

 HELSINKI UNIVERSITY OF TECHNOLOGY
 Department of Electrical and Communications Engineering
 Networking Laboratory

Jouni Mäenpää

Performance of Signalling Compression in the Third
Generation Mobile Network

Thesis submitted in partial fulfilment of the requirements for the degree of Master of
Science in Engineering

Espoo, Finland, June, 7, 2005

Supervisor Professor Raimo Kantola

Instructor Harri Reiman, M.Sc.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää ii

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF THE MASTER’S THESIS

Author: Jouni Mäenpää

Name of thesis: Performance of Signalling Compression in the Third
 Generation Mobile Network

Date: 7.6.2005 Number of pages: 193

Faculty: Department of Electrical and Communications Engineering

Professorship: S-38 Networking Technology

Supervisor: Prof. Raimo Kantola

Instructor: Harri Reiman, M.Sc. (Tech)

The use of Session Initiation Protocol (SIP) as the call control protocol in the third
generation mobile network, starting from the Third Generation Partnership Project
(3GPP) release 5 onwards, results in long call setup times. This is because the large size
of SIP signalling messages increases the transfer delay over the narrowband radio
interface. Since users will see little sense in switching to a service that does not provide
at least the same quality of service as the existing systems, a solution is needed to
reduce the call setup time. One such solution is the Signalling Compression (SigComp)
protocol designed by the Internet Engineering Task Force (IETF). SigComp provides a
framework for the compression of application-layer signalling between two network
elements.

This master’s thesis examines the performance of the SigComp protocol. In addition,
the architecture and operation of the SigComp prototype used in the performance
evaluation are presented.

The first part of the thesis introduces some theory and literature related to the subject.
The architecture of the third generation mobile network is presented and the central
concepts of the SigComp protocol are described. The way SigComp can be applied to
SIP is explained. Also an introduction to computer and operating system architecture is
given.

In the second part of the thesis, the architecture and operation of the SigComp prototype
are presented. A modified version of the Lempel-Ziv-Storer-Szymanski (LZSS)
compression algorithm is introduced. The algorithm belongs to the class of dictionary
compression algorithms and is used throughout the measurements.

In the third and final part of the thesis, the results of the measurements performed on the
SigComp prototype are presented and analysed. Also the way the measurements were
carried out is described. Because it can be expected that most SigComp
implementations will use dictionary compression algorithms like the modified LZSS
used in this thesis, the results presented in the third part are applicable to a wide range
of compression algorithms.

Keywords: signalling compression, performance, SigComp, SIP

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää iii

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Jouni Mäenpää

Työn nimi: Signalling compression -protokollan suorituskyky
 kolmannen sukupolven matkapuhelinverkossa

Päivämäärä: 7.6.2005 Sivumäärä: 193

Osasto: Sähkö- ja tietoliikennetekniikan osasto

Professuuri: S-38 Tietoverkkotekniikka

Työn valvoja: Prof. Raimo Kantola

Työn ohjaaja: Harri Reiman, DI

SIP (Session Initiation Protocol) –protokolla on valittu kolmannen sukupolven
matkapuhelinverkon puhelunhallintaprotokollaksi 3GPP:n (Third Generation
Partnership Project) viidennestä julkaisusta eteenpäin. SIP-merkinantoviestien suuren
koon vuoksi SIP-protokollan käytöllä on negatiivinen vaikutus puheluiden
aloitusviiveeseen. Koska kolmannen sukupolven matkapuhelinverkon käyttäjät eivät
tule kokemaan houkuttelevana järjestelmää, jonka tarjoama palvelunlaatu on huonompi
kuin olemassa olevien järjestelmien, on syntynyt tarve ratkaisulle, joka voisi pienentää
puhelunaloitusviivettä SIP-protokollaa käytettäessä. Tärkein tällainen ratkaisu on
IETF:n (Internet Engineering Task Force) SigComp (Signalling Compression) –
protokolla. SigComp tarjoaa viitekehyksen sovellustason merkinantoliikenteen
pakkaamiselle kahden verkkoelementin välillä.

Tässä diplomityössä tutkitaan SigComp-protokollan suorituskykyä. Lisäksi työssä
esitetään suorituskykymittauksissa käytetyn SigComp-prototyyppitoteutuksen
arkkitehtuuri ja toiminta.

Työn ensimmäinen osa käsittelee aiheeseen liittyvää teoriaa ja kirjallisuutta.
Ensimmäisessä osassa esitetään kolmannen sukupolven matkapuhelinverkon
arkkitehtuuri ja SigComp-protokollan keskeiset käsitteet. Ensimmäisessä osassa
käydään myös läpi SigComp-protokollan soveltaminen SIP-liikenteen pakkaamiseen ja
annetaan johdanto tietokoneiden ja käyttöjärjestelmien arkkitehtuuriin.

Työn toisessa osassa esitetään SigComp-prototyypin arkkitehtuuri ja toiminta.
SigComp-prototyypissä käytetään muokattua versiota Lempel-Ziv-Storer-Szymanski
(LZSS) –pakkausalgoritmista. Tämä algoritmi kuuluu sanakirjapohjaisten
pakkausalgoritmien luokkaan ja sitä käytetään kaikissa työhön liittyvissä mittauksissa.

Työn kolmannessa osassa esitetään SigComp-prototyypin suorituskykymittausten
tulokset ja niiden analyysi. Myös mittausjärjestelyt esitellään. Koska voidaan odottaa,
että suuri osa SigComp-toteutuksista tulee käyttämään sanakirjapohjaisia
pakkausalgoritmeja, tässä työssä esitellyt tulokset ovat sovellettavissa moniin eri
pakkausalgoritmeihin.

Avainsanat: merkinantoliikenteen pakkaus, suorituskyky, SigComp, SIP

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää iv

Preface
This thesis was written at Oy LM Ericsson Ab Finland.

I would like to thank my supervisor, professor Raimo Kantola and my instructor, Harri
Reiman. I would also like to thank Christer Holmberg and Tomas Mecklin of Ericsson
Finland for their guidance.

Finally, I would like to thank my family and my girlfriend Johanna for their support.

Espoo, 1.6.2005,

Jouni Mäenpää

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää v

Table of Contents
Preface ... iv
Table of Contents ..v
Abbreviations .. ix
1 Introduction ...1

1.1 Background ...1
1.2 The Goals and Objectives of the Thesis..2
1.3 Scope of the Thesis..2
1.4 The Structure of the Thesis ...2

2 Third Generation Mobile Network..4
2.1 Comparison of Call Setup Delay in Second and Third Generation Mobile
Networks ...4
2.2 Third Generation Mobile Network Architecture...7
2.3 IP Multimedia Subsystem ...8
2.4 Location of Signalling Compression Functions ..10
2.5 Session Initiation Protocol...11

2.5.1 Compressibility of Session Initiation Protocol..14
3 Signalling Compression ..15

3.1 Requirements...15
3.2 Architecture ...16

3.2.1 Compressor Dispatcher ...16
3.2.2 Compressor..17
3.2.3 Decompressor Dispatcher..18
3.2.4 Universal Decompressor Virtual Machine ..18
3.2.5 State Handler ...20
3.2.6 UDVM Interpreter...20

3.3 Messages ...21
3.4 Extended Operations ...22

3.4.1 Dynamic Compression ..22
3.4.2 Shared Compression..23
3.4.3 User-specific Dictionary..23
3.4.4 Impacts on SigComp Messages...23

3.5 Feedback Mechanism..24
3.6 Negative Acknowledgement Mechanism..25
3.7 SigComp Operation...26

4 Applying Signalling Compression to the Session Initiation Protocol.....................28
4.1 Requirements of Signalling Compression on the Session Initiation Protocol.28
4.2 A Mechanism to Signal That Compression Is Required29
4.3 The Static Session Initiation Protocol and Session Description Protocol
Dictionary..31

5 Computer and Operating System Architectures..33
5.1 Memory Hierarchy ..33
5.2 Multithreaded and Parallel Programming ...34

5.2.1 Processes and Threads...34
5.2.2 Processors and Multiprocessors ..35

6 Previous Research on Signalling Compression...36
7 Signalling Compression Implementation ..37

7.1 From Single-threaded to Multi-threaded Code ...37
7.2 Test Configuration...38

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää vi

7.3 Process Interaction Paradigms...38
7.3.1 Bag-of-tasks...38
7.3.2 Producers and Consumers ...39

7.4 Shared Resources ..40
7.5 Data Structures ..41
7.6 Classes of the Signalling Compression Prototype...42

7.6.1 BitOperations...42
7.6.2 Compressor..42
7.6.3 CompressorArray ..43
7.6.4 Config..43
7.6.5 FeedbackItem ..43
7.6.6 LZSSCompressor ..43
7.6.7 PartialStateId ...43
7.6.8 SecureHashAlgorithm ...43
7.6.9 SigCompDispatcher...44
7.6.10 SigCompState, Idle, Waiting SigCompStateFactory and
SigCompStateMachine..44
7.6.11 SipParser..45
7.6.12 StateHandler ..45
7.6.13 StateItem..45
7.6.14 StaticDictionary...45
7.6.15 Task ...45
7.6.16 UdvmDecompressor..45
7.6.17 UdvmMemoryImage ...46

7.7 Classes of Universal Decompressor Virtual Machine Interpreter
Implementation..47

7.7.1 BitOperations...47
7.7.2 Instruction..48
7.7.3 Interpreter ..48
7.7.4 StringOperations..49
7.7.5 Variable, Label, LabelReference and StandardVariable.49
7.7.6 VariableArray..49

7.8 Compression Algorithm ..49
7.8.1 Dictionary Techniques ..49
7.8.2 LZ77 ..50
7.8.3 LZSS..53
7.8.4 The Modified LZSS Algorithm...53
7.8.5 Hash Function of the Modified LZSS Algorithm55

7.9 Decompression Algorithm ..56
7.10 State and Sequence Diagrams ...59

7.10.1 State Diagram..60
7.10.2 Event SendMessage...61
7.10.3 Event ReceiveMessage..63
7.10.4 Event ReceiveCompartmentId ..64
7.10.5 Event CloseCompartment..65

7.11 Implementation of Extended Operations...66
8 Measurements..72

8.1 System Definition..72
8.2 Services ...72
8.3 Metrics...73

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää vii

8.4 Parameters ...73
8.5 Factors ...73
8.6 Evaluation Technique..74
8.7 Workload ...74
8.8 Experimental Design ...74
8.9 Data Analysis ..75
8.10 Data Presentation...75
8.11 Materials and Apparatus..75
8.12 Assumptions ..76

9 Phase One – Effects of Different Factors..77
9.1 Linear Search versus Hashing ...77
9.2 Length of Look-ahead Buffer..80
9.3 Length of Shared States...81
9.4 Static Dictionary Priorities ..81
9.5 Secure Hash Algorithm ...83
9.6 SigComp Mechanisms...84
9.7 Decompression Memory Size ...89
9.8 Unreliable versus Reliable Transport ..91
9.9 Central Processor Unit...93
9.10 Impact of Signalling Compression on Radio Access Network Delay.............95

10 Phase Two – Compression of Different Message Sequences96
11 Phase Three – Measurements on the SigComp Prototype100

11.1 Parameters Used in the Measurements..100
11.2 Number of Workers...101
11.3 Time in System..104
11.4 Hyper-Threading Processor versus a Regular Processor107
11.5 Throughput ..109
11.6 Memory Consumption...111
11.7 Performance under Denial-of-service Attack..113

12 Conclusion...115
12.1 Advantages and Limitations of Signalling Compression115
12.2 Considerations ...116

12.2.1 Performance of SigComp Protocol..116
12.2.2 SigComp Prototype ...118

12.3 Future Research...119
13 References ...120
14 Appendices ..123

14.1 Appendix A – The UDVM Instruction Set ...123
14.2 Appendix B – LZSS Assembly ...124
14.3 Appendix C – SIP Message Sequences...126

14.3.1 Basic Voice Call ..126
14.3.2 Basic Video Call..129
14.3.3 Push-to-talk over Cellular Session Establishment.................................131
14.3.4 3GPP Video Call ...132
14.3.5 3GPP Video Call with RE-INVITE and Unreliable Delivery of
Provisional Responses...139
14.3.6 3GPP Video Call with RE-INVITE and Reliable Delivery of Provisional
Responses ..143
14.3.7 3GPP Registration Sequence...144

14.4 Appendix D – Measurement Results: Linear Search versus Hashing...........146

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää viii

14.4.1 Linear Search...146
14.4.2 Hashing..147
14.4.3 Time Requirement of Hash Map Updates...147

14.5 Appendix E – Measurement Results: Length of Look-ahead Buffer148
14.5.1 Buffer Length 18 Bytes, 4 Bits Used to Encode Length Values...........148
14.5.2 Buffer Length 66 Bytes, 6 Bits Used to Encode Length Values...........149
14.5.3 Buffer Length 258 Bytes, 8 Bits Used to Encode Length Values.........150

14.6 Appendix F – Measurement Results: Length of Shared States150
14.6.1 Shared State Length 500 Bytes ...150
14.6.2 Shared State Length 750 Bytes ...151
14.6.3 Shared State Length 1000 Bytes ...151
14.6.4 Shared State Length 1500 Bytes ...151

14.7 Appendix G – Measurement Results: Secure Hash Algorithm.....................152
14.8 Appendix H – Measurement Results: SigComp Mechanisms152

14.8.1 Basic Compression ..152
14.8.2 Static Compression..155
14.8.3 Dynamic Compression ..158
14.8.4 Shared Compression..161

14.9 Appendix I – Measurement Results: Decompression Memory Size.............163
14.9.1 Dynamic Compression ..164
14.9.2 Shared Compression..165

14.10 Appendix J – Measurement Results: Unreliable versus Reliable Transport
 167

14.10.1 Unreliable Transport..167
14.10.2 Reliable Transport ...169

14.11 Appendix K – Measurement Results: Central Processor Unit171
14.11.1 Pentium 4 Hyper-Threading 3.0 GHz ...171
14.11.2 Pentium 4 2.66 GHz ..172
14.11.3 Pentium 4 1.8 GHz ..172
14.11.4 Pentium M 1.6 GHz...173
14.11.5 Pentium III 600 MHz ..174

14.12 Appendix L – Measurement Results: Different Sequences.......................174
14.12.1 Basic Voice Session Establishment...174
14.12.2 Basic Video Session Establishment ..175
14.12.3 Push-to-talk Session Establishment...175
14.12.4 Registration ...176
14.12.5 3GPP Video Session Establishment ..176
14.12.6 3GPP Video Session Establishment with RE-INVITE Request and
Unreliable Delivery of Provisional Responses..177
14.12.7 3GPP Video Session Establishment with RE-INVITE and Reliable
Delivery of Provisional Responses..178

14.13 Appendix M – Measurement Results: Number of Workers......................179
14.14 Appendix N – Measurement Results: Time in System and Throughput...181

14.14.1 Pentium 4 Hyper-Threading 3.0 GHz ...181
14.14.2 Pentium 4 2.66 GHz ..182

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää ix

Abbreviations

3G Third Generation
3GPP Third Generation Partnership Project
ACK Acknowledgement
AN Access Network
AS Application Server
BGCF Breakout Gateway Control Function
BS Base Station
CAMEL Customised Application for Mobile network Enhanced

Logic
CDR Call Detail Record
CN Core Network
CPU Central Processor Unit
CS Circuit Switched
CSCF Call Session Control Function
DDR Double Data Rate
DoS Denial-of-Service
DMS Decompression Memory Size
DRAM Dynamic Random Access Memory
FIFO First-In-First-Out
FTP File Transfer Protocol
GGSN Gateway GPRS Support Node
GMSC Gateway Mobile Switching Center
GPRS General Packet Radio Service
GSM Global System for Mobile communication
HSS Home Subscriber Server
HTTP Hypertext Transfer Protocol
I-CSCF Interrogating Call Session Control Function
IM IP Multimedia
IMS IP Multimedia Subsystem
IMS-MGW IMS Media Gateway Function
IM-SSF IP Multimedia Service Switching Function
IP Internet Protocol
IPComp IP Compression
JVM Java Virtual Machine
LZ77 Lempel-Ziv 1977
LZSS Lempel-Ziv-Storer-Szymanski
MGCF Media Gateway Control Function
MO Mobile Originated
MRFC Multimedia Resource Function Controller
MRFP Multimedia Resource Function Processor
MSC Mobile Switching Center
MT Mobile Terminated
NACK Negative Acknowledgement
OMA Open Mobile Alliance
OSA Open Service Access
P-CSCF Proxy Call Session Control Function
PDP Packet Data Protocol

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää x

PDU Protocol Data Unit
PoC Push-to-talk over Cellular
PS Packet Switched
PSTN Public Switched Telephone Network
QoS Quality of Service
RAN Radio Access Network
RFC Request For Comments
RNC Radio Network Controller
ROHC RObust Header Compression
RTSP Real Time Streaming Protocol
RTT Round-Trip Time
S-CSCF Serving Call Session Control Function
SDP Session Description Protocol
SDRAM Synchronous Dynamic Random Access Memory
SGSN Serving GPRS Support Node
SHA-1 Secure Hash Algorithm 1
SigComp Signalling Compression
SIP Session Initiation Protocol
SLF Subscription Locator Function
SRAM Static Random Access Memory
SS7 Signalling System No. 7
TCP Transmission Control Protocol
UA User Agent
UAC User Agent Client
UAS User Agent Server
UDP User Datagram Protocol
UDVM Universal Decompressor Virtual Machine
UE User Equipment
UML Unified Modelling Language
UMS UDVM Memory Snapshot
UMTS Universal Mobile Telecommunications System
URI Uniform Resource Identifier
URL Uniform Resource Locator
USD User-Specific Dictionary
UTF Unicode Transformation Format
UTRAN UMTS Terrestrial Radio Access Network
WLAN Wireless Local Area Network
XML eXtensible Mark-up Language

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 1

1 Introduction

1.1 Background
Session Initiation Protocol (SIP) is the protocol used for call control in the third
generation mobile network starting from the Third Generation Partnership Project
(3GPP) release 5. SIP uses textual encoding, which makes it easier to build services
based on SIP, design extensions to SIP and debug the protocol. However, the textual
encoding of SIP also has a serious drawback; it is well-known that SIP messages are
considerably larger than those of the protocols used for instance in GSM call control.
Large message sizes result in increased call setup delay because more data needs to be
transmitted over the low-bandwidth radio interface. This observation created a need to
develop a solution which could reduce the call setup time. One such solution is the
Signalling Compression (SigComp) protocol designed by the Internet Engineering Task
Force (IETF). SigComp provides a framework for the compression of application-layer
signalling between two network elements. The central piece of SigComp architecture is
the Universal Decompressor Virtual Machine (UDVM), which is a virtual machine
optimised for running decompression algorithms. Because of the UDVM, SigComp can
support a wide range of compression algorithms instead of dictating a single algorithm
to be supported by all SigComp endpoints.

