpmap:98 H263 
a=rtpmap:99 MP4V-ES 
a=fmtp:98 profile-level-id=0 
m=audio 6544 RTP/AVP 97 96 
b=AS:25.4 
a=conf:qos remote sendrecv 
a=rtpmap:97 AMR 
a=fmtp:97 mode-set=0,2,5,7; maxframes=2 
a=rtpmap:96 telephone-event 
a=inactive 

14.3.5.4 200 OK to INVITE 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Record-Route: <sip:pcscf2.visited2.net;lr>, <sip:scscf2.home2.net;lr>, 
<sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp> 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159  
Call-ID: cb03a0s09a2sdfglkj490333 
CSeq: 127 INVITE 
Contact: <sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp> 
Content-Type: application/sdp 
Content-Length: 360 
 
v=0 
o=- 2987933623 2987933623 IN IP6 5555::eee:fff:aaa:bbb 
s=- 
c=IN IP6 5555::eee:fff:aaa:bbb 
t=0 0 
m=video 10001 RTP/AVP 98 99 
b=AS:75 
a=conf:qos remote sendrecv 
a=rtpmap:98 H263 
a=rtpmap:99 MP4V-ES 
a=fmtp:98 profile-level-id=0 
m=audio 6544 RTP/AVP 97 96 
b=AS:25.4 
a=conf:qos remote sendrecv 
a=rtpmap:97 AMR 
a=fmtp:97 mode-set=0,2,5,7; maxframes=2 
a=rtpmap:96 telephone-event 
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a=inactive 

14.3.5.5 ACK 
ACK sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>, 
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr> 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
Cseq: 127 ACK 
Content-Length: 0 

14.3.5.6 INVITE 
INVITE tel:+1-212-555-2222 SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr> 
P-Preferred-Identity: "John Doe" <sip:user1_public1@home1.net> 
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11 
Privacy: none 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222> 
Call-ID: cb03a0s09a2sdfglkj490333  
Cseq: 128 INVITE 
Require: sec-agree 
Proxy-Require: sec-agree 
Supported: 100rel 
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321; 
port-c=8642; port-s=7531 
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp> 
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE 
Content-Type: application/sdp  
Content-Length: 280 
 
v=0 
o=- 2987933615 2987933616 IN IP6 5555::aaa:bbb:ccc:ddd 
s=- 
c=IN IP6 5555::aaa:bbb:ccc:ddd 
t=0 0 
m=video 3400 RTP/AVP 98 
b=AS:75 
a=rtpmap:98 H263 
a=fmtp:98 profile-level-id=0 
m=audio 3456 RTP/AVP 97 96 
b=AS:25.4 
a=fmtp:97 mode-set=0,2,5,7; maxframes=2 
a=rtpmap:96 telephone-event 
a=sendrecv 

14.3.5.7 200 OK to INVITE 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
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Record-Route: <sip:pcscf2.visited2.net;lr>, <sip:scscf2.home2.net;lr>, 
<sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp> 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159  
Call-ID: cb03a0s09a2sdfglkj490333 
CSeq: 128 INVITE 
Contact: <sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp> 
Content-Type: application/sdp 
Content-Length: 338 
 
v=0 
o=- 2987933623 2987933624 IN IP6 5555::eee:fff:aaa:bbb 
s=- 
c=IN IP6 5555::eee:fff:aaa:bbb 
t=0 0 
m=video 10001 RTP/AVP 98 
b=AS:75 
a=conf:qos remote sendrecv 
a=rtpmap:98 H263 
a=fmtp:98 profile-level-id=0 
m=audio 6544 RTP/AVP 97 96 
b=AS:25.4 
a=conf:qos remote sendrecv 
a=rtpmap:97 AMR 
a=fmtp:97 mode-set=0,2,5,7; maxframes=2 
a=rtpmap:96 telephone-event 

14.3.5.8 ACK 
ACK sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>, 
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr> 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
Cseq: 128 ACK 
Content-Length: 0 

14.3.6 3GPP Video Call with RE-INVITE and Reliable Delivery of 
Provisional Responses 

14.3.6.1 INVITE 
Same as the INVITE message presented in Section 14.3.5.1. 

14.3.6.2 100 Trying 
Same as the 100 Trying message presented in Section 14.3.5.2. 

14.3.6.3 180 Ringing 
Same as the 180 Ringing message presented in Section 14.3.5.3. 

14.3.6.4 PRACK to 180 Ringing 
PRACK sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0 
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Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11 
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>, 
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr> 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
Require: sec-agree 
Proxy-Require: sec-agree 
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321; 
port-c=8642; port-s=7531 
Cseq: 128 PRACK 
RAck: 9022 127 INVITE 
Content-Length: 0 

14.3.6.5 200 OK to PRACK 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222>;tag=314159 
Call-ID: cb03a0s09a2sdfglkj490333 
Cseq: 128 PRACK 
Content-Length: 0 

14.3.6.6 200 OK to INVITE 
Same as the 200 OK message presented in Section 14.3.5.4. 

14.3.6.7 ACK 
Same as the ACK message presented in Section 14.3.5.5. 

14.3.6.8 INVITE 
Same as the INVITE message presented in Section 14.3.5.6. 

14.3.6.9 200 OK to INVITE 
Same as the 200 OK message presented in Section 14.3.5.7. 

14.3.6.10 ACK 
Same as the ACK message presented in Section 14.3.5.8. 

14.3.7 3GPP Registration Sequence 

14.3.7.1 REGISTER 
REGISTER sip:registrar.home1.net SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd];comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11 
From: <sip:user1_public1@home1.net>;tag=4fa3 
To: <sip:user1_public1@home1.net> 
Contact: <sip:[5555::aaa:bbb:ccc:ddd];comp=sigcomp>;expires=600000 
Call-ID: apb03a0s09dkjdfglkj49111 
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Authorization: Digest username="user1_private@home1.net", realm="registrar.home1.net", 
nonce="", uri="sip:registrar.home1.net", response="" 
Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=23456789; spi-s=12345678; port-
c=2468; port-s=1357 
Require: sec-agree 
Proxy-Require: sec-agree  
CSeq: 1 REGISTER 
Supported: path 
Content-Length: 0 

14.3.7.2 401 Unauthorized 
SIP/2.0 401 Unauthorized 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd];comp=sigcomp;branch=z9hG4bKnashds7 
From: <sip:user1_public1@home1.net>;tag=4fa3 
To: <sip:user1_public1@home1.net> 
Call-ID: apb03a0s09dkjdfglkj49111 
WWW-Authenticate: Digest realm="registrar.home1.net", nonce=base64(RAND + AUTN + 
server specific data), algorithm=AKAv1-MD5 
Security-Server: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321; 
port-c=8642; port-s=7531 
CSeq: 1 REGISTER 
Content-Length: 0 

14.3.7.3 REGISTER 
REGISTER sip:registrar.home1.net SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11 
From: <sip:user1_public1@home1.net>;tag=4fa3 
To: <sip:user1_public1@home1.net> 
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>;expires=600000 
Call-ID: apb03a0s09dkjdfglkj49111 
Authorization: Digest username="user1_private@home1.net", realm="registrar.home1.net", 
nonce=base64(RAND + AUTN + server specific data), algorithm=AKAv1-MD5, 
uri="sip:registrar.home1.net", response="6629fae49393a05397450978507c4ef1" 
Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=23456789; spi-s=12345678; port-
c=2468; port-s=1357 
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321; 
port-c=8642; port-s=7531 
Require: sec-agree 
Proxy-Require: sec-agree 
CSeq: 2 REGISTER 
Supported: path 
Content-Length: 0 

14.3.7.4 200 OK 
SIP/2.0 200 OK 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Path: <sip:term@pcscf1.visited1.net;lr> 
Service-Route: <sip:orig@scscf1.home1.net;lr> 
From: <sip:user1_public1@home1.net>;tag=4fa3 
To: <sip:user1_public1@home1.net> 
Call-ID: apb03a0s09dkjdfglkj49111 
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>;expires=600000 
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CSeq: 2 REGISTER 
Date: Wed, 11 July 2001 08:49:37 GMT 
P-Associated-URI: <sip:user1_public2@home1.net>, <sip:user1_public3@home1.net>, 
<sip:+1-212-555-1111@home1.net;user=phone> 
Content-Length: 0 

14.4 Appendix D – Measurement Results: Linear Search versus 
Hashing 

14.4.1 Linear Search 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message

Compression ratio 
(compr/uncompr)

INVITE 1437 750 983 0,522
100 Trying 254 21 266 0,083
183 Session Progress 1440 520 765 0,361
PRACK (1) 1318 110 151 0,083
200 OK (1) 904 44 85 0,049
UPDATE 1291 51 99 0,040
200 OK (2) 865 47 95 0,054
180 Ringing 563 29 77 0,052
PRACK (2) 717 34 96 0,047
200 OK (3) 260 14 69 0,054
200 OK (4) 1133 23 78 0,020
ACK 458 15 91 0,033
TOTAL 10640 1658 2855 0,156

Message User CPU time 
[ms], 
compression

User CPU time 
[ms], 
decompression

Wall-clock time 
[us], 
compression

Wall-clock time 
[us], 
decompression

INVITE 3,86 2,00 4456,29 2229,86
100 Trying 0,14 0,29 315,86 658,71
183 Session Progress 3,00 1,86 3209,86 1884,14
PRACK (1) 0,71 0,57 1025,14 902,71
200 OK (1) 0,43 0,57 634,29 676,29
UPDATE 8,00 0,57 8085,00 777,43
200 OK (2) 6,00 0,43 6153,14 815,43
180 Ringing 6,14 0,43 6239,71 684,71
PRACK (2) 0,71 0,57 608,57 659,86
200 OK (3) 0,29 0,43 365,00 559,43
200 OK (4) 0,71 0,43 646,71 783,43
ACK 0,00 0,43 380,14 595,14
TOTAL 30,00 8,57 32119,71 11227,14  
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14.4.2 Hashing 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message

Compression 
ratio

INVITE 1437 739 972 0,514
100 Trying 254 20 265 0,079
183 Session Progress 1440 516 761 0,358
PRACK (1) 1318 109 150 0,083
200 OK (1) 904 43 84 0,048
UPDATE 1291 54 102 0,042
200 OK (2) 865 50 98 0,058
180 Ringing 563 30 78 0,053
PRACK (2) 717 34 96 0,047
200 OK (3) 260 16 71 0,062
200 OK (4) 1133 23 78 0,020
ACK 458 15 91 0,033
TOTAL 10640 1649 2846 0,155

Message User CPU time 
[ms], 
compression

User CPU time 
[ms], 
decompression

Wall-clock time 
[us], 
compression

Wall-clock time 
[us], 
decompression

INVITE 1,29 2,14 1550,00 2234,29
100 Trying 0,86 0,43 1204,43 644,29
183 Session Progress 0,43 1,57 772,71 2013,14
PRACK (1) 0,43 0,86 699,71 948,29
200 OK (1) 0,43 0,29 569,29 725,14
UPDATE 1,00 0,43 1005,14 749,57
200 OK (2) 0,86 0,71 761,71 693,86
180 Ringing 1,00 0,43 1036,29 657,57
PRACK (2) 1,00 0,29 1103,00 708,43
200 OK (3) 0,71 0,43 748,71 672,57
200 OK (4) 1,00 0,43 1144,71 642,43
ACK 0,86 0,57 875,14 575,71
TOTAL 9,86 8,57 11470,86 11265,29  

14.4.3 Time Requirement of Hash Map Updates 
Message Time, hash map 

update [us]
Time, 
compression [us]

Percentage of time 
spent updating the 
hash map

INVITE 1007 690 59,34 %
100 Trying 1096 254 81,19 %
183 Session Progress 272 677 28,66 %
PRACK (1) 303 573 34,59 %
200 OK (1) 302 355 45,97 %
UPDATE 669 525 56,03 %
200 OK (2) 515 386 57,16 %
180 Ringing 874 332 72,47 %
PRACK (2) 883 321 73,34 %
200 OK (3) 657 246 72,76 %
200 OK (4) 829 442 65,22 %
ACK 745 256 74,43 %
AVG 679,33 421,42 60,10 %  
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14.5 Appendix E – Measurement Results: Length of Look-ahead 
Buffer 

14.5.1 Buffer Length 18 Bytes, 4 Bits Used to Encode Length Values 
Message Length 

uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message [bytes]

Compression ratio 
(compr/uncompr)

INVITE 1437 694 927 0,483
100 Trying 254 42 287 0,165
183 Session Progress 1440 515 760 0,358
PRACK (1) 1318 227 268 0,172
200 OK (1) 904 137 178 0,152
UPDATE 1291 188 236 0,146
200 OK (2) 865 127 175 0,147
180 Ringing 563 87 135 0,155
PRACK (2) 717 107 169 0,149
200 OK (3) 260 40 95 0,154
200 OK (4) 1133 155 210 0,137
ACK 458 65 141 0,142
TOTAL 10640 2384 3581 0,224

Message User CPU time 
[ms], 
compression

User CPU time 
[ms], 
decompression

Wall-clock time 
[us], 
compression

Wall-clock time 
[us], 
decompression

INVITE 1,43 2,14 1543,00 2282,86
100 Trying 1,00 0,00 1192,71 692,71
183 Session Progress 1,00 2,00 797,29 2064,86
PRACK (1) 0,86 1,14 761,57 1386,43
200 OK (1) 0,43 0,86 618,00 1019,29
UPDATE 0,86 1,00 1088,00 1310,29
200 OK (2) 0,86 0,43 820,14 959,71
180 Ringing 1,00 1,00 1056,29 885,43
PRACK (2) 1,00 0,86 1144,00 1122,57
200 OK (3) 0,29 0,29 758,71 701,43
200 OK (4) 1,57 1,00 1264,14 1235,29
ACK 0,71 0,57 928,14 811,14
TOTAL 11,00 11,29 11972,00 14472,00  
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14.5.2 Buffer Length 66 Bytes, 6 Bits Used to Encode Length Values 
Message Length 

uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message [bytes]

Compression ratio 
(compr/uncompr)

INVITE 1437 706 939 0,491
100 Trying 254 24 269 0,094
183 Session Progress 1440 497 742 0,345
PRACK (1) 1318 125 166 0,095
200 OK (1) 904 61 102 0,067
UPDATE 1291 78 126 0,060
200 OK (2) 865 62 110 0,072
180 Ringing 563 44 92 0,078
PRACK (2) 717 50 112 0,070
200 OK (3) 260 20 75 0,077
200 OK (4) 1133 50 105 0,044
ACK 458 24 100 0,052
TOTAL 10640 1741 2938 0,164

Message User CPU time 
[ms], 
compression

User CPU time 
[ms], 
decompression

Wall-clock time 
[us], 
compression

Wall-clock time 
[us], 
decompression

INVITE 1,43 2,00 1538,29 2183,14
100 Trying 1,00 0,29 1181,86 652,14
183 Session Progress 0,71 1,57 781,29 1984,29
PRACK (1) 0,71 0,71 711,86 1019,71
200 OK (1) 0,57 0,57 587,86 775,00
UPDATE 0,86 0,57 1028,43 838,86
200 OK (2) 0,57 0,29 773,29 723,14
180 Ringing 1,00 0,57 1039,14 729,29
PRACK (2) 1,00 0,71 1111,57 785,43
200 OK (3) 0,57 0,43 752,71 688,29
200 OK (4) 1,29 0,71 1184,71 756,14
ACK 0,71 0,29 891,43 614,57
TOTAL 10,43 8,71 11582,43 11750,00  
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14.5.3 Buffer Length 258 Bytes, 8 Bits Used to Encode Length Values 
Message Length 

uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message [bytes]

Compression ratio 
(compr/uncompr)

INVITE 1437 739 972 0,514
100 Trying 254 20 265 0,079
183 Session Progress 1440 516 761 0,358
PRACK (1) 1318 109 150 0,083
200 OK (1) 904 43 84 0,048
UPDATE 1291 54 102 0,042
200 OK (2) 865 50 98 0,058
180 Ringing 563 30 78 0,053
PRACK (2) 717 34 96 0,047
200 OK (3) 260 16 71 0,062
200 OK (4) 1133 23 78 0,020
ACK 458 15 91 0,033
TOTAL 10640 1649 2846 0,155

Message User CPU time 
[ms], 
compression

User CPU time 
[ms], 
decompression

Wall-clock time 
[us], 
compression

Wall-clock time 
[us], 
decompression

INVITE 1,29 2,14 1550,00 2234,29
100 Trying 0,86 0,43 1204,43 644,29
183 Session Progress 0,43 1,57 772,71 2013,14
PRACK (1) 0,43 0,86 699,71 948,29
200 OK (1) 0,43 0,29 569,29 725,14
UPDATE 1,00 0,43 1005,14 749,57
200 OK (2) 0,86 0,71 761,71 693,86
180 Ringing 1,00 0,43 1036,29 657,57
PRACK (2) 1,00 0,29 1103,00 708,43
200 OK (3) 0,71 0,43 748,71 672,57
200 OK (4) 1,00 0,43 1144,71 642,43
ACK 0,86 0,57 875,14 575,71
TOTAL 9,86 8,57 11470,86 11265,29  

14.6 Appendix F – Measurement Results: Length of Shared States 

14.6.1 Shared State Length 500 Bytes 
Message Length 

uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message 
[bytes]

Compression ratio 
(compr/uncompr)

Avg time [us], 
compression

Avg time [us], 
decompression

INVITE 1437 739 972 0,514 1550,00 2234,29
100 Trying 254 20 265 0,079 1204,43 644,29
183 Progress 1440 516 761 0,358 772,71 2013,14
PRACK (1) 1318 109 150 0,083 699,71 948,29
200 OK (1) 904 43 84 0,048 569,29 725,14
UPDATE 1291 54 102 0,042 1005,14 749,57
200 OK (2) 865 50 98 0,058 761,71 693,86
180 Ringing 563 30 78 0,053 1036,29 657,57
PRACK (2) 717 34 96 0,047 1103,00 708,43
200 OK (3) 260 16 71 0,062 748,71 672,57
200 OK (4) 1133 23 78 0,020 1144,71 642,43
ACK 458 15 91 0,033 875,14 575,71
TOTAL 10640 1649 2846 0,155 11470,86 11265,29  
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14.6.2 Shared State Length 750 Bytes 
Message Length 

uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message 
[bytes]

Compression 
ratio 
(compr/uncompr)

Avg time [us], 
compression

Avg time [us], 
decompression

INVITE 1437 739 973 0,514 1592,57 2171,71
100 Trying 254 21 267 0,083 1321,14 651,00
183 Progress 1440 507 753 0,352 834,71 1993,29
PRACK (1) 1318 74 115 0,056 836,57 802,86
200 OK (1) 904 40 81 0,044 701,57 703,71
UPDATE 1291 54 102 0,042 1272,14 763,43
200 OK (2) 865 40 88 0,046 1164,00 637,00
180 Ringing 563 26 74 0,046 1061,29 631,14
PRACK (2) 717 27 89 0,038 1294,14 662,86
200 OK (3) 260 9 64 0,035 989,14 516,43
200 OK (4) 1133 23 78 0,020 1152,86 651,86
ACK 458 15 91 0,033 1175,57 574,71
TOTAL 10640 1575 2775 0,148 13395,71 10760,00  

14.6.3 Shared State Length 1000 Bytes 
Message Length 

uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message 
[bytes]

Compression ratio 
(compr/uncompr)