SigComp is a mandatory part of the 3GPP release 5 IP Multimedia Subsystem (IMS). It
is applied over the interface between a terminal and Proxy Call Session Control
Function (P-CSCF), which is the first contact point for the terminal within the IMS.
SigComp improves the quality of service the user perceives by reducing the idle time at
call setup. It also allows the network to support a greater number of users by reducing
the amount of resources consumed per subscriber.

The concept of the compression of protocol information is certainly not a new one and
has already been applied in other contexts. Well-known examples include the File
Transfer Protocol (FTP) [RFC 959], which defines a compressed transmission mode,
and IP payload compression (IPComp) [RFC 3173], which can be used to reduce the
size of Internet Protocol (IP) datagrams. Yet another related approach to protocol
compression is the compression of signalling protocol headers. An example of this is
the Robust Header Compression (ROHC) [RFC 3095] scheme of IETF. However, these
approaches are not suitable for the compression of application protocol payload in a
mobile network.

Like the compression of signalling protocols, also the use of virtual machines has a long
history. A virtual machine is an abstract computer that is implemented in software and
executed on a real hardware platform and an operating system. A well-known example
of a virtual machine is the Java Virtual Machine (JVM) [Lindholm 1997], an abstract
computer that executes compiled Java programs. The SigComp UDVM is a virtual
machine much like the Java Virtual Machine, but with the key difference that it has
been optimised for running decompression algorithms.

The primary target for SigComp is cellular systems, where the mobile terminals have
varying capabilities and undetected errors may be introduced on the cellular link.
SigComp is not the optimal choice in short-range wireless networks, such as the
Wireless Local Area Network (WLAN), in which the throughput is usually high enough

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 2

and latency low enough to support uncompressed messages. When throughput and
latency are not an issue, unnecessary compression and decompression can even
decrease performance. SigComp is also not the best compression scheme on wired
links, such as those between network servers. Because of the design decisions made in
the development of SigComp, other compression solutions are more efficient for these
purposes.

1.2 The Goals and Objectives of the Thesis
Because SigComp is a new feature, it is important to study its performance, including
the achievable compression ratios and the amount of resources it consumes in the
network elements performing compression and decompression of SIP messages. So far
little research has been carried out on this topic and the focus has been on estimating the
achievable compression ratios. This thesis describes the performance and architecture of
a SigComp prototype implementation. The main goal is to examine the performance of
the SigComp protocol through measurements performed on the prototype. The
secondary goals are (1) to describe the way SigComp functionality can be implemented
and (2) to examine the way the load placed by SigComp compression and
decompression can be reduced.

1.3 Scope of the Thesis
This thesis concentrates on the general class of dictionary compression algorithms, i.e.
algorithms that compress data via textual substitution. The algorithm used in the
measurements is a modified version of the Lempel-Ziv-Storer-Szymanski (LZSS)
compression algorithm. The application-layer protocol being compressed is the Session
Initiation Protocol (SIP). The performance of the following SigComp mechanisms
defined in [RFC 3320], [RFC 3321] and [RFC 3485] is studied: basic compression,
static SIP and Session Description Protocol (SDP) dictionary, dynamic compression and
shared compression.

1.4 The Structure of the Thesis
This thesis is divided into three parts. The first six chapters form the first part and they
cover the theory and background information that are related to the SigComp protocol
and to the implementation of the prototype. The chapters of the first part are based on
literature research.

Chapter 2 describes the central concepts related to the third generation mobile network.

Chapter 3 covers the most important concepts of the SigComp protocol.

Chapter 4 describes the way SigComp compression is applied to the Session Initiation
Protocol (SIP).

Chapter 5 gives an introduction to computer and operating system architectures.

Chapter 6 presents some previous research on SigComp.

In the second part, consisting of Chapter 7, the architecture and operation of the
SigComp prototype that was implemented as a part of the thesis work are described. We
implemented the prototype from scratch for the purposes of this thesis.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 3

In the third and final part of the thesis, consisting from chapters 8 to 12, the results of
the measurements carried out on the SigComp prototype implementation are presented
and analysed. The measurements are divided into three phases.

Chapter 8 explains the way the measurements will be carried out. A systematic
approach to performance evaluation is used.

Chapter 9 describes the first phase of the measurements. The aim of the first phase is to
study various factors that affect the performance of SigComp.

Chapter 10 presents the second phase of the measurements. In the second phase, the
performance of the SigComp protocol is studied in case of different SIP message
sequences.

Chapter 11 consists of the third and final phase of the measurements. In the third phase,
the performance of the system performing SigComp compression and decompression is
evaluated.

Chapter 12 concludes the thesis, describes the advantages and limitations of the
SigComp protocol, presents the considerations made in the thesis, and suggest ideas for
further work.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 4

2 Third Generation Mobile Network
The purpose of this chapter is to give an overview of the environment in which
SigComp is used. The architecture of the third generation mobile network, the IP
Multimedia Subsystem (IMS) and the Session Initiation Protocol (SIP) are presented.
Also the reasons why a compression scheme like SigComp is required is demonstrated
by comparing the call setup delay in the second and third generation mobile networks.

2.1 Comparison of Call Setup Delay in Second and Third Generation
Mobile Networks

To make it clear why a compression scheme like SigComp is needed, the call setup
delay in a GSM network and in a UMTS network using SIP as the call control protocol
is compared in this section.

The worst-case estimate regarding the maximum combined message size of a GSM call
setup is calculated in [Nortel 2000] to be approximately 1050 bytes. [Foster 2002]
presents results derived from a UMTS system simulator. The results obtained for an
initial SIP call setup delay in a UMTS network applying SIP are shown in Table 1.
Compression was not applied in the simulations. MT stands for mobile terminated i.e.
from a fixed user in the Public Switched Telephone Network (PSTN) to a mobile user.
MO stands for mobile originated.

Table 1 - SIP call setup delay in a UMTS network applying SIP but not compression [Foster 2002]

Delay MT SIP call setup MO SIP call setup
RAN delay 4,228 s 4,169 s
Core delay 2,397 s 2,692 s
Total delay 6,624 s 6,861 s

The results presented in [Foster 2002] include also estimates for call delays in a GSM
network and a UMTS release 99 network, which does not use SIP for call control. These
results are shown in Table 2.

Table 2 - GSM and UMTS Release 99 call setup delay [Foster 2002]

Delay MT call MO call Mobile to mobile call
GSM 2,2 s 2 s 4,0 s
UMTS Release 99 2 s 1,7 s 3,4 s

We can see from the results presented above that for example the mobile originated call
setup delay in a UMTS network applying SIP is over 4.8 seconds longer than the mobile
originated delay calculated for the GSM network. It can also be seen that the call setup
delay in a UMTS release 99 network not applying SIP is of the same level as in the case
of a GSM network. In addition, one can observe that in a UMTS network applying SIP,
the radio access network (RAN) delay seems to contribute a significant portion (68%)
of the total delay.

The main reason behind the increased call setup delay in a UMTS network applying SIP
compared to a GSM or release 99 network is the use of SIP for call signalling. SIP is not

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 5

an efficient protocol regarding message size. The textual encoding of SIP makes SIP
messages grow dramatically as soon as several extensions are used at the same time.
GSM uses Signalling System No. 7 (SS7) protocols for signalling. These protocols use
bit-wise encoded messages that make more efficient use of the air interface where
bandwidth is limited.

Table 3 – SIP messages

 SIP Message Size uncompressed [bytes]
1 INVITE 1437
2 100 Trying 254
3 183 Session Progress 1440
4 PRACK 1318
5 200 OK 904
6 UPDATE 1291
7 200 OK 865
8 180 Ringing 563
9 PRACK 717
10 200 OK 260
11 200 OK 1133
12 ACK 458
 Total 10640

Table 3 shows example message sizes for a mobile originated SIP session establishment
in a release 5 network. The flow of messages between the UE and the P-CSCF is taken
from [3GPP TS 24.228] and is illustrated in Figure 1. The message sizes were also
calculated from [3GPP TS 24.228 2004]. We can observe from Table 3 that the
combined message size for the setup of a mobile originated call in a release 5 network is
10640 bytes, which is over ten times more than the corresponding worst-case value for
GSM call setup, 1050 bytes. The one-way RAN delay for each message can be
calculated as follows:

2]/[
][RTT

sbitsspeedlink
bitsmessageofSizedelayRANwayOne += . (2.1)

P-CSCF

1. INVITE

2. 100 Trying

3. 183 Session Progress

4. PRACK

5. 200 OK

6. UPDATE

7. 200 OK

8. 180 Ringing

9. PRACK

10. 200 OK

11. 200 OK

12. ACK

UE

Figure 1 - SIP messages between UE and P-CSCF during session initiation

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 6

Because there is pressure to minimize capacity allocations on grounds of cost, it can be
expected that relatively low bandwidth is provided for signalling. According to
[Nordberg 2003] it is reasonable to assume that a bit rate of the order of 9.6 or 12.2
kbps will be allocated for SIP signalling in the UMTS. The one-way RAN for a SIP
session establishment using the messages of Table 3 delay is depicted in Figure 2 for the
following signalling link bandwidths: 9.6, 12.2, 16, 32, 64, 128 and 256 kbps. It is
assumed that the Round-Trip Time (RTT) of the signalling link is 70 ms [RFC 3322,
Nordberg 2003]. The values presented in Figure 2 do not include the overhead added by
IP and transport protocol headers. In addition, the values do not include the radio bearer
setup delay and the delay introduced by resource reservation and session management
signalling before the INVITE message and during the SIP message sequence.

From Figure 2, we can observe that the one-way RAN delay for a mobile originated call
is 9.7 seconds if the bit rate of the signalling link is 9.6 kbps. Thus, according to these
calculations, the mere RAN delay part of the call setup time can be almost five times
longer than the entire mobile originated call setup time in a GSM network. To get the
RAN delay close to the entire call setup time in a GSM network, 2.0 seconds, a bit rate
of 64 kbps or more is required.

256 kbps
128 kbps

64 kbps

32 kbps

16 kbps

12,2 kbps

9,6 kbps

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

0 25 50 75 100 125 150 175 200 225 250 275 300

Signalling link bit rate [kbps]

O
ne

-w
ay

 R
AN

 d
el

ay
 [s

]

Figure 2 - One-way RAN delay for session establishment signalling flow in a 3GPP release 5

network

It is clear that a call setup time that is considerably longer than in the GSM network is
not acceptable. Users will see little sense in switching to a service that does not provide
at least the same quality of service as GSM. Therefore, solutions for decreasing the call
setup time are needed. Three most intuitive candidates are increased bandwidth per
user, reduced round-trip time or smaller message sizes.

If the bit rate of one user is increased, the number of users that a cell can support will
decrease. This is not desirable especially in dense urban areas. Decreasing the RTT may
not be possible, because it is likely to require considerable changes in the current system
architecture. In addition, it is unlikely to have a sufficient impact since only a small

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 7

portion of the total delay is due to the RTT. In fact, the only one of the three
alternatives that is feasible is reduced message sizes. One way to achieve this is through
the compression of SIP messages, e.g. by using a compression scheme like SigComp.

2.2 Third Generation Mobile Network Architecture
In this section, the architecture of the third generation mobile network is presented. The
Third Generation Partnership Project (3GPP) release 5 network architecture [3GPP TS
23.228, 3GPP TS 23.002] is logically divided into a Core Network (CN) and an Access
Network (AN) infrastructure. The CN is logically divided into a Circuit Switched (CS)
domain, a Packet Switched (PS) domain and IP Multimedia Subsystem (IMS). The AN
is called the UMTS Terrestrial Radio Access Network (UTRAN) and is formed by a
hierarchical Radio Network Subsystem (RNS), whose elements are Radio Network
Controller (RNC), Node B and User Equipment (UE). A Node B is a logical network
component which serves one or more cells. It is the radio transmission/reception unit for
communication in the radio cells. A RNC is a network component with the functions for
control of one or more Node B elements. It handlers protocol exchanges between
UTRAN interfaces. The RNC provides centralised operation and maintenance of the
radio network system including access to an operations support system. Among other
things, the functions of the RNC include radio resource control, admission control,
channel allocation and handover control. The entities specific to the circuit switched
domain are Mobile Switching Centre (MSC) and Gateway Mobile Switching Centre
(GMSC). The MSC constitutes the interface between the radio system and the fixed
networks. The GMSC is an MSC which performs routing to the actual location of the
mobile station. The entities specific to the packet switched domain are Serving GPRS
Support Node (SGSN) and Gateway GPRS Support Node (GGSN). The SGSN and
GGSN handle packet traffic. The SGSN delivers packets to mobile stations within its
service area. It performs mobility management functions such as handing off a roaming
subscriber from the equipment in one cell to the equipment in another. The GGSNs are
used as interfaces to external IP networks such as the public Internet, other mobile
service provider’s GPRS services, or enterprise intranets. The GGSNs maintain routing
information that is necessary to tunnel protocol data units (PDUs) to the SGSNs that
service particular mobile stations. The IMS entities are discussed in Section 2.3. Figure
3 illustrates the architecture of the 3GPP release 5 network.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 8

Node B

Node B

RNC

P-CSCF

I-CSCF S-CSCF

SGSN GGSN

UE

InternetInternet

MGW

MGCF

HSS

PSTNPSTN

PS CN

IMS CN

MSC
Server

GMSC
Server

HSS

SGW

UTRAN

CN

Signalling interface

Signalling and data
transfer interface

MRF

Figure 3 - 3GPP release 5 network architecture

Other new features besides IMS that are included in release 5 include bearer
independence, separation of transport and control and Home Subscriber Server (HSS),
which contains user and terminal profiles [3GPP TS 23.002].

2.3 IP Multimedia Subsystem
Third Generation Partnership Project (3GPP) release 5 introduces among other things
the IP Multimedia Subsystem (IMS) [3GPP TS 23.228, Andreadis 2003, Camarillo
2004]. The IMS aims at combining the latest trends in technology and make the mobile
Internet paradigm come true. It is an attempt to create a common platform to develop
diverse multimedia services. One aim is also to create a mechanism to boost margins
due to extra usage of mobile packet-switched networks. The IMS comprises all core
network elements for the provision of IP multimedia (IM) services, for example Call
Session Control Function (CSCF) and Media Gateway Control Function (MGCF).
When exploring the architecture in the IMS, one should keep in mind that 3GPP does
not standardize nodes, but functions. The IMS architecture is a collection of functions
linked by standardized interfaces. Implementers are free to combine two functions into a
single node or to split a single function into two or more nodes. The IMS is a new core
network domain that controls voice and multimedia calls and sessions as well as the
interconnection to other networks like PSTN and other UMTS networks. It has a
signalling plane and a media plane that traverse different paths. SigComp is a
mandatory part of the IMS and it is used to compress SIP signalling traffic.

The IM domain enables cost reductions and introduction of new services, e.g. voice
telephony, video telephony, multimedia conferencing, instant messaging and real-time

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 9

interactive games. IMS should enable the convergence of, and access to, voice, video,
messaging, data and web-based technologies for the wireless user, and combine the
growth of the Internet with the growth in mobile communications. IMS makes it
possible for PLMN operators to offer their subscribers multimedia services based on
and built upon Internet applications, services and protocols. It utilises the packet
switched domain to transport multimedia signalling and bearer traffic. The packet
switched domain maintains the service while the terminal moves and hides the
movement from the IMS. IMS is independent of the circuit switched domain. The IM
domain enables users and applications to control sessions and calls between multiple
parties. It controls and supports network resources to provide the functionality, security
and quality required for the calls. The IM domain provides for registration of users so
that they can access their own services from any UMTS network. One additional role of
the IM is to generate Call Detail Records (CDRs), which contain information on call
participants, time, duration and volume of data sent and received. CDRs are used for
charging purposes.

IMS entities [3GPP TS 23.228] include CSCF, MGCF, IMS Media Gateway Function
(IMS-MGW), Multimedia Resource Function Controller (MRFC), Multimedia
Resource Function Processor (MRFP), Subscription Locator Function (SLF), Breakout
Gateway Control Function (BGCF) and Application Server (AS). The configuration of
IMS entities is shown in Figure 4. In the figure, interfaces supporting user traffic are
shown as bold lines and interfaces supporting signalling are drawn as dashed lines.