Avg time [us], 
compression

Avg time [us], 
decompression

INVITE 1437 739 972 0,514 1545,00 2245,29
100 Trying 254 21 266 0,083 1327,86 654,71
183 Progress 1440 436 681 0,303 758,71 1778,14
PRACK (1) 1318 73 114 0,055 830,86 872,14
200 OK (1) 904 43 84 0,048 724,29 669,29
UPDATE 1291 52 100 0,040 1597,71 772,00
200 OK (2) 865 38 86 0,044 1532,71 660,71
180 Ringing 563 23 71 0,041 1096,71 643,00
PRACK (2) 717 29 91 0,040 1482,00 662,57
200 OK (3) 260 9 64 0,035 1094,71 526,71
200 OK (4) 1133 23 78 0,020 1215,29 660,71
ACK 458 15 91 0,033 1472,57 590,57
TOTAL 10640 1501 2698 0,141 14678,43 10735,86  

14.6.4 Shared State Length 1500 Bytes 
Message Length 

uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message 
[bytes]

Compression 
ratio 
(compr/uncompr)

Avg time [us], 
compression

Avg time [us], 
decompression

INVITE 1437 739 972 0,514 1564,57 2243,29
100 Trying 254 21 266 0,083 1456,14 667,71
183 Progress 1440 295 540 0,205 731,86 1538,14
PRACK (1) 1318 70 111 0,053 949,43 797,71
200 OK (1) 904 40 81 0,044 1267,86 762,57
UPDATE 1291 52 100 0,040 2140,00 806,29
200 OK (2) 865 38 86 0,044 1907,00 692,00
180 Ringing 563 29 77 0,052 1169,57 656,29
PRACK (2) 717 27 89 0,038 1940,71 668,43
200 OK (3) 260 9 64 0,035 1686,00 533,29
200 OK (4) 1133 26 81 0,023 1199,43 670,86
ACK 458 15 91 0,033 1840,29 582,29
TOTAL 10640 1361 2558 0,128 17852,86 10618,86  
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14.7 Appendix G – Measurement Results: Secure Hash Algorithm 
Input Length [bytes] SHA-1 hash of the 

input, avg time [us]
SHA-1 hash of the 
input, standard 
deviation [us]

200 OK (3) 260 99,70 5,03
ACK 458 120,90 30,46
PRACK (2) 717 130,50 30,15
200 OK (1) 904 136,10 19,72
200 OK (4) 1133 161,50 25,33
183 Session Progress 1440 167,60 21,37
UDVM memory snapshot 4096 4096 283,42 6,30
UDVM memory snapshot 8192 8192 408,25 26,59
UDVM memory snapshot 16384 16384 559,17 36,81  

14.8 Appendix H – Measurement Results: SigComp Mechanisms 

14.8.1 Basic Compression 

14.8.1.1 DMS 4096 Bytes 
Message Length 

uncompr
Length 
compr

Length of 
SigComp 
message

Length of 
SigComp 
message, 
bytecode 
saved

Cumulative 
amount of 
state 
memory 
used 
[bytes]

Compr ratio 
(SigComp/unc
ompr)

Compr ratio 
(SigComp/unc
ompr), 
bytecode 
saved

INVITE 1437 1085 1164 1164 0 0,810 0,810
100 Trying 254 276 355 355 0 1,398 1,398
183 Progress 1440 1027 1106 1106 0 0,768 0,768
PRACK (1) 1318 996 1075 1006 0 0,816 0,763
200 OK (1) 904 641 720 651 0 0,796 0,720
UPDATE 1291 956 1035 966 0 0,802 0,748
200 OK (2) 865 625 704 635 0 0,814 0,734
180 Ringing 563 490 569 500 0 1,011 0,888
PRACK (2) 717 645 724 655 0 1,010 0,914
200 OK (3) 260 279 358 289 0 1,377 1,112
200 OK (4) 1133 759 838 769 0 0,740 0,679
ACK 458 397 476 407 0 1,039 0,889
TOTAL 10640 8176 9124 8503 0,858 0,799

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compr 
time [us]

Avg time [us], 
decompr

Standard 
deviation, 
decompr 
time [us]

INVITE 1541 38,65 2799 71,16
100 Trying 1272 31,05 1167 27,60
183 Progress 1020 27,07 2585 50,71
PRACK (1) 1272 32,48 2579 44,59
200 OK (1) 1151 27,13 1873 22,70
UPDATE 1257 42,21 2502 79,26
200 OK (2) 977 25,57 1845 25,61
180 Ringing 892 44,26 1628 60,31
PRACK (2) 1060 24,40 1919 56,65
200 OK (3) 681 33,21 1231 45,58
200 OK (4) 880 70,55 2114 101,55
ACK 810 36,03 1410 38,46
TOTAL 12814 23650  
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14.8.1.2 DMS 8192 Bytes 
Message Length 

uncompr
Length 
compr

Length of 
SigComp 
message

Length of 
SigComp 
message, 
bytecode 
saved

Cumulativ
e amount 
of state 
memory 
used 
[bytes]

Compr 
ratio 
(SigComp/
uncompr)

Compr 
ratio 
(SigComp/
uncompr), 
bytecode 
saved

INVITE 1437 1085 1164 1164 0 0,810 0,810
100 Trying 254 276 355 355 0 1,398 1,398
183 Session Prog. 1440 1027 1106 1106 0 0,768 0,768
PRACK (1) 1318 996 1075 1006 0 0,816 0,763
200 OK (1) 904 641 720 651 0 0,796 0,720
UPDATE 1291 956 1035 966 0 0,802 0,748
200 OK (2) 865 625 704 635 0 0,814 0,734
180 Ringing 563 490 569 500 0 1,011 0,888
PRACK (2) 717 645 724 655 0 1,010 0,914
200 OK (3) 260 279 358 289 0 1,377 1,112
200 OK (4) 1133 759 838 769 0 0,740 0,679
ACK 458 397 476 407 0 1,039 0,889
TOTAL 10640 8176 9124 8503 0,858 0,799

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compr 
time [us]

Avg time 
[us], 
decompr

Standard 
deviation, 
decompr 
time [us]

INVITE 1658 30,69 2744 67,57
100 Trying 1336 20,59 1193 26,87
183 Session Prog. 1069 36,44 2574 48,49
PRACK (1) 1402 36,42 2500 20,36
200 OK (1) 1304 29,01 1868 36,06
UPDATE 1406 33,73 2440 32,44
200 OK (2) 1113 35,29 1849 42,56
180 Ringing 1039 27,66 1558 32,67
PRACK (2) 1210 44,19 1878 73,89
200 OK (3) 762 26,76 1178 33,33
200 OK (4) 925 30,41 2088 26,80
ACK 919 44,25 1377 22,59
TOTAL 14145 23249  



Performance of Signalling Compression in the Third Generation Mobile Network 
 

 
Jouni Mäenpää                                                                                                          154                    

14.8.1.3 DMS 16384 Bytes 
Message Length 

uncompr
Length 
compr

Length of 
SigComp 
message

Length of 
SigComp 
message, 
bytecode 
saved

Cumulative 
amount of 
state 
memory 
used [bytes]

Compr 
ratio 
(SigComp/
uncompr)

Compr 
ratio 
(SigComp/
uncompr), 
bytecode 
saved

INVITE 1437 1085 1165 1165 0 0,811 0,811
100 Trying 254 276 356 356 0 1,402 1,402
183 Session Prog. 1440 1027 1107 1107 0 0,769 0,769
PRACK (1) 1318 996 1076 1006 0 0,816 0,763
200 OK (1) 904 641 721 651 0 0,798 0,720
UPDATE 1291 956 1036 966 0 0,802 0,748
200 OK (2) 865 625 705 635 0 0,815 0,734
180 Ringing 563 490 570 500 0 1,012 0,888
PRACK (2) 717 645 725 655 0 1,011 0,914
200 OK (3) 260 279 359 289 0 1,381 1,112
200 OK (4) 1133 759 839 769 0 0,741 0,679
ACK 458 397 477 407 0 1,041 0,889
TOTAL 10640 8176 9136 8506 0,859 0,799

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compr 
time [us]

Avg time 
[us], 
decompr

Standard 
deviation, 
decompr 
time [us]

INVITE 1719 26,36 2768 33,69
100 Trying 1350 42,37 1235 14,48
183 Session Prog. 1175 40,63 2546 52,17
PRACK (1) 1527 37,95 2530 74,34
200 OK (1) 1412 32,44 1898 28,60
UPDATE 1544 42,70 2445 28,60
200 OK (2) 1205 22,07 1877 32,86
180 Ringing 1152 20,47 1594 23,35
PRACK (2) 1301 41,84 1916 44,33
200 OK (3) 843 41,86 1228 38,43
200 OK (4) 1025 46,34 2132 92,16
ACK 1049 27,61 1444 51,38
TOTAL 15302 23613  
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14.8.2 Static Compression 

14.8.2.1 DMS 4096 Bytes 
Message Length 

uncompr
Length 
compr

Length of 
SigComp 
message

Length of 
SigComp 
message, 
bytecode 
saved

Cumulative 
amount of 
state 
memory 
used 
[bytes]

Compr 
ratio 
(SigComp/
uncompr)

Compr 
ratio 
(SigComp/
uncompr), 
bytecode 
saved

INVITE 1437 791 887 887 0 0,617 0,617
100 Trying 254 174 270 270 0 1,063 1,063
183 Session Prog. 1440 756 852 852 0 0,592 0,592
PRACK (1) 1318 739 835 749 0 0,634 0,568
200 OK (1) 904 448 544 458 0 0,602 0,507
UPDATE 1291 718 814 728 0 0,631 0,564
200 OK (2) 865 436 532 446 0 0,615 0,516
180 Ringing 563 339 435 349 0 0,773 0,620
PRACK (2) 717 491 587 501 0 0,819 0,699
200 OK (3) 260 183 279 193 0 1,073 0,742
200 OK (4) 1133 546 642 556 0 0,567 0,491
ACK 458 287 383 297 0 0,836 0,648
TOTAL 10640 5908 7060 6286 0,664 0,591

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compr 
time [us]

Avg time 
[us], 
decompr

Standard 
deviation, 
decompr 
time [us]