The roles of IMS entities are described in [3GPP TS 23.228]. The CSCF, which is a SIP
server, can act as a Proxy CSCF (P-CSCF), Serving CSCF (S-CSCF) or Interrogating
CSCF (I-CSCF). The P-CSCF is the UE’s first contact point for the IMS. The P-CSCF
is also of special importance to SigComp, since it is the core network element that has
been selected for performing compression and decompression of SigComp messages.
For this, the P-CSCF includes a compressor and a decompressor (IMS terminals include
both as well). The S-CSCF handles the session states in the network while the role of
the I-CSCF is to find the proper S-CSCF for a particular user. The MGCF performs
protocol conversion, receives out of band information, communicates with the CSCF,
selects the CSCF and controls parts of call state. The IMS-MGW terminates bearer
channels from a switched circuit network and media streams from a packet network. It
handles media conversion, bearer control and payload processing. The task of the
MRFC is to control media stream resources in the MRFP, generate CDRs and interpret
information coming from an AS and an S-CSCF and control MRFP accordingly. The
MRFP provides resources that are controlled by the MRFC, controls bearers on the Mb
reference point shown in Figure 4 and mixes, sources and processes media streams. The
SLF provides the name of the HSS containing the required subscriber specific data
when requested by the I-CSCF during registration and session setup. It is also queried
by the S-CSCF during the registration process. The BGCF selects the network in which
PSTN breakout is to occur and chooses the MGCF that is used. The AS can be a SIP
Application Server, an Open Service Access (OSA) Application Server or a Customized
Application for Mobile Enhanced Logic (CAMEL) IP Multimedia Service Switching
Function (IM-SSF). It offers value added IM services. The interface between the S-
CSCF and the AS is used to provide services residing in the AS.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 10

CSCF

BGCF

MGCFIMS-MGW

MRFP MRFC UE

HSS

SLF

BGCF CSCF

Legacy mobile
signalling networks

IP Multimedia Networks

PSTN

IM Subsystem

P-CSCF
PDF

Mg

Mk Mk

Mw

Mm

C, D,
Gc, Gr

Cx

Dx

Gm

Go

MwMr

Mn

Mj Mi

PSTN

PSTN

Mp

Mb Mb

Mb Mb Mb

Mb

Figure 4 - Configuration of IM subsystem entities [3GPP TS 23.228]

The IP multimedia subsystem attempts to be conformant to IETF Internet standards in
order to achieve access independence and to maintain a smooth operation with wireline
terminals across the Internet [3GPP TS 23.228]. The signalling protocol that is used for
registration and call control in the IM domain is the Session Initiation Protocol (SIP).
SIP is the single protocol that is applied between UE and CSCF.

2.4 Location of Signalling Compression Functions
The entity that compresses messages sent to a terminal and decompresses messages
received from the terminal is the P-CSCF. This is illustrated in Figure 5, in which a SIP
signalling flow from a UE to the S-CSCF is shown. SIP messages that are compressed
with SigComp in the UE flow through the radio interface, Base Station (BS) and Radio
Network Controller (RNC) of UMTS Terrestrial Radio Access Network (UTRAN).
From the UTRAN they traverse through the Serving GPRS Support Node (SGSN) and
Gateway GPRS Support Node (SGSN) all the way to the P-CSCF, where the SigComp
messages are decompressed. From the P-CSCF onwards, the SIP messages are sent
uncompressed. The reasons behind selecting the entity performing SigComp
compression and decompression from the network core rather than from the radio
access network are discussed below [West 2002]. First of all, the location of traffic
encryption and decryption functionalities also affects the location of compression
functionality, because compression has to be applied out bound from the points of
encryption and decryption and it must be transparent. The packet content of some traffic
types is authenticated, integrity protected or encrypted. The trusted party that decrypts
traffic from and encrypts traffic to a terminal is in the mobile network core. If the
endpoint was chosen from the radio access network, network design and performance
would suffer from the complexity that would be added by transferring message keys
within the mobile network. Another important issue that affects the location of

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 11

signalling compression is handover. In SigComp, a relatively large amount of historical
state is built up to enable efficient compression. If the endpoint performing
decompression changed, this state would need to be transferred to the new entity to
maintain compression efficiency. This kind of solution would add complexity to the
network. When the decompression is performed in the P-CSCF, the decompressing
endpoint remains stable for the duration of the application layer session.

UTRANUTRAN

BS

BS

P-CSCF I-CSCF

S-CSCF

GGSN

UE

InternetInternet

SigComp
compression/decompression

SigComp
compression/decompression

Compressed traffic

Uncompressed
traffic

RNC

SGSN

Figure 5 - Location of SigComp functions

Thus, the location of SigComp functions is in the mobile terminal and in the interior of
the network, namely in the IMS. This approach contrasts with header compression
[RFC 3095], in which the compression functions are located in the terminal and in the
radio access network. In the case of SigComp, messages are application level messages
that do not contain routing information. They are carried in the payload of transport
layer protocols, which in turn leave routing issues to IP. SigComp does not compress
the headers of transport layer protocols. Only the entities interested in the content of the
transport layer protocol payload, namely the two communicating endpoints, need to
decompress SigComp messages.

It should be emphasized that the reason SIP signalling is sent compressed between the
terminal and the P-CSCF is not to save a few bytes over the air interface. It is not worth
saving a few bytes of signalling when the terminal will be establishing a multimedia
session that will use much more bandwidth. The main motivation for compression is to
reduce the time required to transmit SIP messages over the air interface.

2.5 Session Initiation Protocol
Perhaps the most important component of the signalling plane is the protocol that
performs session control. In the IMS, this is the task of the Session Initiation Protocol
(SIP) [RFC 3261]. SIP was originally used to invite users to existing multimedia
conferences, but today it is mainly used to create, modify and terminate multimedia

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 12

sessions. Although SigComp can be used to compress the messages of any text-based
protocol, the main focus is currently on the compression of SIP messages.

SIP is independent of the type of multimedia session handled and of the mechanism
used to describe the session. The most common format to describe multimedia sessions
is the Session Description Protocol (SDP). SDP is simply a textual format that is carried
in the body of SIP messages. This is the reason SigComp has to be able to efficiently
compress both SIP and SDP. The SIP/SDP static dictionary [RFC 3485] was defined for
this purpose.

SIP protocol defines several entities [Camarillo 2002], which are user agents (UAs),
redirect servers, proxy servers, registrars and location servers. All 3G terminals
supporting 3GPP Release 5 or later releases contain a SIP UA. Also 3GPP2 has adopted
SIP. SIP makes use of proxy servers to help route requests to the user’s current location,
authenticate and authorise users for services, implement provider call-routing policies,
and provide features to users. Redirect servers help in the location of SIP UAs by
providing alternative locations where the user can be reachable. A registrar accepts
registrations. It is usually co-located with a redirect server or a proxy server. A location
server is not a SIP entity, but is an important part of any architecture that uses SIP.
Location servers store and return possible locations of users.

SIP is a request/response protocol like the Hypertext Transfer Protocol (HTTP), on
which it is based. SIP User Agent Clients (UACs) send requests and User Agent Servers
(UASs) return responses. The start line of a request declares a method name, which
indicates the purpose of the request. The methods that are currently defined in SIP are
shown in Table 4 [Camarillo 2004].

Table 4 - SIP methods [Camarillo 2004]

Method name Meaning
ACK Acknowledges the establishment of a session
BYE Terminates a session
CANCEL Cancels a pending request
INFO Transports PSTN telephony signalling
INVITE Establishes a session
NOTIFY Notifies the user agent about a particular event
OPTIONS Queries a server about its capabilities
PRACK Acknowledges the reception of a provisional response
PUBLISH Uploads information to a server
REGISTER Maps a public URI with the current location of the user
SUBSCRIBE Requests a notification about a particular event
UPDATE Modifies some characteristics of a session
MESSAGE Carries an instant message
REFER Instructs a server to send a request

The start line of a response is referred to as the status line. The status line contains the
protocol version and the status of the transaction. The latter is given in a numerical
format using a status code and also in a human readable format. Responses are
classified by their status codes, which are listed in Table 5. Status codes indicate the
status of a transaction.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 13

Table 5 - Status codes of SIP responses

Range Response class Example
100-199 Informational 180 Ringing
200-299 Success 200 OK
300-399 Redirection 380 Alternative service
400-499 Client error 401 Unauthorized
500-599 Server error 500 Internal server error
600-699 Global failure 600 Busy everywhere

The exchange of a set of SIP messages between two user agents is referred to as a SIP
dialog. In Figure 6, there is an example of a dialog, which is established by an INVITE-
200 OK transaction and terminated by a BYE-200 OK transaction. The contents of
messages (2) and (3) of the dialog are shown in Figure 7.

Bob Proxy Alice

Conversation

(1) INVITE

(4) 200 OK

(5) ACK

(6) BYE

(7) 200 OK

(2) INVITE

(3) 200 OK

Figure 6 - Session establishment through a proxy

INVITE sip:Alice@domain.com SIP/2.0
Via: SIP/2.0/UDP p1.domain.com:5060;branch=xyz
Via: SIP/2.0/UDP c1.domain2.com:5060;branch=abc;

received=123.0.100.4
Max-Forwards: 69
From: Bob <sip:Bob@domain2.com>;tag=123
To: Alice <sip:Alice@domain.com>
Call-ID: 123456789@123.0.100.4
Cseq: 1 INVITE
Contact: <sip:Bob@123.0.100.4>
Content-Type: application/sdp
Content-Length: 120

v=0
o=Bob 2890844526 2890844526 IN IP4 c1.domain2.com
s=-
c=IN IP4 123.0.100.4
t=0 0
m=audio 20000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

SIP/2.0 200 OK
Via: SIP/2.0/UDP p1.domain.com:5060;branch=xyz

;received=123.1.0.5
Via: SIP/2.0/UDP c1.domain2.com:5060;branch=abc;

received=123.0.100.4
From: Bob <sip:Bob@domain2.com>;tag=123
To: Alice <sip:Alice@domain.com>;tag=987
Call-ID: 123456789@123.0.100.4
Cseq: 1 INVITE
Contact: <sip:Alice@123.0.0.5>
Content-Type: application/sdp
Content-Length: 120

v=0
o=Alice 2890844545 2890844545 IN IP4 123.0.0.5
s=-
c=IN IP4 123.0.0.5
t=0 0
m=audio 30000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

(2) INVITE (3) 200 OK

Figure 7 - Messages (2) and (3) of the example dialog

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 14

From Figure 7, we can observe that most of the rows or substrings of rows in the 200
OK response can also be found from the INVITE request. The matches are shown in
Figure 8 using grey background colour. Matches shorter than three characters are not
shown. All coloured rows or substrings contain information that was already present in
the INVITE message. The purpose of the figure is to show that usually SIP messages
belonging to the same dialog contain much information that is present also in other
messages of the same dialog. This is good news for a compression scheme like
SigComp, since this redundant information can be compressed efficiently.

Via: SIP/2.0/UDP c1.domain2.com:5060;branch=abc;
;received=123.0.100.4

INVITE sip:Alice@domain.com SIP/2.0
Via: SIP/2.0/UDP p1.domain.com:5060;branch=xyz
Via: SIP/2.0/UDP c1.domain2.com:5060;branch=abc;

received=123.0.100.4
Max-Forwards: 69
From: Bob <sip:Bob@domain2.com>;tag=123
To: Alice <sip:Alice@domain.com>
Call-ID: 123456789@123.0.100.4
Cseq: 1 INVITE
Contact: <sip:Bob@123.0.100.4>
Content-Type: application/sdp
Content-Length: 120

v=0
o=Bob 2890844526 2890844526 IN IP4 c1.domain2.com
s=-
c=IN IP4 123.0.100.4
t=0 0
m=audio 20000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

(2) INVITE (3) 200 OK

Via: SIP/2.0/UDP p1.domain.com:5060;branch=xyz

Call-ID: 123456789@123.0.100.4
Cseq: 1 INVITE

Content-Type: application/sdp
Content-Length: 120

a=rtpmap:0 PCMU/8000

t=0 0

s=-

v=0

;received=123.

SIP/2.0 200 OK

1.0.5

To: Alice <sip:Alice@domain.com>;tag=

Contact: <sip: Alice@ 123.0. 0.5>

m=audio 3 0000 RTP/AVP 0

c=IN IP4 123.0. 0.5

o=Alice 28908445 45 28908445 45 IN IP4 123.0. 0.5

;tag= 987
From: Bob <sip:Bob@domain2.com>;tag=123

Figure 8 - Comparison of the content of messages (2) and (3)

2.5.1 Compressibility of Session Initiation Protocol
The average number of binary symbols needed to code the output of a source is called
entropy [Sayood 1996]. In case of first-order entropy, nothing is known about the
structure of the data and only single characters are being coded, not the whole message.
The first-order entropy of a typical SIP message is about 6.7 bits [Fidrich 2003]. This
means that the best scheme that could be found to code a SIP message could only code
it at 6.7 bits/character. Knowing that the amount of bits that is used to present a
character is 8, we can get the achievable compression ratio calculated below:

83,0
/8
/7.6

==
charbit
charbit

original
compressed .

If something about the structure of the data is known, the entropy can be reduced. Better
compression ratios can be achieved if dictionaries that make use of probability models
and codewords for symbols are used. An example of this approach is the static SIP/SDP
dictionary. One further means is to compress messages relative to previously sent
messages taking advantage of the redundancy in the contents of the messages. This was
illustrated in Figure 8.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 15

3 Signalling Compression
In this chapter, an introduction is given to SigComp, and the central concepts related to
the protocol are explained. The chapter begins with a description of SigComp
requirements. We continue by going through the architecture, message structure and
most important mechanisms of the SigComp protocol. Finally, an example is given on
the operation of SigComp.

3.1 Requirements
SigComp requirements, as stated in [RFC 3322], are:

• Transparency
• Header compression coexistence
• Compatibility
• Ubiquity
• Generality
• Support for unidirectional routes
• Operation over both unreliable and reliable transport
• Performance requirements

o Scalability
o Must not add delay noticeably

• Robustness
o Low probability of incorrect decompression caused by errors undetected

by lower layers
o Minimised error propagation
o Ability to operate under all expected delay conditions

• Compression efficiency
o Message loss should not affect later messages
o Toleration of moderate message disordering

Transparency requirement states that when a message is first compressed and then
decompressed, the result must be bitwise identical to the original message. SigComp
must be able to coexist with header compression, which is likely to be needed together
with it to reduce bandwidth usage even further. The compression scheme must be
compatible, i.e. it has to allow the upper layer protocols’ mechanisms to negotiate
whether the compression scheme is used or not. Even if only one of the two
communicating entities supports SigComp, the entities have to be able to communicate
with each other. SigComp should not require modifications to the protocols generating
the messages that are to be compressed. The compression scheme should also be
general. It must not be limited to certain protocols, traffic patterns or sessions. SigComp
must be able to operate on unidirectional routes without explicit feedback messages
from the compressor. It has to work for both reliable and unreliable transport protocols.
A primary target for SigComp is cellular systems, where the mobile terminals have
varying capabilities. Therefore it must be scalable; it must be flexible enough to
accommodate a range of compressor/decompressor pairs with varying processor and
memory capabilities. It must not noticeably add to the delay experienced by the end
user. The probability that errors, which are not detected by lower layers, cause incorrect
decompression should be low. The compression of later messages should not be
affected by the loss or damage of earlier messages. SigComp should also be able to

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 16

operate under all expected delay conditions. It should allow for the correct
decompression of moderately disordered messages between compressor and
decompressor.

3.2 Architecture
The layout of a SigComp endpoint is illustrated in Figure 9. It includes the following
entities: compressor dispatcher, one or more compressors, state handler, Universal
Decompressor Virtual Machine (UDVM) and decompressor dispatcher. Each of these
entities is described in the following subsections.

Compressor
dispatcher

Compressor 1

Compressor 2

State 1

State 2

Decompressor
dispatcher

Decompressor
(UDVM)State handler

Local application (SIP)

Transport layer (e.g. UDP)

Application message and
compartment identifier

Decompressed
message

Compartment
identifier

SigComp message SigComp message

SigComp layer

Figure 9 - Architecture of a SigComp endpoint [RFC 3320]

3.2.1 Compressor Dispatcher
The task of the compressor dispatcher [RFC 3320] is to receive messages from the
application and pass the compressed version of each message to the transport layer. The
application has to provide the compressor dispatcher a compartment identifier together
with each message. A compartment is an application specific grouping of messages that
relate to a peer endpoint. In case of SIP, a compartment is formed by all messages
belonging to a SIP dialog. The compartment identifier uniquely identifies a
compartment. SigComp invokes compressors on a per-compartment basis, which means
that a compartment identifier can also be used to identify a compressor. For this, a
mapping between compartment identifiers and compressors has to be maintained. By
providing a compartment identifier together with the application message, the
application ensures that the compressor dispatcher can locate an appropriate
compressor. Each time a new compartment identifier is encountered, a new compressor
is invoked. Once the compressor has compressed the application message, a SigComp
header is created and attached to it. After this, the compressor dispatcher can pass the
SigComp message to the transport layer. When the application wishes to close a

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 17

compartment, e.g. after receiving a BYE message and sending the final response, it
should indicate this to the compressor dispatcher.

3.2.2 Compressor
The compressor [RFC 3320] implements a certain compression algorithm that is used to
compress application messages. One of the fundamental ideas of SigComp is that the
standard does not dictate the use of one compression algorithm that should be used by
all endpoints. Instead, the choice of the algorithm is left as an implementation decision.
What follows is that each endpoint should be able to decompress the output of a variety
of compression algorithms. This is made possible by the use of a virtual machine to take
care of the decompression functionality. When a compressor creates a SigComp
message containing a compressed application message, it includes a decompression
algorithm to the header of the message. This decompression algorithm is called the
bytecode, and it has been compiled to a form that can be executed on the virtual
machine.

A number of requirements are placed on the compressor in [RFC 3320]. First of all, it
needs to be transparent, i.e. it must not send bytecode which causes the UDVM to
incorrectly decompress a SigComp message. The compressor should supply some form
of integrity check over the application message to ensure that successful decompression
has occurred. It must ensure that the message can be decompressed using the resources
available at the remote endpoint. If the transport is message-based, as it is in the case of
User Datagram Protocol (UDP), the compressor must map each application message to
exactly one SigComp message. In case the transport is stream-based, but the application
defines its own internal message boundaries, the compressor should also map each
application message to exactly one SigComp message.

The compressor of the SigComp prototype that we implemented as part of this thesis
uses a compression algorithm called Lempel-Ziv-Storer-Szymanski (LZSS). The LZSS
algorithm compresses data via textual substitution. It uses an adaptive dictionary, which
consists of a portion of the previously encoded sequence. When the input sequence is
encoded, the LZSS algorithm performs searches to its adaptive dictionary, trying to find
as long substitutions as possible for the n next bytes in the portion of the input sequence
that has not yet been encoded. The n next bytes are called the look-ahead buffer. All
matches, i.e. reoccurrences of strings that are already in the dictionary are substituted in
the output of the algorithm using offset/length pairs. This is illustrated in Figure 10, in
which the adaptive dictionary contains the string abracad. The look-ahead buffer
contains the four next bytes of the portion of the input sequence that has not yet been
encoded, in this case the string abra. By comparing the content of the look-ahead buffer
to the content of the adaptive dictionary, the LZSS compressor notices that the string
abra can be found in the adaptive dictionary. Therefore, it can use an offset/length pair
to encode the string abra. In this case, the offset is seven positions to the left and the
length is four.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 18

a a b r a

look-ahead
buffer

b r

adaptive dictionary

a c a d

offset = 7, length =4

0 1 2 3 4 5 6

c a d a b

rest of the sequence being
encoded

Figure 10 - Operation of the LZSS compression algorithm

3.2.3 Decompressor Dispatcher
The role of the decompressor dispatcher [RFC 3320] is to receive SigComp messages
from the transport layer, invoke a new instance of the UDVM to decompress each
message, and pass the resulting uncompressed message to the application. Once the
application has received the message, it maps the message to a compartment and returns
the compartment’s identifier to the decompressor dispatcher. The decompressor
dispatcher then hands the identifier to the state handler, which uses the identifier to save
state information and forward feedback information to an appropriate compressor. By
supplying a compartment identifier, the application grants the dispatcher a permission to
do this.

3.2.4 Universal Decompressor Virtual Machine
The Universal Decompressor Virtual Machine (UDVM) [RFC 3320] is the central piece
of the SigComp architecture. It is the entity that decompresses SigComp messages. The
decompression process is carried out by executing a special compiled program called
the bytecode on the virtual machine. The UDVM is a virtual machine much like the
Java Virtual Machine, but with the difference that it has been optimised for running
decompression algorithms. In the case of SigComp, the source code that is compiled to
bytecode is called the UDVM assembly and the entity compiling it is called the UDVM
interpreter. The bytecode can be thought of as the machine language of the UDVM.

The UDVM provides flexibility when choosing how to compress a given application
message: the compressor implementer has the freedom to select an algorithm of his
choice. The compressed data is combined with a bytecode containing a set of UDVM
instructions. These instructions are carried in the header of the SigComp message and
they allow the original data to be extracted at the receiving endpoint.

Because SigComp can run over an unsecured transport layer, a separate instance of the
UDVM is invoked on a per-message basis to ensure that damaged messages do not
affect the decompression of later messages. However, during the decompression process
the UDVM may invoke the state handler to access an existing state. This way the state
of the UDVM instance that decompressed the previous message can be restored by a
later UDVM instance.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 19

Request compressed data

Provide compressed data

Output decompressed data

Indicate end of message

Provide compartment identifier

Request state information

Provide state information

Make state creation request
Forward feedback information

UDVM

Decompressor
dispatcher

State
handler

Figure 11 - Interfaces between UDVM and its environment [RFC 3320]

The interfaces between the UDVM and its environment are illustrated in Figure 11.
When the UDVM has been initialised, it can receive additional compressed data from
the decompressor dispatcher or state information from the state handler only upon
request. As the decompression proceeds, the UDVM outputs decompressed data to the
decompressor dispatcher. When it encounters the end of a message, it indicates this to
the dispatcher, which provides it with a compartment identifier. This identifier is passed
to the state handler in a state creation request. The state handler uses the compartment
identifier to store the state information in a location in the state memory that is reserved
for the corresponding compartment. The UDVM also forwards the feedback
information that may be piggybacked to a SigComp message to the state handler.

To ensure that the decompression of a single message cannot consume excessive
processing resources, the concept of UDVM cycles in introduced in [RFC 3320]. A
UDVM cycle is a measure of the amount of CPU power that is required to execute a
UDVM instruction. A UDVM cycle limit is used to restrict the number of UDVM
cycles that can be used to decompress each bit in a SigComp message. The amount of
cycles a bytecode uses must be monitored because malicious users can send bytecodes
containing looping code. However, the cycle limit only reduces the amount of damage
that can be caused, but does not remove the problem.

In SigComp, the size of the decompressor memory is negotiable [RFC 3320]. The
decompressing side advertises the size of the decompressor memory to the compressing
side. The default size is two kilobytes. To improve the efficiency of the compression, a
memory size of four or eight kilobytes or even more can be used. The decompressor
memory is divided into two sections, the first of which is used to store the
decompressed message. The other section is used for the UDVM to hold the bytecode
and a circular buffer, which enables the use of states that are larger than the UDVM
memory. This is possible because as soon as the buffer fills, the UDVM can start to
overwrite content at the beginning of the buffer.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 20

The UDVM instruction set specified in [RFC 3320] contains 36 instructions chosen to
support the widest possible range of compression algorithms with the minimum possible
overhead. These instructions, their bytecode values and their cost in UDVM cycles are
presented in Appendix A.

3.2.5 State Handler
Because a separate instance of the UDVM is invoked to decompress each message that
arrives, a way is needed to retain information between messages. This is the task of the
SigComp state handler [RFC 3320], which stores information between received
SigComp messages. Thanks to the state handler, the compression ratio is improved
since messages can be compressed relative to the information contained in previous
messages. The state handler makes it possible to create state items for access when a
later message is being decompressed. The state items typically contain either a snapshot
of a UDVM instance’s memory or an uncompressed message.

The state handler manages state memory on a per-compartment basis. As well as storing
the state items themselves, it maintains a list of the state items created by a particular
compartment and ensures that no compartment exceeds its allocated memory.

3.2.6 UDVM Interpreter
The entity that translates the UDVM instructions and their operands listed in UDVM
assembly to the bytecode form is the UDVM interpreter [Draft Price]. The operation of
the UDVM interpreter is illustrated in Figure 12. The interpreter takes as an input a file
containing UDVM assembly source code and compiles it to a bytecode, which can be
executed on the virtual machine.

UDVM
interpreter

UDVM
Assembly bytecode

Figure 12 - UDVM interpreter

As an example, let’s suppose the following piece of UDVM assembly is provided as an
input to the interpreter:

:start pad(8)
MULTILOAD(start, 4, 10, 20, 30, 400)

The assembly contains one instruction, MULTILOAD, which simply loads four
consecutive two-byte blocks to the location specified by the label start, which in this
case has been assigned to memory address zero. The output of the interpreter, i.e. the
bytecode would look as follows:

0x0f 0x00 0x04 0x0a 0x14 0x1e 0xa1 0x90

The first byte, 0x0f, contains the operation code of the MULTILOAD instruction and
the remaining seven bytes encode the six operands of the instruction. The five first

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 21

operands can be encoded using only one byte per operand, but two bytes are required to
encode the last operand, 400. The operands are encoded using variable length encoding
as defined in [RFC 3320].

3.3 Messages

partial state identifier

remaining SigComp message

0 1 2 3 4 5 6 7

1 0

returned feedback item

0 1 2 3 4 5 6 7

1

code_len

code_len destination

1 1 1 T1 len1 1 1 1 T

returned feedback item

uploaded UDVM bytecode

remaining SigComp message

(a) (b)

Figure 13 - Format of a SigComp message [RFC 3320]

The format of a SigComp message [RFC 3320] depends on whether it accesses a state
item at the receiving endpoint or not. A message that contains a partial state identifier,
which is used to load a previously stored state item, is shown in Figure 13 (a). Figure 13
(b) presents a message that does not access a state item, but instead contains the UDVM
bytecode needed to decompress the message. An example of a situation in which the
bytecode is supplied with the message is when the message is the first message of a
compartment, meaning that there are not any stored state items to access yet.

The SigComp header is formed by the fields other than the field remaining SigComp
message. All SigComp messages contain a special prefix, which does not occur in
Unicode Transformation Format 8 (UTF-8) encoded text messages: the five most
significant bits of the message are set to 1. The prefix makes it possible to receive
uncompressed messages and SigComp messages on the same port. The T-bit of the
header is set to 1 whenever the SigComp message contains a returned feedback item.
The len field of the header determines which fields follow the returned feedback item. If
it is non-zero, the message contains a partial state identifier to access a state item at the
receiving endpoint. The length of the partial state identifier field can be 6, 9 or 12
bytes. If the len field is set to 0, then the bytecode needed to decompress the message is
supplied as part of the message itself. The code_len field specifies the size of the
uploaded UDVM bytecode. The destination field specifies the starting memory address
to which the bytecode is copied. The format of the field remaining SigComp message is
an implementation decision by the compressor that supplies the UDVM bytecode. It can
contain for example a compressed SIP message and a field specifying its length.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 22

3.4 Extended Operations
SigComp extended operations are specified in [RFC 3321]. They can significantly
improve the compression efficiency compared to per-message compression, which is
the mechanism offered by RFC 3320. Extended operations include the following
mechanisms:

• dynamic compression
• shared compression
• maintenance of state data across application sessions
• use of user-specific dictionary
• checkpoint states
• implicit deletion for dictionary update

Dynamic compression, shared compression and user-specific dictionary are discussed
below in their own subsections. In the method of maintaining state data across
application sessions, the lifetime of a compartment is made longer than the duration of a
single application session. Checkpoint state can be used to avoid decompression failure
due to reference to a non-existing state. A compressor can indicate that a state is a
checkpoint state by setting parameter state_retention_priority to the highest value. This
parameter is set when a state item is created. In implicit deletion some parts of the
dictionary are deleted using a well-defined algorithm, which can be part of the
predefined UDVM bytecode. When implicit deletion approach is used, there is no need
to signal explicitly which parts of the dictionary need to be deleted on a per-message
basis. The content of the dictionary needs to be deleted in order to keep an upper bound
on the memory consumption of e.g. in a low-end mobile terminal.

3.4.1 Dynamic Compression
In dynamic compression [RFC 3321], compression is done relative to messages sent
prior to the current compressed message. The use of previously sent messages is
efficient because the entropy of a message flow is better than the entropy of a single
message. Dynamic compression makes use of the similarity of consecutive messages.
As an example, let’s suppose endpoints A and B exchange messages using dynamic
compression. If both the first and the second messages that A sends to B contain the
string “john.doe@domain.com”, there is no need to resend this information in the
second message, provided that A knows that B has received and saved the first one.
Instead of this string, the output of A’s compressor can contain a pointer, which points
to this string in the memory of B’s UDVM. In the dynamic compression approach,
information from previously decompressed messages is maintained as a dictionary in
the memory of the UDVM. After a message has been decompressed, the contents of the
UDVM’s memory are saved. This UDVM memory snapshot is then retrieved when a
new message is to be decompressed, and the memory of the new UDVM instance is
initialised using it.

In order to be able to utilise information from previously sent messages, the compressor
has to gain knowledge about the reception of these messages. In case of unreliable
transport, the SigComp feedback mechanism can be used to provide a means for a
SigComp endpoint to confirm which states it has established during the lifetime of a
compartment. When a reliable transport layer protocol such as TCP is used, explicit
acknowledgements are not necessary.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 23

3.4.2 Shared Compression
In shared compression [RFC 3321], messages are compressed relative to messages
received by the endpoint prior to the current compressed message. The compressing
endpoint saves the uncompressed version of the compressed message as a state. In
addition to sent and acknowledged messages, also received messages are used to update
the dictionary and to compress new messages. It is efficient to use received messages
because acknowledgements are not needed. Instead of acknowledging a state item,
endpoint A signals to endpoint B that it has saved the uncompressed version of message
X it just sent by setting a special bit on the SigComp header. When endpoint B checks
the bit, it immediately knows that the dictionary entry corresponding to message X is
available at endpoint A. Therefore, endpoint B can compress the next message it sends
relative to message X. Shared states are saved in the same memory as the normal states
created by the particular remote compressor.

3.4.3 User-specific Dictionary
The idea behind the use of a user-specific dictionary [RFC 3321] is that for protocols
such as SIP, a given user and device combination produces some messages containing
fields that are always populated with the same data. For example, the capabilities of SIP
endpoints tend not to change unless the capabilities of the devices change. Also the
user’s name, email address and Uniform Resource Locator (URL) constitute
information that does not change frequently. When this approach is used, the SigComp
compressor includes the user-specific dictionary to the initial message that is sent to the
remote decompressor. This increases the compression efficiency once the messages start
to flow.

3.4.4 Impacts on SigComp Messages
[RFC 3321] suggests a format for SigComp messages carrying information required by
SigComp extended operations. To support dynamic and shared compressions, the
SigComp messages need to convey additional information: acknowledged state
identifiers and shared state identifiers. There is no need to specify a message format to
carry the information necessary for the extended features, because the format of the
field remaining SigComp message is an implementation choice by the compressor
which supplies the UDVM bytecode. An example of what the remaining SigComp
message field with support for shared compression and dynamic compression could
look like is illustrated in Figure 14 [RFC 3321].

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 24

Format according to RFC 3320
except for the field

“remaining SigComp message”

0 1 2 3 4 5 6 7

s reserved

shared_state_id

acked_state_id

a r

Rest of the SigComp message,
typically the compressed payload

Present if s = 1

Present if a = 1
remaining SigComp message

Figure 14 - SigComp extended operations message format [RFC 3321]

If the s bit of the message is set, the message contains a shared_state_id field. If the a
bit is set, the message contains an acked_state_id field. If the r bit is set, a state
corresponding to the decompressed version of the compressed message was saved at the
compressor. The lengths of the shared_state_id and the acked_state_id fields are the
same as in the case of the partial state identifier, i.e. 6, 9 or 12 bytes depending on the
length of the partial state identifier.

3.5 Feedback Mechanism
SigComp feedback mechanism is specified in [RFC 3320]. If SigComp endpoints both
send and receive SigComp messages and there is a one-to-one relationship between the
compartments exchanged between them, it is possible to send feedback information that
monitors the behaviour of an endpoint and helps to improve the efficiency of the
compression. Two types of feedback data exist: requested feedback data and returned
feedback data.

Feedback is done on a request/response basis: a compressor makes a feedback request
and receives some feedback in return from the remote endpoint. Requests and responses
are always piggybacked to SigComp messages carrying compressed data. The feedback
data is retained between SigComp messages and is considered to be part of the overall
state. It cannot be forwarded if not accompanied by a valid compartment identifier. Size
of the returned feedback item is 1-128 bytes.

By using the feedback mechanism, the receiving endpoint is informed about the
capabilities of the sending endpoint and additional resources available can be
advertised. Remote endpoints can also indicate their interest in receiving a list of some
of the state items available locally at an endpoint. Thanks to the feedback mechanism, it
is possible for a compressor to check that the state item it wants to access is not rejected
because there is not enough state memory available at the remote endpoint. This is done
by checking a special state_memory_size parameter. Successful decompression can also
be acknowledged in case of unreliable transport such as UDP. This needs to be done,
because when unreliable transport is used, messages can be lost or disordered on the
path between the compressor and a remote decompressor.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 25

3.6 Negative Acknowledgement Mechanism
A negative acknowledgement mechanism for SigComp is described in [Draft Roach]. It
allows the reporting of precise error information upon reception of a message that
cannot be decompressed. The negative feedback can be used by the endpoint that
originally sent the message to make adjustments to the compressed message before
retransmitting it. The negative acknowledgement mechanism is needed, because there
are situations in which a sender’s view of a shared state differs from the receiver’s view.
Examples of such situations are discarding of compartments without explicit signalling
in case of client failures, loss of connectivity, mobile terminal restarts and server
failover. The only solution the basic SigComp offers to these situations is to signal that
all states have been lost. Thus, even though only one state is corrupted or missing, all
states belonging to a compartment are erased. In addition, this requires a message in the
reverse direction that the application will authorize.

SigComp implementations that use the negative acknowledgement (NACK) mechanism
need to calculate and store a hash value for each SigComp message they send. When a
SigComp message that is received causes a decompression failure, the recipient forms
and sends a SigComp NACK message. The message contains a hash of the message that
could not be decompressed, the exact reason why the decompression failed and any
additional details that might assist the NACK recipient to correct the problems. Figure
15 shows the format of a SigComp NACK message. Only the content of the fields that
are new compared to those of Figure 13 are described here. Version gives the version of
the NACK mechanism being used. Reason code is a one-byte value that indicates the
nature of the decompression failure. OPCODE of failed instruction is a one-byte value
that includes the operation code to which the Program Counter (PC) of the UDVM was
pointing when the failure occurred. PC of failed instruction is a two-byte field
containing the value of the program counter when failure occurred. Hash of failed
message is simply a hash of the message that could not be decompressed. Error Details
provides any additional information that might be useful in correcting the problem that
caused the decompression failure.