INVITE 1497 25,96 2455 64,91
100 Trying 937 31,18 1087 13,98
183 Session Prog. 987 22,40 2252 57,79
PRACK (1) 1337 23,44 2215 63,09
200 OK (1) 1183 29,98 1607 50,51
UPDATE 1272 38,28 2156 34,69
200 OK (2) 1002 44,21 1586 32,73
180 Ringing 880 31,02 1412 47,69
PRACK (2) 1088 30,13 1675 44,99
200 OK (3) 669 31,15 1089 42,05
200 OK (4) 891 46,13 1780 50,85
ACK 793 31,94 1271 29,80
TOTAL 12536 20586  
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14.8.2.2 DMS 8192 Bytes 
Message Length 

uncompr
Length 
compr

Length of 
SigComp 
message

Length of 
SigComp 
message, 
bytecode 
saved

Cumulativ
e amount 
of state 
memory 
used 
[bytes]

Compr 
ratio 
(SigComp/
uncompr)

Compr 
ratio 
(SigComp/
uncompr), 
bytecode 
saved

INVITE 1437 791 887 887 0 0,617 0,617
100 Trying 254 174 270 270 0 1,063 1,063
183 Session Prog. 1440 756 852 852 0 0,592 0,592
PRACK (1) 1318 739 835 749 0 0,634 0,568
200 OK (1) 904 448 544 458 0 0,602 0,507
UPDATE 1291 718 814 728 0 0,631 0,564
200 OK (2) 865 436 532 446 0 0,615 0,516
180 Ringing 563 339 435 349 0 0,773 0,620
PRACK (2) 717 491 587 501 0 0,819 0,699
200 OK (3) 260 183 279 193 0 1,073 0,742
200 OK (4) 1133 546 642 556 0 0,567 0,491
ACK 458 287 383 297 0 0,836 0,648
TOTAL 10640 5908 7060 6286 0,664 0,591

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compr 
time [us]

Avg time 
[us], 
decompr

Standard 
deviation, 
decompr 
time [us]

INVITE 1574 35,40 2399 31,18
100 Trying 1030 45,49 1090 33,37
183 Session Prog. 1048 34,08 2295 74,28
PRACK (1) 1377 33,15 2259 71,28
200 OK (1) 1231 39,21 1647 36,81
UPDATE 1315 30,12 2236 101,25
200 OK (2) 1019 22,49 1613 25,35
180 Ringing 915 26,73 1390 28,55
PRACK (2) 1114 22,76 1708 51,99
200 OK (3) 709 29,61 1108 30,88
200 OK (4) 900 36,42 1837 53,08
ACK 830 34,87 1298 55,37
TOTAL 13060 20879  
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14.8.2.3 DMS 16384 Bytes 
Message Length 

uncompr
Length 
compr

Length of 
SigComp 
message

Length of 
SigComp 
message, 
bytecode 
saved

Cumulative 
amount of 
state 
memory 
used [bytes]

Compr 
ratio 
(SigComp/
uncompr)

Compr 
ratio 
(SigComp/
uncompr), 
bytecode 
saved

INVITE 1437 791 888 888 0 0,618 0,618
100 Trying 254 174 271 271 0 1,067 1,067
183 Session Prog. 1440 756 853 853 0 0,592 0,592
PRACK (1) 1318 739 836 749 0 0,634 0,568
200 OK (1) 904 448 545 458 0 0,603 0,507
UPDATE 1291 718 815 728 0 0,631 0,564
200 OK (2) 865 436 533 446 0 0,616 0,516
180 Ringing 563 339 436 349 0 0,774 0,620
PRACK (2) 717 491 588 501 0 0,820 0,699
200 OK (3) 260 183 280 193 0 1,077 0,742
200 OK (4) 1133 546 643 556 0 0,568 0,491
ACK 458 287 384 297 0 0,838 0,648
TOTAL 10640 5908 7072 6289 0,665 0,591

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compr 
time [us]

Avg time 
[us], 
decompr

Standard 
deviation, 
decompr 
time [us]

INVITE 1685 24,61 2531 55,03
100 Trying 1129 45,98 1160 32,84
183 Session Prog. 1067 43,84 2293 28,00
PRACK (1) 1527 41,67 2311 84,17
200 OK (1) 1297 33,68 1696 26,16
UPDATE 1379 43,11 2256 56,43
200 OK (2) 1103 30,52 1702 44,93
180 Ringing 1009 41,15 1417 31,48
PRACK (2) 1219 40,68 1711 17,41
200 OK (3) 746 22,39 1135 17,09
200 OK (4) 920 15,78 1845 45,80
ACK 956 32,54 1294 16,29
TOTAL 14039 21352  
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14.8.3 Dynamic Compression 

14.8.3.1 DMS 4096 Bytes 
Message Length 

uncompr
Length 
compr

Length of 
SigComp 
message

Cumulative 
amount of 
state memory 
used [bytes]

Compr 
ratio 
(SigComp/
uncompr)

INVITE 1437 791 1018 4032 0,708
100 Trying 254 174 407 4032 1,602
183 Session Prog. 1440 756 989 8064 0,687
PRACK (1) 1318 126 154 8064 0,117
200 OK (1) 904 43 71 12096 0,079
UPDATE 1291 52 87 12096 0,067
200 OK (2) 865 44 79 16128 0,091
180 Ringing 563 34 69 20160 0,123
PRACK (2) 717 30 79 16128 0,110
200 OK (3) 260 14 56 24192 0,215
200 OK (4) 1133 23 65 28224 0,057
ACK 458 18 81 20160 0,177
TOTAL 10640 2105 3155 0,297

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compr 
time [us]

Avg time 
[us], 
decompr

Standard 
deviation, 
decompr time 
[us]

INVITE 2456 38,66 2774 136,30
100 Trying 1063 23,06 1288 34,95
183 Session Prog. 1953 31,61 2695 135,42
PRACK (1) 1911 38,09 1294 26,77
200 OK (1) 1203 42,88 1112 32,05
UPDATE 2040 30,59 1118 21,30
200 OK (2) 1419 33,75 1109 32,63
180 Ringing 1413 28,49 1063 55,69
PRACK (2) 1282 30,86 1099 48,42
200 OK (3) 792 40,92 972 27,67
200 OK (4) 1884 30,29 1080 36,07
ACK 1007 30,34 1016 30,47
TOTAL 18423 16620  
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14.8.3.2 DMS 8192 Bytes 
Message Length 

uncompr
Length 
compr

Length of 
SigComp 
message

Cumulative 
amount of state 
memory used 
[bytes]

Compr 
ratio 
(SigComp/
uncompr)

INVITE 1437 791 1018 8128 0,708
100 Trying 254 174 407 8128 1,602
183 Session Prog. 1440 756 989 16256 0,687
PRACK (1) 1318 123 151 16256 0,115
200 OK (1) 904 43 71 24384 0,079
UPDATE 1291 52 87 24384 0,067
200 OK (2) 865 44 79 32512 0,091
180 Ringing 563 27 62 40640 0,110
PRACK (2) 717 31 80 32512 0,112
200 OK (3) 260 16 58 48768 0,223
200 OK (4) 1133 23 65 56896 0,057
ACK 458 15 78 40640 0,170
TOTAL 10640 2095 3145 0,296

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compr 
time [us]

Avg time 
[us], 
decompr

Standard 
deviation, 
decompr time 
[us]

INVITE 2687 29,07 2877 64,41
100 Trying 1330 34,51 1424 32,42
183 Session Prog. 2187 31,03 2620 80,67
PRACK (1) 1885 33,62 1494 23,87
200 OK (1) 1411 38,50 1294 43,06
UPDATE 1735 32,99 1371 45,24
200 OK (2) 1262 28,09 1386 34,20
180 Ringing 1383 20,97 1248 22,53
PRACK (2) 1256 29,80 1294 23,27
200 OK (3) 819 35,67 1246 27,10
200 OK (4) 1632 25,39 1364 39,69
ACK 947 26,22 1241 46,99
TOTAL 18534 18859  
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14.8.3.3 DMS 16384 Bytes 
Message Length 

uncompr
Length 
compr

Length of 
SigComp 
message

Cumulative 
amount of 
state memory 
used [bytes]

Compr 
ratio 
(SigComp/
uncompr)

INVITE 1437 791 1022 16320 0,711
100 Trying 254 174 411 16320 1,618
183 Session Prog. 1440 756 993 32640 0,690
PRACK (1) 1318 123 151 32640 0,115
200 OK (1) 904 43 71 48960 0,079
UPDATE 1291 52 87 48960 0,067
200 OK (2) 865 44 79 65280 0,091
180 Ringing 563 27 62 81600 0,110
PRACK (2) 717 31 80 65280 0,112
200 OK (3) 260 16 58 97920 0,223
200 OK (4) 1133 23 65 114240 0,057
ACK 458 15 78 81600 0,170
TOTAL 10640 2095 3157 0,297

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compr 
time [us]

Avg time 
[us], 
decompr

Standard 
deviation, 
decompr time 
[us]

INVITE 2946 34,75 3084 45,18
100 Trying 1631 44,93 1824 37,21
183 Session Prog. 2338 39,99 2954 47,37
PRACK (1) 2040 19,26 1926 27,95
200 OK (1) 1573 19,93 1714 33,02
UPDATE 2030 24,67 1766 15,61
200 OK (2) 1550 25,48 1730 36,01
180 Ringing 1674 34,71 1733 48,57
PRACK (2) 1412 30,97 1802 37,29
200 OK (3) 1103 37,71 1666 25,64
200 OK (4) 1936 28,39 1697 27,26
ACK 1229 36,03 1645 26,88
TOTAL 21461 23541  
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14.8.4 Shared Compression 

14.8.4.1 DMS 4096 Bytes 
Message Length 

uncompr
Length 
compr

Length of 
SigComp 
message

Cumulative 
amount of state 
memory used 
[bytes]

Compr 
ratio 
(SigComp/
uncompr)

INVITE 1437 791 1025 5469 0,713
100 Trying 254 20 266 5723 1,047
183 Session Prog. 1440 546 792 11195 0,550
PRACK (1) 1318 111 152 12513 0,115
200 OK (1) 904 43 84 17449 0,093
UPDATE 1291 59 107 18740 0,083
200 OK (2) 865 44 92 23637 0,106
180 Ringing 563 62 110 28232 0,195
PRACK (2) 717 41 103 24917 0,144
200 OK (3) 260 14 69 33241 0,265
200 OK (4) 1133 56 111 38406 0,098
ACK 458 18 94 30800 0,205
TOTAL 10640 1805 3005 0,282

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compr 
time [us]

Avg time 
[us], 
decompr

Standard 
deviation, 
decompr time 
[us]

INVITE 2600 65,38 2910 143,78
100 Trying 1373 36,35 1176 40,60
183 Session Prog. 2182 45,66 2421 120,22
PRACK (1) 2349 37,65 1481 37,28
200 OK (1) 1866 43,80 1309 42,30
UPDATE 2609 49,60 1332 27,78
200 OK (2) 1984 35,40 1316 31,67
180 Ringing 1597 23,93 1295 30,28
PRACK (2) 1790 35,48 1283 25,64
200 OK (3) 1269 45,88 1148 35,93
200 OK (4) 2199 26,14 1384 43,86
ACK 1505 36,12 1192 27,50
TOTAL 23324 18247  
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14.8.4.2 DMS 8192 Bytes 
Message Length 

uncompr
Length compr Length of 

SigComp 
message

Cumulative 
amount of state 
memory used 
[bytes]

Compr 
ratio 
(SigComp/
uncompr)

INVITE 1437 791 1025 9565 0,713
100 Trying 254 20 266 9819 1,047
183 Session Prog. 1440 546 792 19387 0,550
PRACK (1) 1318 109 150 20705 0,114
200 OK (1) 904 43 84 29737 0,093
UPDATE 1291 52 100 31028 0,077
200 OK (2) 865 44 92 40021 0,106
180 Ringing 563 27 75 48712 0,133
PRACK (2) 717 31 93 41301 0,130
200 OK (3) 260 16 71 57817 0,273
200 OK (4) 1133 23 78 67078 0,069
ACK 458 15 91 51280 0,199
TOTAL 10640 1717 2917 0,274

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compr time 
[us]

Avg time [us], 
decompr

Standard 
deviation, 
decompr time 
[us]

INVITE 2822 35,25 2941 57,28
100 Trying 1581 39,00 1332 48,31
183 Session Prog. 2301 35,14 2606 47,64
PRACK (1) 2125 41,49 1761 26,55
200 OK (1) 1609 35,23 1549 38,00
UPDATE 2088 34,30 1564 25,34
200 OK (2) 1681 36,35 1591 20,20
180 Ringing 1625 30,42 1443 15,80
PRACK (2) 1525 36,42 1540 23,40
200 OK (3) 1229 54,64 1401 51,39
200 OK (4) 1874 27,00 1520 63,13
ACK 1679 24,63 1396 27,45
TOTAL 22139 20644  
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14.8.4.3 DMS 16384 Bytes 
Message Length uncompr Length compr Length of 

SigComp 
message

Cumulative 
amount of state 
memory used 
[bytes]

Compr 
ratio 
(SigComp/
uncompr)

INVITE 1437 791 1029 17757 0,716
100 Trying 254 20 270 18011 1,063
183 Session Prog. 1440 546 796 35771 0,553
PRACK (1) 1318 109 150 37089 0,114
200 OK (1) 904 43 84 54313 0,093
UPDATE 1291 52 100 55604 0,077
200 OK (2) 865 44 92 72789 0,106
180 Ringing 563 27 75 89672 0,133
PRACK (2) 717 31 93 74069 0,130
200 OK (3) 260 16 71 106969 0,273
200 OK (4) 1133 23 78 124422 0,069
ACK 458 15 91 92240 0,199
TOTAL 10640 1717 2929 0,275

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compr time 
[us]

Avg time [us], 
decompr

Standard 
deviation, 
decompr time 
[us]

INVITE 3086 37,71 3217 34,28
100 Trying 1976 306,93 1724 251,34
183 Session Prog. 2561 30,40 2861 23,44
PRACK (1) 2381 48,02 2123 61,47
200 OK (1) 1896 54,87 1931 38,17
UPDATE 2356 42,38 2016 32,74
200 OK (2) 1873 42,41 1958 37,12
180 Ringing 1909 40,83 1920 46,50
PRACK (2) 1748 54,78 1999 63,98
200 OK (3) 1389 34,52 1833 24,77
200 OK (4) 2174 36,71 1896 34,63
ACK 1522 41,98 1887 49,12
TOTAL 24872 25365  

14.9 Appendix I – Measurement Results: Decompression Memory Size 
For the results of the measurements in which the 3GPP video call session establishment 
sequence was used, see Appendix H. 
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14.9.1 Dynamic Compression 

14.9.1.1 Basic Voice Call, DMS 2048 Bytes 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 514 248 475 1984 0,924
100 Trying 311 170 403 1984 1,296
180 Ringing 615 352 585 3968 0,951
200 OK (1) 610 352 585 5952 0,959
ACK 378 46 81 3968 0,214
TOTAL 2428 1168 2129 0,877

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 1330 42,87 1429 33,80
100 Trying 1003 36,82 1197 20,30
180 Ringing 1080 25,08 1535 30,04
200 OK (1) 1107 44,67 1585 51,88
ACK 747 16,83 925 14,88
TOTAL 5267 6670  

14.9.1.2 Basic Voice Call, DMS 4096 Bytes 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 514 245 472 4032 0,918
100 Trying 311 170 403 4032 1,296
180 Ringing 615 327 560 8064 0,911
200 OK (1) 610 328 561 12096 0,920
ACK 378 43 78 8064 0,206
TOTAL 2428 1113 2074 0,854

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 1494 42,47 1514 31,37
100 Trying 1196 203,08 1264 33,97
180 Ringing 1027 30,09 1592 59,53
200 OK (1) 1086 33,24 1646 121,34
ACK 710 28,92 1030 37,25
TOTAL 5513 7046  
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14.9.1.3 Basic Voice Call, DMS 8192 Bytes 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 514 245 472 8128 0,918
100 Trying 311 170 403 8128 1,296
180 Ringing 615 327 560 16256 0,911
200 OK (1) 610 328 561 24384 0,920
ACK 378 43 78 16256 0,206
TOTAL 2428 1113 2074 0,854

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 1610 25,52 1605 24,67
100 Trying 1311 30,01 1454 132,52
180 Ringing 1184 43,82 1720 27,69
200 OK (1) 1270 39,07 1751 38,28
ACK 858 27,34 1352 23,69
TOTAL 6233 7882  

14.9.2 Shared Compression 

14.9.2.1 Basic Voice Call, DMS 2048 Bytes 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 514 248 482 2498 0,938
100 Trying 311 68 311 2809 1,000
180 Ringing 615 208 454 5408 0,738
200 OK (1) 610 208 454 8002 0,744
ACK 378 27 75 6396 0,198
TOTAL 2428 759 1776 0,731

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 1442 47,04 1508 31,76
100 Trying 1181 52,77 1176 20,56
180 Ringing 1278 27,40 1413 20,12
200 OK (1) 1350 28,79 1466 35,28
ACK 1235 36,87 1052 26,76
TOTAL 6487 6615  
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14.9.2.2 Basic Voice Call, DMS 4096 Bytes 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 514 245 479 4546 0,932
100 Trying 311 64 310 4857 0,997
180 Ringing 615 181 427 9504 0,694
200 OK (1) 610 180 426 14146 0,698
ACK 378 25 73 10492 0,193
TOTAL 2428 695 1715 0,706

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 1615 26,86 1599 33,31
100 Trying 1399 29,08 1251 18,11
180 Ringing 1202 27,71 1494 20,01
200 OK (1) 1281 24,05 1513 25,57
ACK 984 15,32 1157 25,58
TOTAL 6481 7013  

14.9.2.3 Basic Voice Call, DMS 8192 Bytes 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 514 245 479 8642 0,932
100 Trying 311 64 310 8953 0,997
180 Ringing 615 181 427 17696 0,694
200 OK (1) 610 180 426 26434 0,698
ACK 378 25 73 18684 0,193
TOTAL 2428 695 1715 0,706

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 1718 32,37 1704 33,38
100 Trying 1603 40,90 1420 53,91
180 Ringing 1350 28,77 1642 26,35
200 OK (1) 1510 34,62 1644 45,91
ACK 1148 29,33 1408 36,30
TOTAL 7330 7817  
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14.10 Appendix J – Measurement Results: Unreliable versus 
Reliable Transport 

14.10.1 Unreliable Transport 

14.10.1.1 Dynamic Compression, DMS 8192 Bytes, 3GPP Video Call 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message

Cumulative amount 
of state memory 
used [bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 1437 739 965 8128 0,672
100 Trying 254 173 405 8128 1,594
183 Session Prog. 1440 719 951 16256 0,660
PRACK (1) 1318 124 152 16256 0,115
200 OK (1) 904 43 71 24384 0,079
UPDATE 1291 52 87 24384 0,067
200 OK (2) 865 44 79 32512 0,091
180 Ringing 563 27 62 40640 0,110
PRACK (2) 717 31 80 32512 0,112
200 OK (3) 260 16 58 48768 0,223
200 OK (4) 1133 23 65 56896 0,057
ACK 458 15 78 40640 0,170
TOTAL 10640 2006 3053 0,287

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard deviation, 
decompression 
time [us]