1 0

returned feedback item

0 1 2 3 4 5 6 7

1

code_len = 0

code_len = 0 version = 1

1 1 1 T

reason code

opcode of failed instruction

PC of failed instruction

PC of failed instruction

hash of failed message

error details

Figure 15 - SigComp NACK message format [Draft Roach]

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 26

When a NACK message is received, the receiver performs a search using the hash
contained in the message. Then, if unreliable transport is used, SigComp uses the
information included in the message to make adjustments to the compressor associated
with the compartment in question. The next transmission of a message that the
application makes will take advantage of the adjustments. When NACK is received for
a message that was sent over reliable transport, the SigComp layer must indicate the
error to the application. The application, e.g. a SIP application, should react in the same
way as it does for any other transport layer error.

3.7 SigComp Operation
An example is given on the process of sending and receiving a SigComp message in
Figure 16. It is assumed that state information has already been saved at both endpoints,
i.e. messages have already been exchanged between them. Two communicating
endpoints, A and B, are shown. The sequence of interactions between different
SigComp entities is explained below.

Compressor
dispatcher

Local application (SIP)Local application (SIP)

Compressor State
handler

Decompressor
(UDVM)

Decompressor
dispatcher

Compressor
dispatcher

Compressor State
handler

Decompressor
(UDVM)

Decompressor
dispatcher

Local application (SIP)Local application (SIP)

SigComp

messages

Application

messages

Application

messages

3

6,

7,

10

Endpoint A Endpoint B

12

11
42

1

5

9

8

Figure 16 - SigComp operation

(1) The local application at endpoint A sends a SIP message together with a

compartment identifier to the compressor dispatcher. Also an IP address and a
port number of the destination need to be supplied.

(2) The compressor dispatcher figures out the compressor that is associated with
this compartment and forwards the SIP message, the destination address and
port number to it.

(3) The compressor requests state information from the state handler. This state
information can contain for example a shared state, provided that SigComp
extended operations are used. The compressor uses the loaded state
information to compress the message, creates a SigComp message header and
puts the output from the compression process to the payload of the SigComp
message. The compressor may also save state to store the uncompressed
version of the message that is being processed. This will later become the next

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 27

shared state.
(4) The compressor hands the SigComp message that was created in the previous

step to the compressor dispatcher.
(5) The compressor dispatcher passes the SigComp message to the transport layer

together with the IP address and the port number that were received from the
application. At endpoint B, SigComp decompressor dispatcher is invoked
when the UDP datagram containing the SigComp message arrives to the port
the decompressor dispatcher has been assigned. The decompressor dispatcher
inspects the five first bits of the UDP payload and concludes that the payload
contains a SigComp message.

(6) The decompressor dispatcher reads the fields of the SigComp header. It creates
a new UDVM and initialises the memory of the UDVM using a previously
saved state, the state identifier of which was included in the header. The
bytecode that is needed to decompress the payload of the SigComp message is
a part of this state item. Next, the UDVM starts executing the bytecode.

(7) While executing the bytecode, the UDVM retrieves the shared state item that
endpoint A used in the compression process from the state handler.

(8) When it has finished decompressing the message, the UDVM sends the
decompressed SIP message to the decompressor dispatcher.

(9) The decompressor dispatcher forwards the SIP message to the SIP application.
(10) The SIP application maps the message to a certain compartment and returns

the corresponding compartment identifier to the decompressor dispatcher.
(11) The decompressor dispatcher forwards the compartment identifier to the

UDVM.
(12) The UDVM hands the compartment identifier to the state handler. Now the

state handler can save state, i.e. store the contents of the UDVM’s memory, the
shared state and the returned feedback item that the SigComp message
possibly contained. These are saved in the state memory reserved for the
compartment of the message.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 28

4 Applying Signalling Compression to the Session Initiation
Protocol

In this chapter, the way SigComp is applied to the session initiation protocol is
explained. The chapter begins by listing the requirements SigComp places on SIP. Also
the mechanism that is used to signal that compression is required is presented. Finally,
the static SIP/SDP dictionary that can be used to improve the efficiency of SigComp
compression is described.

4.1 Requirements of Signalling Compression on the Session Initiation
Protocol

A compression scheme like SigComp cannot be implemented without support from the
application level protocols using it. [RFC 3320] lists a number of requirements on the
applications using SigComp. SigComp requirements especially on SIP are discussed in
[RFC 3486].

First of all, the negotiation of whether to use compression or not must be handled by the
SIP application. When receiving messages, both SigComp messages and uncompressed
SIP messages are first inspected by the SigComp layer. If the first five bits of the first
byte of a transport protocol message payload are ‘11111’, the message is identified to be
a SigComp message. If another bit pattern is encountered, the message is considered to
be a SIP message and is immediately forwarded to the SIP application. This makes it
possible to multiplex compressed and uncompressed messages on the same port.

It is not enough for the SIP application to hand only the message to be compressed to
the SigComp layer. In addition, a compartment identifier, destination IP address and a
port number need to be supplied at a minimum. To be able to provide a compartment
identifier, the SIP application should handle the mapping between a SIP dialog and a
pair of peer SigComp compartments. When the application receives a decompressed
message from the SigComp layer, it maps the message to a certain compartment and
returns the compartment’s identifier. Distinct compartments must be assigned to distinct
endpoints. The application should also use an authentication mechanism to securely
map decompressed messages to compartment identifiers. When the application wishes
to close a particular compartment, it should indicate this to the compressor dispatcher,
so that the resources taken by the compartment can be reclaimed.

Applications should agree on any limits to the lifetime of a compartment in order to
avoid the case in which an endpoint accesses state information that has already been
deleted. It should also be kept in mind that not all endpoints will understand SigComp.
If a server, which does not support SigComp, receives a compressed message, it has no
means to indicate this to the client. Thus, if a SIP client has initiated a transaction by
sending a compressed request, and the client does not receive a response during the
transaction timeout period, the client should resend the same request uncompressed.

A SIP user agent needs a way to declare that it wishes to receive incoming requests
compressed. On the other hand, it must also be able to send requests, preferably even
the initial INVITEs, compressed. Mechanisms for this are discussed in section 4.2.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 29

In order to avoid asymmetric compression, proxies need to rewrite their record-route
entries in the responses. The Record-Route header field is inserted by proxies in a
request to force future requests in the dialog to be routed through the proxy. If the URI
of the next upstream hop in the route set contains the parameter comp=sigcomp, which
indicates SigComp compression, the proxy should add the same parameter to its entry.
If the URI does not contain the parameter, the proxy should remove the comp=sigcomp
parameter from its entry in the Record-Route header field. Also the user agent servers
need to observe the presence of the comp=sigcomp parameter. If the URI of the next
upstream hop in the route set contains the comp=sigcomp parameter, the UAS should
add the same parameter to the contact header field of the response.

4.2 A Mechanism to Signal That Compression Is Required
A mechanism for signalling that SigComp compression is required is described in [RFC
3486]. In SIP, clients send requests to the host part of a URI. Servers send responses to
the host specified in the sent-by parameter of the Via header field. To signal that a SIP
message needs to be compressed, a comp=sigcomp parameter is used in URIs if a
request is to be compressed or in Via entries if a response is to be compressed. An
example of a URI containing this parameter is as follows:

sip:bob@hut.fi;comp=sigcomp

This indicates that the request has to be compressed using SigComp. An example of a
Via header field indicating that the SIP entity is willing to receive compressed messages
is presented below:

Via:SIP/2.0/UDP
computer.hut.fi:5060;branch=XXX;comp=sigcomp

Clients other than proxies add the parameter comp=sigcomp to the URI in the contact
header field, whereas proxies add the parameter to their URI in the record-route header
field. Figure 17 shows the way the comp=sigcomp parameter can be used to signal SIP
traffic compression between a user agent and a proxy. In the figure, the Route header
field in the messages that the User Agent Client (UAC) sends indicates that the request
(INVITE and ACK) needs to be compressed. Via header field in the messages the proxy
sends indicates that the response (200 OK and 180 ringing) needs to be compressed. All
SIP messages between the UAC and the proxy are sent compressed in Figure 17.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 30

UAC@
helsinki.fi

UAS@
hut.fi

Proxy@
domain.com

1. INVITE Route: <sip:Proxy.domain.com;comp=sigcomp>

2. INVITE

3. 180 Ringing

4. 180 Ringing
Via: SIP/2.0/UDP computer.helsinki.fi:5060;comp=sigcomp

5. 200 OK

6. 200 OK
Via: SIP/2.0/UDP computer.helsinki.fi:5060;comp=sigcomp

7. ACK Route: <sip:Proxy.domain.com;comp=sigcomp>

8. ACK

SigComp compression

Figure 17 - The comp=sigcomp parameter

An example of the format of the INVITE message, which is the first message sent in
Figure 17, is presented below. The SDP content is not shown.

INVITE sip:UAS@hut.fi SIP/2.0
Via: SIP/2.0/UDP computer.helsinki.fi:5060;comp=sigcomp
Route: <sip:Proxy.domain.com;comp=sigcomp>
From: UAC <sip:UAC@helsinki.fi>
To: UAS <sip:UAS@hut.fi>
Call-ID: 123456789@computer.helsinki.fi
CSeq: 1 INVITE
Contact: UAC <sip:UAC@computer.helsinki.fi;comp=sigcomp>
Content-Type: application/sdp
Content-Length: 200

It is assumed that the UAC is configured to send compressed traffic to the Proxy, which
is the reason it sends the INVITE compressed. The UAC adds the parameter
comp=sigcomp to the Via and the Contact header fields so that it can receive future
requests and responses compressed. An example of the format of the first response sent
from the Proxy to the UAC, the 180 Ringing, is shown below.

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP computer.helsinki.fi:5060;comp=sigcomp
Record-Route: Proxy.domain.com;comp=sigcomp
From: UAS <sip:UAS@helsinki.fi>
To: UAC <sip:UAC@hut.fi>;tag=543210
Call-ID: 123456789@computer.helsinki.fi
CSeq: 1 INVITE
Contact: UAS <sip:UAC@hut.fi>

The comp=sigcomp parameter in the Via header field of the 180 Ringing message
indicates that the message should be sent compressed to the UAC. It is assumed that the
Proxy wants to remain in the signalling path. This is the reason the message contains the
Record-Route field, which was originally added to the INVITE sent from the Proxy to

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 31

the UAS in step (2). When the Proxy sends the 180 Ringing response to the UAC, it
assumes that because the UAC wants to receive compressed requests, it would also like
to send compressed requests. Therefore the proxy adds the comp=sigcomp parameter to
its entry in the Record-Route field.

Receiving incoming requests, even initial INVITEs compressed is not a problem, since
user agents can register a SIP URI with the comp=sigcomp parameter in their registrar
[RFC 3486]. All incoming requests for the user will be sent to this SIP URI using
compression. Sending of compressed messages is slightly more complicated. It is, of
course, easy for the client to get a next-hop URI with the comp=sigcomp parameter
from a record-route header field or contact header field, but in this case the client has to
wait until it receives a response from the user agent server. To send the initial INVITE
compressed, the client needs to get a comp=sigcomp URI from its outbound proxy
before it decides to establish a session. To do this, the client can send an uncompressed
OPTIONS request to its outbound proxy [RFC 3486]. The proxy can then provide an
alternative URI with the comp=sigcomp parameter to the client. A client should never
send a compressed request to a server if it does not know whether or not the server
supports SigComp.

4.3 The Static Session Initiation Protocol and Session Description
Protocol Dictionary

[RFC 3485] defines the Session Initiation Protocol (SIP) and Session Description
Protocol (SDP) specific static dictionary, which can be used to achieve higher
compression efficiency. The dictionary is compression algorithm independent and must
be available in all SigComp implementations for SIP/SDP. It is static, i.e. it will stay as
it is forever, even though some minor errors in the dictionary have been reported [Draft
Surtees]. In general, the use of a static dictionary technique like the static SIP/SDIP
dictionary is most appropriate when considerable prior knowledge about the source is
available. When compressing SIP, it is known ahead of time that certain words such as
Via, From, To or Contact are going to appear in almost all of the messages.

When SIP/SDP messages are compressed, the first few messages are only partially
compressed because there are not previous states to compress against. The compression
becomes more efficient only after a few messages have been exchanged. For example,
the INVITE request, which is the first message sent, cannot take advantage of any
previously built dictionaries. This problem is reduced by the static SIP/SDP dictionary
[RFC 3485], which constitutes a SigComp state that can be referenced already in the
first SIP message that a compressor sends out. This is possible because both endpoints
are guaranteed to have the same version of the dictionary. The use of the dictionary
enables more efficient compression of the first messages.

The static SIP/SDP dictionary is a collection of well-known strings that appear in most
SIP and SDP messages. Table 6 shows examples of the input strings that have been
used in generating the library. Also their priorities are shown. The examples are taken
from the complete list of SIP/SDP strings presented in [RFC 3485] that were used when
building the dictionary. A low number in the priority field indicates that the string can
be found with high probability in a SIP message. The dictionary that is actually included
in the SigComp implementation is in binary form.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 32

Table 6 - The static SIP/SDP dictionary

String Priority
“sip:” 1
“To: “ 1
“tel:” 3
“SIP/2.0” 1
“SIP/2.0/UDP “ 1
“terminated” 4
“INVITE” 1
“ Dec “ 4
“ACK” 1
“Via: “ 1
“OPTIONS” 4
“algorithm=” 2
“BYE” 2
“Record-Route: “ 2
“CANCEL” 4
“100 Trying” 2
“REGISTER” 2
“180 Ringing” 2
“INFO” 4
“Contact: “ 5

The binary SigComp dictionary [RFC 3485] is comprised of two parts: a string subset
and a table subset. The string subset contains all strings in the contributing collections
as a substring. There are two collections: the first is a collection of strings that SIP
contributed to the dictionary and the second one a collection of strings that SDP
contributed to the dictionary. The table subset contains pairs of length and offset values
for all the strings in the contributing collections. All compression algorithms are able to
use the string subset and some compression methods can also use the table subset. The
idea is that a compressor can choose to reference either a string in the string subset or an
entry in the table subset. The compressor that is used in the SigComp prototype
described in this thesis always references entries in the string subset.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 33

5 Computer and Operating System Architectures
In order to better understand the results of the performance measurements presented in
this thesis, it is good to know something about the way a computer is organised. In this
chapter, the memory hierarchy of a computer system is described. Because the
SigComp prototype presented in this thesis is implemented as a multithreaded
application, also an introduction to multithreaded programming is given.

5.1 Memory Hierarchy
In an ideal situation, a computer would have a memory with an unlimited size and
extremely fast access times. However, since no current technology satisfies these goals,
a computer system can only provide an illusion of a large memory than can be accessed
as fast as a very small memory. This illusion is provided by organising the memory into
a memory hierarchy, which takes advantage of the principle of locality. The principle of
locality [Patterson 1997] states that programs access a relatively small portion of their
address space at any instant of time. The memory hierarchy of a computer is depicted in
Figure 18.

Magnetic disk

Main memory

Cache

Registers

Figure 18 - Memory hierarchy

A memory hierarchy [Patterson 1997, Tanenbaum 2001] consists of multiple levels of
memory with different speeds and sizes. On the top of the hierarchy are registers that
are internal to the Central Processor Unit (CPU). They are just as fast as the CPU and
can be accessed with no delay. The next level in the hierarchy is the cache memory,
which uses static random access memory (SRAM) with an access time of about 5-25 ns.
The main memory is divided up into cache lines, the most heavily used of which are
kept in a high-speed cache that is located inside or very close to the CPU. There can be
two or even three levels of cache, each one slower and bigger than the one before it. If a
program wants to read a memory word and the needed line happens to be in the cache,
the situation is called a cache hit. This means that the main memory does not need to be
accessed and the word is returned to the program with only a little delay. On the other
hand, if the needed line is not found in the cache, a cache miss occurs. This means that
the main memory must be accessed with a substantial time penalty. The main memory
[Patterson 1997] is implemented from dynamic random access memory (DRAM).
DRAM is cheaper per bit than SRAM, but it is also substantially slower, having an
access time of about 60-120 ns. All CPU requests that cannot be satisfied out of the
cache go to main memory.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 34

The use of virtual memory [Patterson 1997, Tanenbaum 2001] means that the combined
size of the program, data and stack may exceed the amount of physical memory
available for it. The parts of the program that are in use are kept in the main memory,
while the rest are kept on disk, which is on the bottom of the memory hierarchy. In a
multiprogramming system, it is sufficient that the main memory contains the active
portions of the programs in execution. A virtual memory block is called a page, and a
virtual memory miss is called a page fault. It takes millions of CPU cycles to process a
page fault since the missing page has to be brought in from the disk. This may take even
10-20 million nanoseconds. Therefore, the miss penalty can be considered enormous.

5.2 Multithreaded and Parallel Programming

5.2.1 Processes and Threads
A process [Tanenbaum 2001] is an executing program, including the current values of
the program counter, registers and variables. A process is essentially a way to group
related resources together; this makes their management easier. In the process model, all
runnable software on the computer is organised into a number of sequential processes.
If there are multiple processes running on the same Central Processor Unit (CPU), the
CPU switches back and forth from process to process, meaning that the processes take
turns executing on the CPU. A process has also a thread of execution. While processes
are used to group resources together, threads are the entities that are scheduled for
execution on the CPU. A thread has a program counter keeping track of which
instruction to execute next, registers to holds its current working variables and a stack
containing the execution history. In multithreading [Tanenbaum 2001], multiple threads
are allowed in the same process. The threads share the address space and resources of
the process. When a multithreaded process is executed on a single-CPU system, its
threads take turns running, in a similar way as in the case that there are multiple
processes running on the same CPU. If there are for instance ten compute-bound threads
in a process, the threads appear to be running in parallel, because the CPU switches
rapidly back and forth among the threads. However, each thread gets only one-tenth of
the speed of the CPU.

Threads are useful, because they make the programming model simpler. In the thread
model, parallel entities are allowed to share an address space and all of its data. Threads
are also easier to create and destroy than processes. Having multiple threads is most
useful when both substantial computing and substantial Input/Output (I/O) are present.
The use of multiple threads allows overlapping of activities, thus speeding up the
application. This is because when one thread becomes blocked while waiting for an I/O
event to occur, CPU time can be allocated to another thread performing computing
work. If the system had only one thread, the CPU would be idle for the duration of the
I/O event. On the other hand, when all threads do heavy computing on a single-CPU
system, having multiple threads yields no performance gain.

Threads are also useful on systems with multiple CPUs. In these systems, real
parallelism is possible; if there are for instance two threads and two CPUs, both threads
can execute simultaneously on their own CPUs.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 35

5.2.2 Processors and Multiprocessors
A single-CPU system executes multiple threads by switching between them. Rapid
switching provides the illusion that the threads are running in parallel. There are many
approaches to multithreading. In time-slice multithreading [Marr 2002], the processor
switches between software threads after a fixed time period. In switch-on-event
multithreading, the threads are switched on long latency events such as cache misses. In
simultaneous multi-threading [Marr 2002], multiple threads can execute on a single
processor without switching. The threads execute simultaneously and make better use of
resources than in the case of time-slice or switch-on-event multithreading. For instance,
Intel’s Hyper-Threading Technology [Marr 2002] uses the simultaneous multi-threading
approach. The Hyper-Threading Technology makes a single physical processor appear
as multiple logical processors. In a Hyper-Threading processor, there is one copy of the
architecture state for each logical processor, and the logical processors share a single set
of physical resources.

True multiprocessor systems have two or more CPUs sharing the same physical
memory. Adding more processors allows applications to get performance
improvements, because multiple threads can be executed on multiple processors at the
same time.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 36

6 Previous Research on Signalling Compression
In this chapter, some previous research on SigComp is presented. Because SigComp is a
fairly new feature, manufacturers are still in the middle of the process of implementing
the protocol. Therefore, the research that has been published so far has mainly focused
on the estimated performance of the protocol. At least to the author’s best knowledge,
this thesis is the first to study the performance of a full-blown SigComp implementation
and the load it places on the core network element performing compression and
decompression of SIP messages. SigComp architecture plans have neither been
published before.

The compression ratios achieved by SigComp extended operations are studied in
[Nordberg 2003]. The compression ratios were measured for a compression algorithm
called LZBS. Compression and decompression times or the overhead added by the
extended mechanisms were not measured. In addition, some simplifying assumptions
were made and therefore the results obtained do not reflect the performance of a
complete SigComp implementation. A maximum compression ratio (size
compressed/size uncompressed) of 22.7% was achieved for the entire call setup
sequence using a buffer size of 4096 bytes and a ratio of 35.7% using a buffer size of
2048 bytes. This thesis studies the effects of using larger buffer sizes, namely 8192 and
16384 bytes in addition to the smaller buffer sizes. The use of a buffer size of 2048
bytes is not feasible in most cases, because the buffer is too small to hold the static
SIP/SDP dictionary, let alone the biggest SIP messages. In fact, it makes it completely
impossible to send certain messages compressed [Draft Surtees]. A buffer of size 4096
is able to hold the string subset of the static SIP/SDP dictionary, but parts of the
dictionary typically need to be overwritten already when the first message is
decompressed.

Fidrich, Bilicki, So’gor and Sey [Fidrich 2003] studied the compression ratios,
compression times and decompression times of some well-known algorithms. These
algorithms include Deflate, Subexponential encoder, Synth, LZ77 and Huffman coding.
The algorithms supported only basic compression together with a static dictionary,
which was not the same one as the static SIP/SDP dictionary defined in [RFC 3485].
For these two reasons, the resulting compression ratios are quite modest, about 46% in
the case of the best-performing algorithm. The compression and decompression times
were estimated using a theoretical approach. They were calculated for a CPU of a
mobile phone having a clock rate of 100 MHz. This thesis focuses on the performance
of SigComp on the core network side. Fidrich, Bilicki, So’gor and Sey conclude that
most well-known compression algorithms cannot be used without adapting or even re-
designing them. If carefully built dictionaries are not used, the compression ratios are
typically over 100%, i.e. the compressed messages are actually larger than the original
ones.

SigComp can also be applied to the Push-to-talk over Cellular (PoC) service, because
PoC uses SIP based signalling for session control. The effect of SigComp on the end-to-
end delay in PoC session control is estimated in [Balazs 2004]. The results imply that if
SigComp were able to reduce the size of the SIP message sequence by 80%, the end-to-
end session setup delay would be reduced by almost 56% from 3.04 seconds to 1.34
seconds.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 37

7 Signalling Compression Implementation
The purpose of this chapter is to describe the SigComp prototype that was implemented
as a part of this thesis. We implemented the SigComp prototype from scratch. We did
not use any program code written by other parties, but implemented all the functionality
ourselves. The techniques used and the design decisions made are discussed. The
chapter begins by describing the way that code from a single-threaded SigComp
implementation was ported to the multi-threaded SigComp prototype. The test
configuration and the process interaction paradigms used are presented. The
implementation of shared resources and the data structures used are described. The
architecture and operation of the SigComp prototype are explained through Unified
Modelling Language (UML) class, state and sequence diagrams. The compression and
decompression algorithms used by the prototype are presented. Finally, the way the
functionality of SigComp extended operations was implemented is described.

7.1 From Single-threaded to Multi-threaded Code
In the first stage of the implementation work, we implemented the SigComp prototype
as a single-threaded application. This allowed us to concentrate on the core functionality
of the protocol, since the multi-threaded issues were left to a later stage. The things that
had to be kept in mind when the single-threaded code was modified to support multiple
threads are discussed below.

First of all, it has to be noted that choices that enable efficient parallelisation have to be
made during the design of a program. It is most often not possible to introduce them to
the program code afterwards. For this reason, the program code that was used to test the
single-threaded SigComp prototype was thrown away, redesigned and rewritten when
the switch to multiple threads was made. This program code is the one that binds the
different components together, e.g. listens to the socket interface, creates and stores the
compressors, invokes the decompressors and manages the state handler. However, many
of the individual components of the protocol like the compressor and the decompressor
could be ported to the new design with only minor, if any modifications.

The code written for multi-threaded programs has to be re-entrant and thread-safe to
protect resource integrity. A re-entrant function cannot hold any static data over
successive calls. This is because all statically allocated data will be overwritten by the
next call to the function. Instead of the function holding the data, its caller must provide
all the data that needs to be maintained over successive calls. The second requirement
for a re-entrant function is that it should not return a pointer to static data. This can be
achieved either by returning dynamically allocated data or by using caller-provided
storage. In the latter case, the interface to the function needs to be modified so that for
example a pointer to the storage can be passed to the function. In the former case, the
caller must be modified in such a way that it frees the dynamically allocated storage
when it is no longer required. Both of these approaches were used in the SigComp
prototype. Finally, also all library procedures that multithreaded programs use should be
re-entrant.

Thread-safety means that entities using shared resources, such as a shared database,
must take turns using the resource. This can be achieved through the use of mutexes and
semaphores, which are special kinds of shared variables used for synchronization. The

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 38

approach that was taken in the SigComp prototype is to use a separate wrapper class for
each shared resource. These classes use the Singleton design pattern [Gamma 1995] to
ensure that only one instance of each such class can be created. Furthermore, each class
takes care of its own lock variables. All the functions that are visible to outsiders are
guaranteed to be multi-thread safe. In practise, this means that the caller of the function
does not need to pay special attention to mutual exclusion; it can call the function just as
if the code was single-threaded. Therefore, no modifications to the callers of such
functions are required. For example, the interface to the state handler remains
unchanged despite of the fact that in a multi-threaded code, there are multiple
compressors and decompressors accessing the state handler.

7.2 Test Configuration
The SigComp prototype process acts as a P-CSCF in the measurements carried out to
collect the results analysed in this thesis. In addition to the SigComp prototype, also
another program was implemented to generate SigComp traffic for the P-CSCF process.
The purpose of this program is to simulate mobile users that establish and terminate
various kinds of sessions. From now on, this process is referred to as the UE process.
The use of simple scripts on the UE side to generate the signalling traffic was not
sufficient, because the UEs must generate and receive compressed traffic.

7.3 Process Interaction Paradigms
In this section, the process interaction paradigms used by the P-CSCF and UE processes
are presented. These paradigms include the bag-of-tasks paradigm and the producers
and consumers paradigm.

7.3.1 Bag-of-tasks
The UE process uses the bag-of-tasks paradigm [Andrews 2000] as the underlying
process interaction paradigm. The bag-of-tasks paradigm is used to implement parallel
computations. Its benefits include that it is scalable, meaning that it is easy to vary the
number of workers that carry out the parallel computations. It is also relatively easy to
ensure that each worker does about the same amount of work. The bag is a data
structure that is shared by worker threads, while a task is an independent unit of work.
There can be multiple worker threads executing on the CPU at a given time, each
carrying out a separate task. A manager thread listens to the socket and generates a new
receive task each time a SigComp message arrives. The worker threads fetch these tasks
from the bag, execute them and possibly generate new send tasks to the bag. This is
illustrated in Figure 19.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 39

task 1

task 2

task 3

task 4

manager thread worker threads

SigComp process

bag of tasks

Network connection

Figure 19 - The bag-of-tasks paradigm

As it was already mentioned, there are two kinds of tasks: receive tasks and send tasks.
A receive task consists of a SigComp message that is to be decompressed, while a send
task contains a SIP message that should be compressed and sent. A worker thread has
two different roles: it can be either a receive worker or a send worker. Each worker is
capable of handling both receive and send tasks; it cannot know which one of these two
tasks it will get when it accesses the bag. The worker runs in a loop, which is illustrated
by the following pseudo-code:

while(true) {
 if(the bag is empty) {
 wait until a task appears to the bag;
 }
 get a task from the bag;
 if(the task is a send task) {

 compress the message and create a SigComp message;
 send the SigComp message;

 }
 else {
 decompress the message;
 hand the decompressed SIP message to the SIP user agent, which returns
 a compartment identifier and possibly adds a new send task to the bag;
 provide the compartment identifier to the decompressor;
 }
}

A worker carrying out a receive task goes through three stages. First it decompresses the
payload of the SigComp message it received. In the second stage it acts as a SIP user
agent. It parses the SIP message and possibly generates a new send task to the bag. In
the final stage, the worker terminates its UDVM instance by providing the UDVM the
compartment identifier that was returned by the SIP user agent.

7.3.2 Producers and Consumers
The P-CSCF process uses producers and consumers [Andrews 2000] as the underlying
process interaction paradigm. In the producers and consumers paradigm, a producer

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 40

process produces tasks that are carried out by a consumer process. Communication
between producers and consumers is conducted by means of a shared buffer. Access to
the shared buffer is synchronized using a bounded buffer technique [Andrews 2000],
which uses semaphores as resource counters. A bounded buffer is a multislot
communication buffer. Producers deposit tasks to the rear of the buffer while consumers
fetch messages from the front of the buffer. Because of this, deposit and fetch
operations can execute concurrently as long as there are both empty slots and stored
tasks in the buffer. Most importantly, a continuous stream of fetch operations initiated
by consumers cannot prevent a producer from depositing new tasks to the buffer.

The P-CSCF process has one producer thread whose task is to listen to the socket
interface and generate new tasks. It receives SIP messages from the core network side
and SigComp messages from the access network side and inserts them to the buffer as
new tasks. In addition to the producer, there are multiple worker threads that consume
the generated tasks. A task containing a SIP message is executed by reading the
message, compressing it and sending it to the access network. On the other hand, a task
containing a SigComp message is carried out by decompressing the message, parsing it
and sending the decompressed SIP message to the core network.

7.4 Shared Resources
Due to the nature of the SigComp protocol, the SigComp prototype has to use certain
shared resources: the state handler and the compressor array. In addition to these, the
shared buffer used by the producer and consumers must be implemented as a shared
resource as well. All of these structures need to be multithread-safe because multiple
workers use them simultaneously

The state handler, compressor array and the shared buffer have two kinds of users: those
performing read operations and those carrying out write operations. When there are both
readers and writers accessing the shared resource, a classical synchronization problem,
the readers/writers problem, needs to be taken into account. In the case of a shared
resource like the state handler, readers execute transactions that examine the records in
the state item table of the state handler, while writers execute transactions that both
examine and update the records. To ensure that each transaction transforms the state
handler from one consistent state to another, the writer processes must have exclusive
access to the state item table. If no writer is accessing the state item table, any number
of readers may concurrently execute transactions.

The SigComp prototype uses the technique of passing the baton [Andrews 2000] to
solve the readers/writers problem. This technique employs split binary semaphores both
to provide exclusion and to signal delayed threads. Its virtues include that the order in
which delayed threads are awakened can be controlled precisely and thus different
scheduling policies can be implemented between readers and writers. When a thread is
executing within a critical section, it can be thought that it is holding a baton that
signifies permission to execute. When the thread no longer needs the baton, it passes the
baton to one other process. To ensure fair access to the shared data structures of the
state handler of the SigComp prototype, the guards of the technique of passing the baton
use the following rules:

• If a reader is waiting, delay a new writer
• If a writer is waiting, delay a new reader

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 41

• When a reader finishes, awaken, i.e. pass the baton to one waiting writer, if any.
• When a writer finishes, awaken all waiting readers. If there is more than one

delayed reader, one is awakened first and the others are awakened in cascading
fashion. If there are not any readers waiting, awaken one waiting writer, if any.

The purpose of these rules is to force readers and writers to alternate turns when both
are waiting. Both the state handler and the compressor array use this scheduling policy.

7.5 Data Structures
Different components of the SigComp prototype make use of different kinds of data
structures. The bag of the bag-of-tasks paradigm is implemented as a priority queue.
Each task on the queue has a timestamp indicating the time when the task should be
carried out. The tasks are ordered based on the timestamp value in such a way that the
task with the smallest timestamp is placed at the top of the queue. The shared buffer of
the producers and consumers paradigm is implemented as a fixed-length array. The
compressor array uses a map, which is a data structure containing key/value pairs. The
key to the compressor array consists of a SigComp compartment identifier.

The compressor uses a hash table to implement the search buffer of the modified LZSS
algorithm. The state handler uses two hash tables to store state items and feedback
items. The key to the compressor’s hash table is formed by the first three bytes of the
sequence to which the value of the key/value pair points. The key to the state handler’s
state item table is the state identifier, which is a 20-byte Secure Hash Algorithm One
(SHA-1) cryptographic hash, and the key to state handler’s feedback item table is a
SigComp compartment identifier. The use of hash tables [Weiss 1999] is called hashing
and it is a technique used for performing insert, delete and find operations in constant
average time. Constant time can be achieved because the operations can be carried out
without performing a search. Instead, the position where an item is stored can be
determined directly from its value. This is enabled by the use of a hash function, the
task of which is to map the position of an item and its value. A hash function distributes
the keys evenly among the cells of the array the hash table uses. Each key is mapped
into some number in the range 0 to size of table-1 and placed in the appropriate cell. A
good hash function is easy to compute, spreads out keys evenly in the array and avoids
collisions, i.e. situations in which distinct keys produce same hash values. Hashing is
useful for any problem where the entries have real names instead of numbers.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 42

7.6 Classes of the Signalling Compression Prototype

0..1

0..1

0..*

4..*

0..*

0..1

0..1

0..1

0..1

0..1

0..*

0..*

0..1

0..1

0..10..1

0..1

0..1

0..1

0..1

0..1

0..1

0..*

0..*

0..1

0..1

PartialStateId
Idle

Udvm

SigCompStateMachine

CompressorArray

SigCompDispatcher

SecureHashAlgorithm

SigCompStateFactory

FeedbackItem

LZSSCompressor

Task

BitOperations
Compressor

Config

Waiting

SigCompState

UdvmMemoryImage

StaticDictionary

StateHandler

StateItem

Figure 20 - Class diagram of SigComp prototype

The class diagram of the SigComp prototype is shown in Figure 20. The role of each
class in the diagram is discussed in the following subsections.

7.6.1 BitOperations
The class BitOperations is a collection of functions that are used to manipulate binary
sequences: to get and set bits, shift bits, carry out logical operations and so forth. The
compressor and the UDVM use these functions heavily.

7.6.2 Compressor
The compressor is a super class for different compression algorithms. One Compressor
object is associated with each SigComp compartment. The identifier of the
compartment uniquely identifies a compressor. The most important task of the
Compressor class is to provide an interface for the classes inheriting it. Compressor
objects also construct the SigComp message header and attach the payload to it.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 43

7.6.3 CompressorArray
Since the lifetime of a compressor is the same as the lifetime of a compartment,
compressors need to be stored between the sending of SigComp messages. This is the
task of the class CompressorArray. CompressorArray uses the Singleton design pattern
described in [Gamma 1995]. The purpose of this pattern is to ensure a class only has
one instance, and provide a global point of access to it. When the first message of a
compartment is to be compressed, a new Compressor object is created. After the
message has been compressed, the compressor object is stored in the compressor array
for future use. The key of the compressor array is the compartment identifier, which has
to be unique. After the initial message has been sent, the compressor is fetched from the
compressor array each time a new message belonging to its compartment is sent. When
the compartment is closed, the compressor has to be removed from the compressor
array.

7.6.4 Config
The class Config implements an Extensible Mark-up Language (XML) reader that reads
configuration information from an XML file. The configuration information includes
various parameters used by the other classes of the SigComp prototype.