INVITE 3322 48,96 2883 64,41
100 Trying 1852 41,94 1527 28,68
183 Session Prog. 2117 37,83 2779 44,61
PRACK (1) 1807 75,40 1612 25,29
200 OK (1) 1284 20,35 1271 20,65
UPDATE 1800 40,27 1351 21,85
200 OK (2) 1303 34,65 1270 32,97
180 Ringing 1426 29,60 1291 43,22
PRACK (2) 1371 36,19 1312 32,91
200 OK (3) 879 14,45 1219 39,01
200 OK (4) 1682 43,93 1310 60,09
ACK 1213 118,74 1208 25,85
TOTAL 20054 19031  
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14.10.1.2 Shared Compression, DMS 8192 Bytes, 3GPP Video Call 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 1437 739 972 9565 0,676
100 Trying 254 21 266 9819 1,047
183 Session Prog. 1440 295 540 19387 0,375
PRACK (1) 1318 70 111 20705 0,084
200 OK (1) 904 40 81 29737 0,090
UPDATE 1291 52 100 31028 0,077
200 OK (2) 865 38 86 40021 0,099
180 Ringing 563 29 77 48712 0,137
PRACK (2) 717 27 89 41301 0,124
200 OK (3) 260 9 64 57817 0,246
200 OK (4) 1133 26 81 67078 0,071
ACK 458 15 91 51280 0,199
TOTAL 10640 1361 2558 0,240

Message Avg time [us], 
compression and 
memory image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 3395 29,34 3062 47,92
100 Trying 2389 37,02 1364 37,98
183 Session Prog. 2287 34,76 2145 49,93
PRACK (1) 2405 31,58 1693 55,84
200 OK (1) 2313 49,72 1630 32,64
UPDATE 3499 42,60 1646 24,82
200 OK (2) 3000 36,54 1506 45,12
180 Ringing 2006 19,49 1499 28,98
PRACK (2) 2856 73,62 1495 24,85
200 OK (3) 2431 34,87 1339 15,95
200 OK (4) 2432 31,80 1547 31,10
ACK 2664 157,62 1488 35,95
TOTAL 31677 20413  

14.10.1.3 Dynamic Compression, DMS 8192 Bytes, Basic Voice Call 
See Section 14.9.1.3 

14.10.1.4 Shared Compression, DMS 8192 Bytes, Basic Voice Call 
See Section 14.9.2.3 
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14.10.2 Reliable Transport 

14.10.2.1 Dynamic Compression, DMS 8192 Bytes, 3GPP Video Call 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 1437 739 959 8128 0,667
100 Trying 254 173 399 8128 1,571
183 Session Prog. 1440 570 585 16256 0,406
PRACK (1) 1318 124 146 16256 0,111
200 OK (1) 904 43 65 24384 0,072
UPDATE 1291 52 81 24384 0,063
200 OK (2) 865 44 73 32512 0,084
180 Ringing 563 21 50 40640 0,089
PRACK (2) 717 31 74 32512 0,103
200 OK (3) 260 14 50 48768 0,192
200 OK (4) 1133 23 59 56896 0,052
ACK 458 15 72 40640 0,157
TOTAL 10640 1849 2613 0,246

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 3246 33,56 2826 73,87
100 Trying 1857 20,32 1521 26,72
183 Session Prog. 2039 44,57 2526 53,33
PRACK (1) 1789 31,00 1517 27,95
200 OK (1) 1354 54,41 1274 29,06
UPDATE 1859 39,48 1342 39,08
200 OK (2) 1279 24,86 1308 25,97
180 Ringing 991 17,22 1352 21,90
PRACK (2) 1362 34,34 1323 30,69
200 OK (3) 962 32,29 1206 30,89
200 OK (4) 2059 32,95 1296 32,10
ACK 1183 35,71 1195 27,07
TOTAL 19978 18685  
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14.10.2.2 Shared Compression, DMS 8192 Bytes, 3GPP Video Call 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 1437 739 972 9565 0,676
100 Trying 254 21 260 9819 1,024
183 Session Prog. 1440 292 314 19387 0,218
PRACK (1) 1318 124 159 20705 0,121
200 OK (1) 904 40 75 29737 0,083
UPDATE 1291 52 94 31028 0,073
200 OK (2) 865 38 80 40021 0,092
180 Ringing 563 49 91 48712 0,162
PRACK (2) 717 24 80 41301 0,112
200 OK (3) 260 9 58 57817 0,223
200 OK (4) 1133 55 104 67078 0,092
ACK 458 15 85 51280 0,186
TOTAL 10640 1458 2372 0,223

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 3328 43,90 3017 56,85
100 Trying 2393 43,15 1348 38,17
183 Session Prog. 2006 29,97 2104 52,04
PRACK (1) 2288 29,14 1867 43,12
200 OK (1) 2431 32,30 1514 28,02
UPDATE 3520 57,09 1638 29,95
200 OK (2) 3003 45,82 1547 39,11
180 Ringing 2766 58,60 1526 25,09
PRACK (2) 2856 58,27 1481 19,74
200 OK (3) 2487 40,35 1392 33,67
200 OK (4) 3807 67,32 1585 32,18
ACK 1978 34,00 1423 24,26
TOTAL 32865 20441  

14.10.2.3 Dynamic Compression, DMS 8192 Bytes, Basic Voice Call 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message 

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 514 245 472 8642 0,918
100 Trying 311 170 397 8953 1,277
180 Ringing 615 174 189 17696 0,307
200 OK (1) 610 15 30 26434 0,049
ACK 378 43 72 18684 0,190
TOTAL 2428 647 1160 0,478

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 1614 55,26 1603 19,81
100 Trying 1305 15,86 1390 23,52
180 Ringing 1079 48,38 1542 29,96
200 OK (1) 1018 43,80 1221 44,51
ACK 895 42,46 1233 35,16
TOTAL 5911 6989  
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14.10.2.4 Shared Compression, DMS 8192, Basic Voice Call 
Message Length 

uncompressed
Length 
compressed

Length of 
SigComp 
message 

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(uncompr/Sigcomp)

INVITE 514 245 479 8642 0,932
100 Trying 311 64 304 8953 0,977
180 Ringing 615 136 158 17696 0,257
200 OK (1) 610 15 37 26434 0,061
ACK 378 26 68 18684 0,180
TOTAL 2428 486 1046 0,431

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 1719 36,51 1726 46,99
100 Trying 1604 30,52 1421 52,31
180 Ringing 1049 27,39 1611 24,71
200 OK (1) 1007 28,94 1204 37,94
ACK 1192 37,00 1383 32,21
TOTAL 6571 7346  

14.11 Appendix K – Measurement Results: Central Processor 
Unit 

14.11.1 Pentium 4 Hyper-Threading 3.0 GHz 

14.11.1.1 Video Call 
Message Avg time [us], 

compression and 
memory image

Standard deviation, 
compression time 
[us]

Avg time [us], 
decompression

Standard deviation, 
decompression time 
[us]

INVITE 2822 35,25 2941 57,28
100 Trying 1581 39,00 1332 48,31
183 Session Prog. 2301 35,14 2606 47,64
PRACK (1) 2125 41,49 1761 26,55
200 OK (1) 1609 35,23 1549 38,00
UPDATE 2088 34,30 1564 25,34
200 OK (2) 1681 36,35 1591 20,20
180 Ringing 1625 30,42 1443 15,80
PRACK (2) 1525 36,42 1540 23,40
200 OK (3) 1229 54,64 1401 51,39
200 OK (4) 1874 27,00 1520 63,13
ACK 1679 24,63 1396 27,45
TOTAL 22139 20644  

14.11.1.2 Voice Call 
Message Avg time [us], 

compression and 
memory image

Standard deviation, 
compression time 
[us]

Avg time [us], 
decompression

Standard deviation, 
decompression time 
[us]

INVITE 1532 17,28 1594 47,55
100 Trying 1436 35,91 1260 38,76
180 Ringing 1232 48,52 1542 111,69
200 OK (1) 1312 34,57 1540 41,21
ACK 1049 39,54 1172 33,01
BYE 1181 29,49 1169 28,78
200 OK (2) 959 37,21 1167 43,12
TOTAL 6561 7108  
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14.11.2 Pentium 4 2.66 GHz 

14.11.2.1 Video Call 
Message Avg time [us], 

compression and 
memory image

Standard deviation, 
compression time 
[us]

Avg time [us], 
decompression

Standard deviation, 
decompression time 
[us]

INVITE 2820 37,12 3281 30,42
100 Trying 1635 20,05 1095 16,38
183 Session Prog. 2238 25,80 2988 424,67
PRACK (1) 2102 36,22 1745 396,56
200 OK (1) 1711 209,94 1482 381,07
UPDATE 2052 26,94 1462 250,98
200 OK (2) 1644 23,51 1537 407,28
180 Ringing 1769 19,33 1391 387,99
PRACK (2) 1454 23,65 1353 5,33
200 OK (3) 1178 194,39 1495 621,11
200 OK (4) 1922 17,76 1312 32,39
ACK 1805 22,50 1313 383,84
TOTAL 22329 20453  

14.11.2.2 Voice Call 
Message Avg time [us], 

compression and 
memory image

Standard deviation, 
compression time 
[us]

Avg time [us], 
decompression

Standard deviation, 
decompression time 
[us]

INVITE 1499 20,80 1572 126,01
100 Trying 1441 20,79 1046 24,98
180 Ringing 1163 19,39 1510 406,89
200 OK (1) 1274 13,52 1442 15,28
ACK 1012 14,80 967 5,56
BYE 1105 14,06 962 10,73
200 OK (2) 946 11,79 981 8,29
TOTAL 6390 6537  

14.11.3 Pentium 4 1.8 GHz 

14.11.3.1 Video Call 
Message Avg time [us], 

compression and 
memory image

Standard deviation, 
compression time 
[us]

Avg time [us], 
decompression

Standard deviation, 
decompression time 
[us]

INVITE 4315 90,15 5157 76,76
100 Trying 2253 63,98 1564 53,72
183 Session Prog. 3502 481,59 4636 470,70
PRACK (1) 3268 209,01 2513 428,80
200 OK (1) 2382 330,43 2041 337,47
UPDATE 3098 135,58 1909 46,26
200 OK (2) 2335 83,12 1868 78,48
180 Ringing 2548 75,17 1722 52,65
PRACK (2) 2069 195,82 1919 83,33
200 OK (3) 1458 60,27 1959 125,58
200 OK (4) 2777 67,19 1788 102,04
ACK 2582 88,47 1704 116,89
TOTAL 32587 28780  
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14.11.3.2 Voice Call 
Message Avg time [us], 

compression and 
memory image

Standard deviation, 
compression time 
[us]

Avg time [us], 
decompression

Standard deviation, 
decompression time 
[us]

INVITE 2215 113,48 2396 163,85
100 Trying 2017 111,97 1569 105,43
180 Ringing 1647 16,27 2052 60,67
200 OK (1) 1846 36,87 2148 51,33
ACK 1327 17,98 1366 60,56
BYE 1676 13,48 1323 25,36
200 OK (2) 1277 48,01 1426 275,75
TOTAL 9051 9531  

14.11.4 Pentium M 1.6 GHz 

14.11.4.1 Video Call 
Message Avg time [us], 

compression and 
memory image

Standard deviation, 
compression time 
[us]

Avg time [us], 
decompression

Standard deviation, 
decompression time 
[us]

INVITE 3097 7,02 3348 14,54
100 Trying 1382 27,85 1318 7,01
183 Session Prog. 2765 33,18 2970 10,81
PRACK (1) 2497 16,89 1822 2,50
200 OK (1) 1744 35,17 1531 10,03
UPDATE 2456 30,79 1620 30,23
200 OK (2) 1768 34,84 1594 25,31
180 Ringing 1618 22,67 1454 8,63
PRACK (2) 1546 20,31 1559 4,60
200 OK (3) 1114 20,53 1354 6,43
200 OK (4) 2165 27,38 1492 39,72
ACK 1650 17,92 1345 7,66
TOTAL 23801 21406  

14.11.4.2 Voice Call 
Message Avg time [us], 

compression and 
memory image

Standard deviation, 
compression time 
[us]

Avg time [us], 
decompression

Standard deviation, 
decompression time 
[us]

INVITE 1322 13,76 1537 12,46
100 Trying 1170 19,60 1115 20,39
180 Ringing 1177 29,75 1493 16,67
200 OK (1) 1262 25,79 1518 17,63
ACK 918 23,27 1043 18,95
BYE 1040 36,43 1053 20,46
200 OK (2) 842 12,82 1011 18,60
TOTAL 5847 6707  
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14.11.5 Pentium III 600 MHz 

14.11.5.1 Video Call 
Message Avg time [us], 

compression and 
memory image

Standard deviation, 
compression time 
[us]

Avg time [us], 
decompression

Standard deviation, 
decompression time 
[us]

INVITE 10071 230,58 10931 156,94
100 Trying 4790 67,28 4086 219,57
183 Session Prog. 8588 189,88 9525 20,57
PRACK (1) 7757 167,27 5880 37,42
200 OK (1) 5611 17,57 5059 195,74
UPDATE 7539 18,30 5271 184,27
200 OK (2) 5559 15,38 4951 17,71
180 Ringing 5752 16,18 4738 91,19
PRACK (2) 4833 15,35 5070 6,70
200 OK (3) 3472 13,64 4836 251,70
200 OK (4) 6861 17,98 4789 73,15
ACK 5649 25,30 4451 196,82
TOTAL 76481 69588  

14.11.5.2 Voice Call 
Message Avg time [us], 

compression and 
memory image

Standard deviation, 
compression time 
[us]

Avg time [us], 
decompression

Standard deviation, 
decompression time 
[us]

INVITE 5058 1009,05 5085 138,35
100 Trying 4339 469,75 3644 98,11
180 Ringing 3981 486,56 4746 85,85
200 OK (1) 4210 77,54 5061 529,15
ACK 3143 255,61 3431 36,34
BYE 3404 18,80 3384 10,82
200 OK (2) 2923 142,18 3380 17,86
TOTAL 20731 21967  

14.12 Appendix L – Measurement Results: Different Sequences 

14.12.1 Basic Voice Session Establishment 
Message Length 

uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message [bytes]

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 514 245 479 4546 0,932
100 Trying 311 64 304 4857 0,977
180 Ringing 615 136 158 9504 0,257
200 OK (1) 610 15 37 14146 0,061
ACK 378 26 68 10492 0,180
TOTAL 2428 486 1046 0,431

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 1539 30,86 1623 65,07
100 Trying 1436 49,11 1288 48,28
180 Ringing 915 47,94 1290 26,29
200 OK (1) 885 22,37 1035 41,36
ACK 1023 46,28 1171 38,13
TOTAL 5797 6407  



Performance of Signalling Compression in the Third Generation Mobile Network 
 

 
Jouni Mäenpää                                                                                                          175                    

14.12.2 Basic Video Session Establishment 
Message Length 

uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message [bytes]

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 1069 511 745 5101 0,697
100 Trying 317 20 260 5418 0,820
180 Ringing 472 67 89 9922 0,189
200 OK (1) 663 156 178 14617 0,268
ACK 431 31 73 11016 0,169
TOTAL 2952 785 1345 0,456

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 2099 23,40 2134 64,19
100 Trying 1457 67,47 1170 52,06
180 Ringing 808 52,87 1118 37,64
200 OK (1) 967 42,10 1401 36,78
ACK 1052 45,63 1203 28,17
TOTAL 6383 7026  

14.12.3 Push-to-talk Session Establishment 
Message Length 

uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message 
[bytes]

Cumulative 
amount of 
state 
memory 
used [bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 980 569 797 5012 0,813
100 Trying 244 23 263 5256 1,078
200 OK (1) 882 335 357 10170 0,405
ACK 380 15 50 10550 0,132
BYE 380 13 48 14962 0,126
200 OK (2) 237 12 54 15199 0,228
TOTAL 3103 967 1569 0,506
TOTAL without 
BYE and 200 OK 

2486 942 1467 0,590

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time 
[us], 
decompre
ssion

Standard 
deviation, 
decompress
ion time [us]

INVITE 2011 44,83 2326 28,58
100 Trying 1417 55,17 1152 34,91
200 OK (1) 1206 45,06 1779 35,98
ACK 1023 19,08 1160 32,76
BYE 1205 35,04 1206 31,31
200 OK (2) 1006 36,36 1145 31,75
TOTAL 7868 8768
TOTAL without 
BYE and 200 OK 

5657 6417
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14.12.4 Registration 
Message Length 

uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message [bytes]

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

REGISTER 747 423 657 0 0,880
401 Unauthorized 476 476 476 0 1,000
REGISTER 963 565 799 4995 0,830
200 OK (1) 580 314 548 4612 0,945
TOTAL 2766 1778 2480 0,897

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

REGISTER 1756 29,84 1980 34,31
401 Unauthorized 0 0,00 0 0,00
REGISTER 1900 49,26 2201 61,21
200 OK (1) 1527 76,08 1695 46,06
TOTAL 5183 5875  

14.12.5 3GPP Video Session Establishment 
Message Length 

uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message [bytes]

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 1437 791 1025 5469 0,713
100 Trying 254 20 260 5723 1,024
183 Session Prog. 1440 539 561 11195 0,390
PRACK (1) 1318 126 161 12513 0,122
200 OK (1) 904 46 81 17449 0,090
UPDATE 1291 59 101 18740 0,078
200 OK (2) 865 44 86 23637 0,099
180 Ringing 563 151 193 28232 0,343
PRACK (2) 717 41 97 24917 0,135
200 OK (3) 260 11 60 33241 0,231
200 OK (4) 1133 255 304 38406 0,268
ACK 458 18 88 30800 0,192
TOTAL 10640 2101 3017 0,284

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 2594 38,70 2793 84,81
100 Trying 1374 53,33 1175 39,06
183 Session Prog. 1910 37,89 2248 80,70
PRACK (1) 2332 35,06 1523 43,25
200 OK (1) 1950 43,10 1303 41,47
UPDATE 2598 42,24 1316 30,71
200 OK (2) 2010 46,74 1299 24,53
180 Ringing 1684 37,18 1503 27,12
PRACK (2) 1681 27,84 1329 28,81
200 OK (3) 1288 21,68 1135 31,13
200 OK (4) 2456 13,02 1793 20,33
ACK 1495 34,19 1196 34,06
TOTAL 23373 18613  
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14.12.6 3GPP Video Session Establishment with RE-INVITE Request 
and Unreliable Delivery of Provisional Responses 

Message Length 
uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message [bytes]

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 1205 739 973 5237 0,807
100 Trying 255 21 261 5492 1,024
180 Ringing 1003 382 404 10527 0,403
200 OK (1) 905 29 51 15464 0,056
ACK 459 72 114 11891 0,248
RE-INVITE 1164 53 95 17087 0,082
200 OK (2) 869 31 73 21988 0,084
ACK 459 10 59 22447 0,129
TOTAL 6319 1337 2030 0,321

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 2268 36,38 2680 53,94
100 Trying 1395 60,49 1204 70,48
180 Ringing 1311 41,43 1854 49,62
200 OK (1) 1427 42,55 1059 49,43
ACK 1075 32,99 1312 20,44
RE-INVITE 2293 32,88 1316 25,80
200 OK (2) 1922 35,81 1264 37,33
ACK 1483 47,90 1151 43,86
TOTAL 13173 11839  
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14.12.7 3GPP Video Session Establishment with RE-INVITE and 
Reliable Delivery of Provisional Responses 

Message Length 
uncompressed 
[bytes]

Length 
compressed 
[bytes]

Length of 
SigComp 
message [bytes]

Cumulative 
amount of state 
memory used 
[bytes]

Compression ratio 
(SigComp/uncompr)

INVITE 1205 739 973 5237 0,807
100 Trying 255 21 261 5492 1,024
180 Ringing 1003 378 400 10527 0,399
PRACK 1318 201 236 11845 0,179
200 OK (1) 261 19 54 16138 0,207
200 OK (2) 905 23 58 21075 0,064
ACK (1) 459 15 64 17502 0,139
RE-INVITE 1164 263 312 22698 0,268
200 OK (3) 838 31 80 27568 0,095
ACK (2) 459 10 66 28027 0,144
TOTAL 7867 1700 2504 0,318