7.6.5 FeedbackItem
FeedbackItem is a class whose instances are used to convey information between
compressors and decompressors. For example, after having decompressed a message
and received a compartment identifier from the SIP application, the UDVM saves the
feedback data that was included in the SigComp message header in a FeedbackItem
object and forwards it to the state handler. One feedback item is associated with each
compartment and the data that is stored in it is not compression or decompression
algorithm specific. A feedback item holds a list of locally available states, a list of states
that the remote endpoint has established, the most recently acknowledged state
identifier, the shared state identifier and the state identifier of the most recent local
UDVM memory snapshot state. It also contains values of different SigComp parameters
that may have been returned by the remote endpoint.

7.6.6 LZSSCompressor
LZSSCompressor inherits the Compressor class. It contains a modified implementation
of the Lempel-Ziv-Storer-Szymanski (LZSS) compression algorithm, which is
described in Section 7.8.

7.6.7 PartialStateId
PartialStateId is a simple class whose instances are used to hold the values and lengths
of state identifiers. The value of a state identifier contains either a complete SHA-1 hash
or its first six, nine or twelve bytes.

7.6.8 SecureHashAlgorithm
Class SecureHashAlgorithm implements the Secure Hash Algorithm 1 (SHA-1) [RFC
3174, FIPS 180-1], which is used to calculate the hash or message digest values
identifying SigComp state items. The SHA-1 hash is a condensed representation of the
content of a SigComp state item, which typically holds a SIP message or the contents of
UDVM memory. The SHA-1 algorithm always produces an output of 20 bytes despite

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 44

the length of the input sequence. The SHA-1 is called secure because it is
computationally infeasible to find a message, which corresponds to a given hash, or to
find two different messages, which produce the same hash value. Any change to a
transmitted message, for example a decompression or compression error or corruption
of the message content during transport, will, with very high probability, result in a
different message digest than the one calculated for the original message.

For example, when endpoint A sends a message to endpoint B, it calculates an SHA-1
hash over the uncompressed SIP message X before compressing it. It includes the SHA-
1 hash in the returned parameters of the SigComp message that carries the compressed
version of message X in its payload. If shared compression is used, then after having
received and decompressed the message, endpoint B calculates an SHA-1 over it. By
comparing the hash it calculated to the one in the returned parameters, endpoint B can
deduce whether the message was received correctly. If the hashes match, endpoint B
can use the received message, i.e. the shared state, in the compression process of the
next message it sends.

7.6.9 SigCompDispatcher
The class SigCompDispatcher is responsible for implementing the producers and
consumers paradigm. It uses the Singleton design pattern. The main function of the
SigComp prototype is included in the class file of SigCompDispatcher. The main
function is responsible for creating the pool of worker threads. It also creates the socket
and listens to it. As new messages arrive to the socket, new receive tasks are generated
and added to the shared buffer.

7.6.10 SigCompState, Idle, Waiting SigCompStateFactory and
SigCompStateMachine

Classes SigCompState, Idle, Waiting SigCompStateFactory and SigCompStateMachine
use the Flyweight design pattern defined in [Gamma 1995]. The Flyweight is a
structural design pattern and its intent is to use sharing to support large numbers of fine-
grained objects efficiently. A flyweight is a shared object that can be used in multiple
contexts simultaneously. Therefore, flyweights cannot make any assumptions about the
context in which they operate. They can only store intrinsic state information, which is
independent of the flyweight’s context. When a client object uses a flyweight, it has to
pass any required extrinsic state information to the flyweight as an argument. The use of
flyweight objects results in storage space savings. This is because sharing reduces the
total number of instances that have to be maintained and thus also the amount of
intrinsic state that has to be stored.

The class SigCompState acts as a flyweight. It declares an interface through which
flyweights can receive and act on extrinsic state. It has two subclasses: Idle and
Waiting, which implement the interface and add storage to intrinsic state. Idle and
Waiting are sharable, which means that all clients share the same instances of these two
classes. The task of the class SigCompStateFactory is to create and manage flyweight
objects. It ensures that they are shared properly. SigCompStateFactory uses the
Singleton design pattern.

The client that uses the flyweight objects is the class SigCompStateMachine. It uses the
State design pattern described in [Gamma 1995] together with SigCompState and its

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 45

subclasses. The State is a behavioural design pattern and its purpose is to allow an
object to alter its behaviour when its internal state changes. SigCompStateMachine
maintains an instance of one of the subclasses of SigCompState. This instance defines
the current state of the protocol state machine. Each of the subclasses of SigCompState
implements a behaviour associated with a state of the state machine. The use of the
State pattern has the following consequences: (1) all behaviour associated with a
particular state is located in one object, (2) state transitions are explicit, because
separate objects are used for different states and (3) state objects can be shared.

7.6.11 SipParser
The class SipParser implements a simple SIP message parser. It is used to extract
information from SIP messages.

7.6.12 StateHandler
Class StateHandler implements the SigComp state handler described in [RFC 3320].
The task of the state handler is to store state items, which are instances of the class
StateItem, and compartment-specific feedback items, which are instances of the class
FeedbackItem. StateHandler uses the Singleton design pattern.

7.6.13 StateItem
StateItem objects hold SigComp state items used to store for example the messages used
in shared compression or the contents of the UDVM memory. Each state item is
identified by a 20-byte SHA-1 message digest, which is a hash over the contents of the
state item. More specifically, the hash is calculated over the byte string formed by
concatenating the fields state_length, state_address, state_instruction,
minimum_access_length and state_value of the state item. These fields contain the
length of the state item, the address to which the value of the state item should be
copied, the memory address from which execution should continue when the state item
is used, the minimum number of bytes to use when the state identifier is compared to
other state identifiers, and the value of the state item, respectively.

7.6.14 StaticDictionary
StaticDictionary is a class holding the static SIP/SDP dictionary described in [RFC
3485]. It includes functions for retrieving subsets of the dictionary and fields for
holding its state parameters.

7.6.15 Task
The producer thread creates a new Task object each time it receives a message from the
socket interface. Task objects are placed to the shared buffer, from which they are
fetched by the worker threads.

7.6.16 UdvmDecompressor
Class UdvmDecompressor implements the Universal Decompressor Virtual Machine
(UDVM) specified in [RFC 3320]. Since the SigComp implementation described here
uses the LZSS compression algorithm, the decompression algorithm whose bytecode is
run on the virtual machine is as well that of the LZSS algorithm. The
UdvmDecompressor is written entirely in the C/C++ language.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 46

7.6.17 UdvmMemoryImage
The class UdvmMemoryImage is used to generate and hold an image of the memory of
the receiving endpoint’s UDVM. By maintaining this image, the sending endpoint
knows the contents and state of the remote UDVM’s circular buffer and the values of
the UDVM’s registers.

An example of the use of UDVM memory images is given in Figure 21, in which
SigComp endpoint A sends a compressed INVITE request in the payload of SigComp
message m1 to endpoint B in step (1). Endpoint B sends back a compressed 180
Ringing response in the payload of SigComp message m2 in step (2).

Before endpoint A starts to compress the INVITE in step (1), it generates a remote
UDVM memory image, which is called UMS_B in Figure 21. The name stands for
Udvm Memory Snapshot B. The image reflects the contents of the remote UDVM’s
memory at the moment it has finished decompressing the INVITE message. Figure 21
shows only the dictionary part of the UDVM’s memory. Other data in the memory, e.g.
registers and bytecode are omitted from the figure for simplicity. At the moment the
INVITE has been decompressed, the dictionary of endpoint B’s UDVM will contain
only the static SIP/SDP dictionary and the decompressed INVITE message. Therefore,
the compressor of endpoint A uses the static dictionary to compress the INVITE
message. Endpoint A stores UMS_B and calculates an SHA-1 hash over it. Endpoint A
also records that state UMS_B has not been acknowledged and thus cannot be used to
compress messages.

After endpoint B has decompressed the message m1, the contents of the memory of its
UDVM correspond exactly to UMS_B. Therefore, the SHA-1 hash that endpoint B
calculates over its memory matches the one that was calculated at endpoint A. Next,
endpoint B saves a snapshot of its memory for future use. Since this snapshot
corresponds to the memory image that was calculated at endpoint A, it is also called
UMS_B in Figure 21. When endpoint B sends the message m2 to endpoint A in step (2),
it acknowledges the creation of UMS_B in the header field acked_state_id of message
m2. The message m2 carries a compressed 180 Ringing message in its payload. When
endpoint A receives the message, it records that UMS_B has been acknowledged and
can be used to compress the next message endpoint A sends. This means that when the
next message is sent, endpoint A can initialise the dictionary of its compressor with the
dictionary that is retrieved from UMS_B.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 47

SigComp A SigComp B

m1(INVITE)

1

2

m2(180 Ringing, ack(UMS_B))

Static
Dictionary INVITE

Remote UDVM memory image
UMS_B after decompression of m1:

Static
Dictionary

Compressor’s dictionary: Static
Dictionary INVITE

Contents of UDVM memory after
decompression of m1:

Static
Dictionary INVITE

Remote UDVM memory image
UMS_A after compression of m2:

Static
Dictionary

Compressor’s dictionary:

180
Ringing

INVITE

Static
Dictionary INVITE

Contents of UDVM memory after
decompression of m2:

180
Ringing

Figure 21 - Use of UDVM memory images

7.7 Classes of Universal Decompressor Virtual Machine Interpreter
Implementation

In this section, the architecture of the UDVM interpreter that was implemented as a part
of this thesis is described. The class diagram of the interpreter is presented in Figure 22.

Figure 22 - Class diagram of the UDVM interpreter

7.7.1 BitOperations
The class BitOperations is a collection of functions used to manipulate binary
sequences, i.e. to get and set bits, shift bits, carry out logical operations and so forth.
This class is the same one that the SigComp prototype uses.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 48

7.7.2 Instruction
Instruction objects store the instructions that are read from the UDVM assembly being
interpreted. Each Instruction object contains the name of certain instruction and the
operation code and operands of the instruction.

7.7.3 Interpreter
The UDVM interpreter is responsible for compiling the human readable UDVM
assembly to the binary bytecode that can be executed on the virtual machine. The
Interpreter class contains the main function of the UDVM interpreter. The Interpreter
maintains three instances of the class VariableArray, one for labels, one for label
references and one for variables. The main function of the UDVM interpreter program
first reads an input file containing the UDVM assembly and then stores all lines
containing instructions, directives and declarations for labels and variables to separate
string arrays. After this, it processes the lines that contained variables and for each
declared variable, creates a Variable object to hold the variable. Variable objects are
stored in an instance of the class VariableArray. In the next step, the instruction lines
are encoded. When this step is over, a preliminary version of the bytecode has been
constructed. The reason for the version being only preliminary is that at this point, the
final positions of different labels cannot be known for sure. An example illustrating this
is shown in Figure 23. In the figure, the STATE-ACCESS instruction is the first
instruction in the assembly and the label dictionary_id is the last label in the assembly.
The dictionary_id is referenced by the STATE-ACCESS instruction. Between the
STATE-ACCESS and the dictionary_id, there can be an arbitrary number of lines
containing instructions, label declarations, variable declarations and directives. When
the STATE-ACCESS instruction is initially encoded, the final value of the
dictionary_id label is unknown, because the length of the bytecode between the
instruction and the label is not known. Therefore, the interpreter has to use an estimate
when it encodes the reference to the dictionary_id. After all the remaining instructions
have been encoded in a similar manner, the UDVM interpreter enters a loop in which,
during each iteration, it recalculates the values of the labels and updates their references.
The loop terminates after the first iteration during which the values of all the labels
remain unchanged. Multiple iterations are typically needed, because when the value of a
label changes, the new value cannot always be encoded using the same number of bytes
as the old value. This is because each operand of a UDVM instruction is compressed
using variable-length encoding. The problem is illustrated in Figure 23. In step (1) of
the figure, the value of the label example changes. Because of this, the length of the
encoded value of the reference to example in instruction JUMP changes also in step (2).
This, in turn, has an effect on the position of the label dictionary_id in the bytecode in
step (3). And because the position of the dictionary_id changes, the value of its
reference in STATE-ACCESS (4) needs to be updated. This may result in a situation in
which the length of the reference to dictionary_id changes and thus also the positions of
labels example and dictionary_id have to be shifted.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 49

1 STATE-ACCESS(dictionary_id, …)

. .

. .

20 :example

. .

. .

70 JUMP(example)

71 :dictionary_id

72 END-MESSAGE(…)

73 Byte(251, 229, 7, 223, 229, 230)

2

3

4

1

Figure 23 - Processing of UDVM assembly

7.7.4 StringOperations
The class StringOperations is a collection of functions that are used to process the data
that are read from the file containing the UDVM assembly.

7.7.5 Variable, Label, LabelReference and StandardVariable.
Variable is a super class for the classes Label, LabelReference and StandardVariable.
Label objects are used to store the labels that are declared in the UDVM assembly. A
label assigns a memory address to a text name. The position of a label may change as
the assembly is interpreted to bytecode. A LabelReference object is created for each
reference to a label that is encountered in the assembly. This is done in order to track
the position of the reference as the interpretation proceeds. Finally, instances of the
StandardVariable objects are used to store variables declared by set directives. The set
directive is used to assign values to text names in the UDVM assembly language. The
values of such text names remain constant during the interpretation process, i.e. their
values do not depend on the position in which they are declared.

7.7.6 VariableArray
VariableArray is a class whose instances store StandardVariable, Label and
LabelReference objects, i.e. the objects that inherit the Variable class.

7.8 Compression Algorithm
The compression algorithm that is used in the SigComp implementation is based on the
Lempel-Ziv-Storer-Szymanski (LZSS) algorithm. LZSS in turn is a variation of the
Lempel-Ziv 1977 (LZ77) algorithm, which is based on a paper by Jacob Ziv and
Abraham Lempel in 1977 [Ziv 1977]. Before the operation of the modified LZSS
algorithm is explained, an introduction is given to the LZ77 and LZSS algorithms. Also
the basics of dictionary compression techniques are covered.

7.8.1 Dictionary Techniques
In many applications, the output of the source consists of recurring patters. This is also
the case with SIP messages, in which certain patterns recur constantly. A very
reasonable approach to encoding such sources is to keep a list or dictionary of

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 50

frequently occurring patterns. When the patterns reappear in the input, they are encoded
with a reference to the dictionary.

There are two approaches to dictionary compression: a static approach and an adaptive
approach. The use of a static dictionary [Sayood 1996] is most appropriate when
considerable prior knowledge is available about the source. The static dictionary
approach is most suitable for use in specific applications. Since our task is to compress
the session initiation protocol, the static dictionary approach is an efficient solution
because we know ahead of time that certain words such as “FROM”, “SIP” and
“CALL-ID” are going to appear in almost all of the messages to be compressed. This is
the very purpose of the static SIP/SDP dictionary; to offer a collection of strings relative
to which SIP messages with SDP content can be compressed.

However, using the static dictionary approach alone is unlikely to result in high
compression ratios. After all, a great deal of the content of SIP messages is specific to a
single session; it would not be feasible to include for instance the addresses of all of the
potential callers and callees to the dictionary. The adaptive dictionary technique
provides an answer. It is an efficient approach when sufficient prior knowledge about
the source is not available. An example of an algorithm that uses the adaptive dictionary
technique is the LZ77.

7.8.2 LZ77
LZ77 [Ziv 1977, Sayood 1996] uses the adaptive dictionary technique. In LZ77, the
adaptive dictionary is a portion of the previously encoded sequence. The encoder
examines the input sequence through a sliding window, which consists of two parts: a
search buffer and a look-ahead buffer. The search buffer contains a portion of the
recently encoded sequence, and the look-ahead buffer contains the next portion of the
sequence to be encoded. To encode a sequence in the look-ahead buffer, the encoder
moves a search pointer back through the search buffer until it encounters a match to the
first symbol in the look-ahead buffer. The distance of the pointer from the start of the
look-ahead buffer is called the offset. Next the encoder examines the symbols following
the symbol at the pointer location to see whether they match consecutive symbols in the
look-ahead buffer. The number of consecutive symbols in the search buffer matching
consecutive symbols in the look-ahead buffer is called the length of the match. The
search buffer is searched for the longest match that can be found. Once such a match
has been found, it is encoded with a triple <o, l, c>, where o is the offset, l is the length
and c is the codeword corresponding to the symbol in the look-ahead buffer that follows
the match. The reason why the third element in the triple is used is to take care of the
situation in which no match for the symbol in the look-ahead buffer can be found in the
search buffer. In this case, the offset and length values are set to zero and the third
element of the triple is the code for the symbol itself. An example of the operation of
the LZ77 algorithm is illustrated in Figure 24 and Figure 25.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 51

a b r a c

look-ahead buffer

a b r a c

look-ahead buffer

a

a r a c a

look-ahead buffer

db

a a c a d

look-ahead buffer

ab r

search buffer

a c a d a

look-ahead buffer

bb r

search buffer

a

offset = 3, length = 1

1

2

3

4

5

Figure 24 - Operation of the LZ77 algorithm, part I

In step (1) of Figure 24, the search buffer is initially empty and the look-ahead buffer
contains the first five characters of the input sequence, which is the string ‘abracadabra’.
The size of the search buffer is 7 symbols and the size of the look-ahead buffer is 5
symbols. In practice, the sizes of the buffers would be significantly larger. The first
encoded character is the first character in the look-ahead buffer, i.e. a in step (1).
Because the search buffer is empty, no match can be found. Therefore, the encoder
outputs the triple <0,0,a> and moves the sliding window one position right, ending up
to the situation shown in step (2). In step (2), symbol b is not found from the search
buffer, and code for the symbol itself is output in the same way as in the previous step.
Symbol r is encoded in a similar manner in step (3). In step (4), the first symbol in the
look-ahead buffer is a, which is also present in the search buffer. Therefore, instead of
outputting the symbol a, the encoder outputs the position of the match, namely the triple
<3,1, ->. In step (5), no match is found from the search buffer for symbol c and the
encoding proceeds in a similar way as in step (2). The remaining steps of the encoding
process are shown in Figure 25.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 52

a d a b r

look-ahead buffer

ab r

search buffer

a c a

a a b r a

look-ahead buffer

b r

search buffer

a c a d

a a d a b

look-ahead buffer

rb r

search buffer

a c

offset = 7, length =4

offset = 2, length = 1

6

7

8

c

look-ahead buffer

a d

search buffer

a b r a9

Figure 25 - Operation of the LZ77 algorithm, part II

In step (6), two matches for symbol a are found in the search buffer. In the case of both
of these matches, the next symbol is different from the symbol that follows a in the
look-ahead buffer. Therefore, it does not matter which one of the matching symbols is
encoded. The encoder chooses the nearest symbol and outputs the triple <2,1,->. In step
(7), no match is found for symbol d. In the next step, the first symbol in the look-ahead
buffer is symbol a. Two matches can be found in the search buffer. However, in the
case of the first match, the three consecutive symbols in the look-ahead following a are
the same as the three consecutive symbols following a in the search buffer. Therefore,
we can encode the sequence abra using the triple <7,4,->. In step (9), the look-ahead
buffer is empty, since we have encoded the entire sequence. Note that when the sliding
window was moved four positions left after the sequence abra was encoded in step (8),
the four first symbols in the search buffer got pushed out, since the capacity of the
search buffer is only 7 symbols.