Message Avg time [us], 
compression 
and memory 
image

Standard 
deviation, 
compression 
time [us]

Avg time [us], 
decompression

Standard 
deviation, 
decompression 
time [us]

INVITE 2264 26,94 2679 56,05
100 Trying 1373 29,22 1189 40,73
180 Ringing 1306 28,83 1821 65,98
PRACK 2279 25,28 1660 37,75
200 OK (1) 1087 35,77 1223 40,63
200 OK (2) 1975 27,13 1226 37,16
ACK (1) 1472 31,93 1217 33,99
RE-INVITE 2345 25,92 1787 28,87
200 OK (3) 2005 42,52 1252 26,32
ACK (2) 1475 28,93 1158 30,62
TOTAL 17578 15211  
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14.13 Appendix M – Measurement Results: Number of Workers 
1 worker Time in 

system [us]
Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

9217 8412 805 1 1
8648 7839 809 1 1
9357 8549 808 1 1
8621 7812 809 1 1

AVG 8960,75 8153,00 807,75 1,00 1,00

2 workers Time in 
system [us]

Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

8446 7244 1202 1,64 2
7852 6655 1197 1,63 2
8304 7104 1200 1,64 2

AVG 8200,67 7001,00 1199,67 1,64 2,00

3 workers Time in 
system [us]

Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

7021 5491 1530 2,13 3
7834 6283 1551 2,15 3
6911 5391 1520 2,11 3

AVG 7255,33 5721,67 1533,67 2,13 3,00

5 workers Time in 
system [us]

Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

7748 5588 2160 2,98 5
7384 5216 2168 2,99 5
7489 5363 2126 2,92 5
7357 5237 2120 2,93 5

AVG 7494,50 5351,00 2143,50 2,96 5,00

7 workers Time in 
system [us]

Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

7604 4936 2668 3,66 7
7163 4495 2668 3,63 7
7674 4991 2683 3,67 7

AVG 7480,33 4807,33 2673,00 3,65 7,00

10 workers Time in 
system [us]

Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

7810 4373 3437 4,59 10
7922 4365 3557 4,75 10
8151 4691 3460 4,65 10
6958 3600 3358 4,49 10

AVG 7710,25 4257,25 3453,00 4,62 10,00

11 workers Time in 
system [us]

Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

7691 4078 3613 4,83 11
7832 4073 3759 4,97 11
7779 4168 3611 4,8 11
7593 4005 3588 4,8 11

AVG 7723,75 4081,00 3642,75 4,85 11,00  
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12 workers Time in 
system [us]

Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

7622 3760 3862 5,1 12
7850 3942 3908 5,17 12
7781 3969 3812 5,07 12
7115 3382 3733 4,95 12

AVG 7592,00 3763,25 3828,75 5,07 12,00

15 workers Time in 
system [us]

Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

7664 3317 4347 5,69 15
7926 3421 4505 5,8 15
8224 3663 4561 5,94 15

AVG 7938,00 3467,00 4471,00 5,81 15,00

25 workers Time in 
system [us]

Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

8574 2417 6157 7,76 25
8891 2486 6405 8,05 25
7705 2013 5692 7,2 25

AVG 8390,00 2305,33 6084,67 7,67 25,00

50 workers Time in 
system [us]

Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

8897 995 7902 9,66 50
9398 1051 8347 10,14 50
8709 834 7875 9,59 50

AVG 9001,33 960,00 8041,33 9,80 50,00

100 workers Time in 
system [us]

Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

9764 774 8990 10,64 100
9787 749 9038 10,7 100
9569 880 8689 10,48 100

AVG 9706,67 801,00 8905,67 10,61 100,00

250 workers Time in 
system [us]

Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

9665 858 8807 10,37 107
10692 885 9807 11,50 110
9562 854 8708 10,26 116

AVG 9973,00 865,67 9107,33 10,71 111,00

500 workers Time in 
system [us]

Time in 
buffer [us]

Processing 
time [us]

Avg active 
workers

Max active 
workers

10024 878 9146 10,62 142
10492 886 9606 11,1 100
9932 883 9049 10,5 121

AVG 10149,33 882,33 9267,00 10,74 121,00  
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14.14 Appendix N – Measurement Results: Time in System and 
Throughput 

14.14.1 Pentium 4 Hyper-Threading 3.0 GHz 

14.14.1.1 Voice Calls 
Number of 
simultaneous 
calls

Session 
initiation 
interval [s]

Avg time in 
system [us]

Avg time being 
processed [us]

Avg time in 
buffer [us]

Max CPU 
load [%], 
CPU 1

Max CPU 
load [%], 
CPU 2

250 0,760 927 879 48 1 1,4
500 0,380 1093 998 95 1,4 2,7
750 0,253 1470 1283 187 1,7 3,1

1000 0,190 2056 1735 321 3,7 4,1
1250 0,152 2277 1907 370 3,4 4,8
1500 0,127 2285 1895 390 4,4 5,7
1750 0,109 2307 1953 354 5,4 6,8
1875 0,101 2240 1899 341 5,4 6,5
1938 0,098 3421 2888 533 6,1 6,5
2000 0,095 5311 4583 728 6,1 7,1
2500 0,076 5983 5183 800 8,2 10,2
3000 0,063 7166 6209 957 15,6 16,6  

 
Number of 
simultaneous 
calls

Avg 
packets/s

Avg 
packet 
size 
[bytes]

Total 
traffic 
[Mbit/s]

SigComp 
traffic 
[Mbit/s]

SIP traffic 
[Mbit/s]

Number of 
messages

Measurement 
time [s]

250 16,94 408,90 0,055 0,022 0,033 10250 605
500 33,71 410,78 0,111 0,044 0,067 20378 604
750 50,39 411,60 0,166 0,066 0,100 30584 607

1000 67,10 412,24 0,221 0,088 0,130 40703 607
1250 83,81 412,34 0,276 0,110 0,167 50801 606
1500 100,21 412,70 0,331 0,131 0,200 60708 606
1750 116,52 412,86 0,385 0,153 0,232 70812 608
1875 126,30 412,72 0,417 0,165 0,252 77369 613
1938 129,97 412,79 0,429 0,170 0,259 79204 609
2000 133,77 412,90 0,442 0,175 0,266 81497 609
2500 167,04 413,25 0,552 0,219 0,333 101491 608
3000 184,02 420,72 0,619 0,249 0,370 111598 606  

14.14.1.2 Video Calls 
Number of 
simultaneous 
calls

Session 
initiation 
interval [s]

Avg time in 
system [us]

Avg time being 
processed [us]

Avg time in 
buffer [us]

Max CPU 
load [%], 
CPU 1

Max CPU 
load [%], 
CPU 2

50 6,2 2261 2175 86 1 1
100 3,100 2249 2154 95 1 1,7
250 1,240 2251 2158 93 2,7 3,4
375 0,827 2272 2176 96 2,7 4,1
500 0,620 2597 2484 113 4,4 6,1
750 0,413 2721 2600 121 7,1 7,5

1000 0,310 3869 3640 229 10,5 12,5
1250 0,248 5533 5096 437 34,1 14,6
1500 0,207 7635 7166 469 43,1 31,2  
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Number of 
simultaneous 
calls

Avg 
packets/s

Avg packet 
size [bytes]

Total 
traffic 
[Mbit/s]

SigComp 
traffic 
[Mbit/s]

SIP 
traffic 
[Mbit/s]

Number of 
packets

Measurement 
time [s]

50 4,405 561,251 0,02 0,005 0,015 2659 604
100 8,563 573,803 0,039 0,009 0,03 5195 607
250 21,127 579,738 0,098 0,023 0,075 12811 606
375 31,494 582,381 0,147 0,034 0,112 19062 605
500 41,966 582,535 0,196 0,046 0,15 25429 606
750 62,842 584,044 0,294 0,069 0,225 38139 607

1000 83,564 584,772 0,391 0,091 0,299 50489 604
1250 104,487 585,158 0,489 0,114 0,375 63168 605
1500 124,842 585,622 0,585 0,137 0,448 75780 607  

14.14.2 Pentium 4 2.66 GHz 

14.14.2.1 Voice Calls 
Number of 
simultaneous 
calls

Session 
initiation 
interval [s]

Avg time 
in system 
[us]

Avg time being 
processed [us]

Avg time in 
buffer [us]

Max CPU 
load [%]

Avg 
packets/s

250 0,76 1046 987 59 13,3 16,954
500 0,38 1158 1023 135 17,4 33,678
750 0,253 1717 1325 392 26,6 50,404

1000 0,19 2333 1613 720 27 67,096
1250 0,152 2884 1866 1018 32,1 83,726
1500 0,127 3257 2254 1003 32,9 100,323  

 
Number of 
simultaneous 
calls

Avg packet 
size [bytes]

Total traffic 
[Mbit/s]

Number of 
messages

Measurement 
time [s]

250 407,996 0,055 10267 606
500 410,907 0,111 20380 605
750 411,812 0,166 30554 606

1000 412,31 0,221 40761 608
1250 412,695 0,276 50759 606
1500 412,819 0,331 60642 605  

14.14.2.2 Video Calls 
Number of 
simultaneous 
calls

Session 
initiation 
interval [s]

Avg time 
in system 
[us]

Avg time being 
processed [us]

Avg time in 
buffer [us]

Max CPU 
load [%]

Avg 
packets/s

50 6,2 2660 2549 111 17,7 4,4
100 3,100 2652 2552 100 21,1 8,599
250 1,240 2721 2594 127 30,7 21,116
375 0,827 2736 2614 122 36,7 31,441
500 0,620 3405 3100 305 44,9 41,935  
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Number of 
simultaneous 
calls

Avg packet 
size [bytes]

Total 
traffic 
[Mbit/s]

Number of 
messages

Measurement 
time [s]

50 559,266 0,02 2647 602
100 571,335 0,039 5197 604
250 579,659 0,098 12755 604
375 582,053 0,146 19044 606
500 583,115 0,196 25370 605  
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