When the LZ77 algorithm is used, three different possibilities may be encountered
during the coding process:

• There is no match for the next character to be encoded in the sliding window
• There is a match
• The matched string extends inside the look-ahead buffer

The third case occurs when the last character of the matching sequence is in the last slot
of the search buffer and the next symbol or symbols of the sequence in the look-ahead
buffer match to the first symbol or symbols in the look-ahead buffer. This is illustrated
in Figure 26. In the first step of the figure, a match for sequence cab is found in the
search buffer. In the second step, the search is continued in the look-ahead buffer. It is
observed that instead of coding a match of length three, the triple can actually code a
match of five characters by extending the match to the look-ahead buffer.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 53

a b r c a b c a b c a
0 1 2 4 5 6 7 8 9 10

a b r c a b c a b
0 1 2 4 5 6 7 83

3

match

match
sequence in look-ahead buffer

sequence in look-ahead buffer

search buffer

search buffer

look-ahead buffer

look-ahead buffer

1

2

c a
9 10

Figure 26 - Match that extends to look-ahead buffer

7.8.3 LZSS
The LZ77 algorithm is very inefficient when it comes to encoding references to single
symbols. For example, in step (4) of Figure 24, the symbol a is encoded using the triple
<3,1,->. This is highly inefficient, since the encoded triple is actually longer than the
code for the symbol itself. For example, the ASCII-representation of a takes only 8 bits,
while the triple might require 16 bits assuming that 12 bits are used to encode the offset
value and 4 bits to encode the length value. Using triples to encode single symbols is
highly inefficient if a large number of characters occur infrequently. The LZSS
algorithm eliminates the situation in which a triple is used to encode a single character
by using a flag bit to indicate whether what follows is a codeword or a single symbol.
The flag bit also makes it possible to get rid of the third element in the triple.

7.8.4 The Modified LZSS Algorithm
In the SigComp prototype, the following modifications were made to the LZSS
algorithm:

• In addition to the adaptive dictionary approach, also the static dictionary
approach is used

• Support for external dictionaries was added
• A circular buffer is used instead of a linear buffer
• 14 bits are used to encode offset values (to enable the use of a decompression

memory of up to 16384 bytes)
• The number of bits that is used to encode length values can be configured
• Hashing is used to speed up searches from the circular buffer

The static dictionary approach of the static SIP/SDP dictionary assumes that we have
prior knowledge about the source, while the adaptive dictionary technique of the LZSS
algorithm assumes no prior knowledge of the source. These two approaches are
combined in the modified LZSS algorithm. By using the static dictionary approach, it is
possible to encode in an efficient way the patterns that are common across all SIP

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 54

messages. On the other hand, by using the adaptive dictionary approach together with
the support for external dictionaries, we can make use of the similarities between the
messages that belong to a single SIP dialog, for example the user’s name, email address
and URL.

The adaptive dictionary of the unmodified LZSS algorithm is the previously encoded
sequence, i.e. the portion of the SIP message that has already been compressed. Each
message is encoded independently. The modified LZSS algorithm has the ability to load
external dictionaries to its search buffer and thus compress the new message relative to
their contents. This allows the use of acknowledged and shared states in the
compression process.

The search buffer and thus also the sliding window of the modified LZSS algorithm is
circular, which means that once the right boundary of the buffer is reached, characters
will be added to the front of the buffer. Because of this, the offset values may be greater
than the value of the current search pointer. This is illustrated in Figure 27, in which the
current value of the search pointer is 3 and the offset of the match is 7. The use of a
circular buffer is necessary, since when using dynamic compression, the contents of the
search buffer are saved between the compressions of consecutive messages. When the
next message is compressed, the search buffer is initialised by using the contents of a
previous search buffer. This also means that eventually the search buffer will fill up,
provided that the combined size of the messages is greater than the capacity of the
buffer. This will usually be the case; it is not feasible to maintain a large buffer firstly
because the use of a large buffer typically results in longer compression and
decompression times, and secondly because the memory capacity can sometimes be a
restrictive factor, especially in mobile terminals. When the buffer fills up, it is far more
reasonable to start again from the front of the buffer than to start again with an empty
buffer. The use of a circular buffer is also necessitated by the fact that the UDVM uses a
circular buffer as well. In fact, the size of the search buffer of the modified LZSS
algorithm has to be the same as that of the UDVM to make sure that both of them see
their buffers in a similar state.

c a d a b r a a b r a

search pointer = 3

0 1 2 4 5 6 7 8 9 10

offset = 7, length = 4

Figure 27 - Circular buffer

The number of bits that the modified LZSS algorithm uses to encode offset values
depends on the size of the decompressor’s circular buffer. 12 bits are sufficient for a

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 55

circular buffer of the size 212 = 4096 bytes, 13 bits for a buffer of the size 213 = 8192
bytes and 14 bits for a buffer of the size 214 = 16384 bytes. In a similar way, the number
of bits that are used to encode length values restricts the maximum length of a match
that can be taken from the dictionary. If 5 bits are used to encode length values, then the
maximum length of a match is 25 + 3 = 35 bytes. The factor 3 is added, because LZSS
never encodes matches whose length is two bytes or less. If a match of length two were
encoded as an offset/length pair, then the number of bits needed to encode the value
would be 1+14+5 = 20, provided that 1 bit is used by the flag bit, 14 bits are used to
encode the offset and 5 bits to encode the length. If the two characters are encoded
using their own codes and the flag bits, then their length is 1+8+1+8=18. Therefore, it
would be wasteful to encode matches of length two or less as offset/length pairs.

7.8.5 Hash Function of the Modified LZSS Algorithm
The hash function h that the compression algorithm uses is implemented as a
composition of two functions f and g. Given a set of keys, K, and a hash table of size M,
a hash function is a function of the form

{ }1...,,1,0: −MKh a . (7.1)

The function f maps keys into integers:

+ΖaKf : , (7.2)

where Z+ is the set of non-negative integers. The function g maps non-negative integers
into the range from 0 to M-1:

{ }1...,,1,0: −Ζ+ Mg a . (7.3)

The hash function h is defined as follows:

 fgh o= , (7.4)

meaning that the hash value of a key x is given by g(f(x)). The function f [Preiss 1997] is
shown below:

() WsBsf
n

i
i

in mod
1

0

1 ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

−

=

−− , (7.5)

where s is a character string, wW 2= such that w is word size of the machine and

bB 2= such that b is the number of bits in the input characters. Assuming the value 32
for w and the value 6 for b, the following code [Preiss 1997] presents an optimised way
to implement the function f:

unsigned const int shift = 6;
unsigned const int mask = ~0U << (32 – shift);

unsigned int hash = 0, i = 0;
for(i=0; s[i] != ‘\0’; ++i)
 hash = (hash & mask) ^ (hash << shift) ^ s[i];

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 56

return hash;

Value 6 can be used for b if it is assumed that letters and digits are the most common
characters in strings; all the information in the ASCII codes of these characters is in the
six least significant bits. The code contains one additional step compared to function f:
the six most significant bits are retained and inserted back to the shifted hash variable
through an exclusive or (^) operation.

The task of function g is to map the values produced by function f into the interval [0,
M-1]. For this, a method called the Fibonacci hashing [Preiss 1997] is used. In
Fibonacci hashing, the hash function has the form

 () ()⎥⎦
⎤

⎢⎣
⎡= Wax
W
Mxg mod , (7.6)

where x is the result of function f and a is a carefully chosen constant, whose value is
closely related to the number called golden ratio. The value of the golden ratio is

2

51+
=φ . (7.7)

The value of factor a in Equation (7.6) is given by Wa 1−= φ . When this value is used,
the function g has two favourable properties. First of all, each subsequent hash value
divides the interval into which it falls according to the golden ratio. Second of all, the
hash value for each subsequent key falls between the two widest spaced hash values
already computed. This is illustrated in Figure 28 for a hash table whose size is 100. We
can observe from the figure that consecutive keys spread out quite efficiently.

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20

x

g(
x)

Figure 28 - Fibonacci hashing

7.9 Decompression Algorithm
In this section, the decompression algorithm used in the SigComp prototype is
described. The way the bytecode of the decompression algorithm organizes the memory

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 57

of the UDVM is illustrated in Figure 29. In the figure, it is assumed that the size of the
decompression memory is 8192 bytes. The first 128 bytes of the memory are reserved
for the values of various registers. Addresses 128 - 400 are reserved for the bytecode.
Rest of the memory is used as a circular buffer. The static SIP/SDP dictionary is
considered to be a part of the buffer, meaning that once the buffer reaches its right
boundary (i.e. byte_copy_right), the static dictionary will be overwritten. This is
because in the SigComp prototype, the content of previous messages is considered to be
more valuable than the information in the static dictionary; it is more likely to help in
achieving higher compression ratios. The string subset of the static dictionary is initially
loaded to the beginning of the circular buffer. The first byte of the string subset is
copied to address 400, which is the left boundary of the circular buffer and is pointed to
by the register byte_copy_left.

Bytecode … Static
Dictionary

0 128 400

Rest of the circular buffer

3868 8192

Byte_copy_rightByte_copy_left

Circular buffer

Figure 29 - Organization of the UDVM's memory

The UDVM assembly of the LZSS decompression algorithm is presented in [Draft
Price]. This assembly is included in Appendix B. The assembly that is used in the
SigComp prototype includes a few modifications to the original assembly, including
support for the modified LZSS algorithm, changes to the way the UDVM memory is
organized, changes to the use of shared states and other minor modifications. A
description of the original assembly is given below.

Rows 1-34 of the assembly are used to reserve registers in the memory of the UDVM.
As an example, on line 3 the label index is associated with memory addresses 32-33.
The at(32) directive on line 1 appends 32 padding bytes to the bytecode. Because index
is the first label that is declared after the at(32) directive, index is associated with
memory address 32. The pad(2) directive on line 3 appends two padding bytes to the
bytecode starting from address 32. This means that the length of the index field becomes
two bytes.

The STATE-ACCESS instruction on line 40 loads the string subset of the static
SIP/SDP dictionary to the memory of the UDVM starting from address 1024. The
partial state identifier of the static dictionary is read from the memory address specified
by the operand dictionary_id, which will, by the time the bytecode is loaded to the
memory of the UDVM, contain the six bytes that are declared on line 126 of the
assembly. These bytes present the partial state identifier of the static dictionary.

The MULTILOAD instruction on line 45 initialises the values of the registers in
memory locations 64-71, i.e. registers byte_copy_left, byte_copy_right, input_bit_order
and decompressed_pointer. The registers byte_copy_left and byte_copy_right specify

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 58

the bounds of the circular buffer, while the register decompressed_pointer contains a
value that points to the location to which the next uncompressed byte should be copied.

The INPUT-BYTES instruction on line 49 reads the s-bit of the SigComp header. The
value of the s-bit is checked on line 50 by the COMPARE instruction. If the value is
zero, the UDVM continues execution on line 57. On the other hand, if the value is ‘1’,
then the shared state identifier is read by the INPUT-BYTES instruction on line 54 and
the state with this state identifier, i.e. the shared state, is loaded to the UDVM memory
on line 55.

The MULTILOAD instruction on line 59 loads new values to registers
minimum_access_length, announcement_location, decompressed_start and
decompressed_length.

On line 60, the COPY-LITERAL instruction appends eight padding bytes to the front of
the area to which the message will be decompressed. Later in the assembly, the length
of the decompressed message and the contents of the register minimum_access_length
will be written to these eight bytes. The purpose is to leave room for the eight bytes that
are a part of all state items: state_length, state_address, state_instruction and
minimum_access_length. When an SHA-1 hash is created for the decompressed
message, these eight bytes will be included in the string over which the hash is
calculated.

The instructions on lines 62 and 63 read the a-bit of the SigComp header and take the
following actions depending on its value: if the value is zero, the execution of the
bytecode continues from line 71. If the value is one, execution moves to line 67. In the
latter case, the UDVM starts to write information to the location of returned parameters,
which contains the list of returned remote partial state identifiers. The instructions on
lines 67 and 68 write the length and value of the state identifier specifying the remote
UDVM memory snapshot state to the returned parameters location. The LOAD
instruction on line 69 ensures that the shared state identifier, which is calculated later in
the assembly, is stored in the next free byte after the state identifier of the remote
UDVM memory snapshot.

The actual decompression algorithm starts from line 75. The INPUT-HUFFMAN
instruction on line 75 reads the first nine bits of the decompressed message. It goes
through one or two iterations depending on the value of the sequence of 9 bits that are
read. As was explained earlier, in the LZSS compression algorithm, each compressed
character begins with a 1-bit indicator flag specifying whether the character is a literal
or an offset/length pair. If the flag is ‘0’, then the eight-bit sequence that follows the
flag contains a literal. A literal is an uncompressed ASCII character and its value is
within the range 0-255. If the sequence following the flag is a literal, the INPUT-
HUFFMAN instruction returns after the first iteration. On the other hand, if the flag is
‘1’, the sequence of sixteen bits that follows the flag contains an offset/length pair. In
this sequence, 12 bits are reserved for the offset and 4 bits for the length value. If the
flag is ‘1’, the instruction reads the indicator flag and the first eight bits of the offset in
the first iteration, and the six remaining bits of the offset during the second iteration.

If the indicator flag was ‘0’, the execution continues from line 82. The instructions on
lines 82 and 83 output one character, and also copy the character to the decompressed

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 59

message. The JUMP instruction on line 84 moves execution back to line 75, i.e. to the
beginning of the decompression algorithm.

If the indicator flag was ‘1’, the execution continues from line 88. The INPUT-BITS on
that line reads the length value of an offset/length pair from the compressed message.
The ADD instruction on line 89 increments the length by 3. This is done because the
LZSS algorithm never encodes sequences whose length is less than 3 bytes as
offset/length pairs. If length 0 is read from the message, it should be interpreted as
length 3, whereas length 1 should be interpreted as length 4 and length n as length n+3.
The COPY-OFFSET instruction on line 91 counts backwards a total of offset memory
addresses, starting from the next byte following the most recent decompressed byte.
Starting from the resulting address, it appends a total of length bytes to the
decompressed message. This happens for example whenever a byte string is fetched
from the static SIP/SDP dictionary. On line 92, the fetched byte string is output and on
line 93, the JUMP instruction moves execution back to the beginning of the
decompression algorithm.

The instructions on lines 97 and 98 read the r-bit of the SigComp header. Next, one of
the following actions is taken depending on the value of the r-bit: value ‘0’ indicates
that the sender did not save a state corresponding to the decompressed message. In this
case, the execution continues from line 118. If the r-bit is ‘1’, then the sender saved a
state corresponding to the decompressed message. If this is the case, the shared state
identifier is calculated on lines 102-112.

The LOAD instruction on line 118 stores some flag bits and the length of the requested
feedback field to the location of requested feedback in the memory of the UDVM. The
MULTILOAD instruction on the next line loads four two-byte blocks to the front of the
state value of the UDVM memory snapshot that will be calculated. These two-byte
blocks include the length of the sequence over which the hash is calculated, the address
to which the snapshot value should be loaded, the instruction from which the execution
should continue once the snapshot is loaded and the minimum access length of the state
item. On line 120, a hash is calculated over the UDVM memory. This hash value is
placed to the field acked_state_id of the SigComp header when the next message is sent
by this endpoint.

Finally, the END-MESSAGE instruction on line 122 terminates the UDVM. It ensures
that the feedback data, the shared state and the UDVM memory snapshot will be saved
once the SIP application provides a valid compartment identifier.

7.10 State and Sequence Diagrams
In this section, the state diagram and various sequence diagrams of the SigComp
prototype are presented by means of Unified Modelling Language (UML) diagrams
[Doldi 2003].

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 60

7.10.1 State Diagram

SigComp

SigCompMsg

Waiting

[true]

[false]

receiveMessage

Idle

sendMessage

closeCompartment

compartmentId

Figure 30 - SigComp state diagram

The state diagram of the SigComp state machine is shown in Figure 30. It illustrates the
states that a worker thread can occupy during its lifecycle. The execution begins at the
initial pseudo-state: the state machine goes to state Idle. In this state, three events can be
received: sendMessage, receiveMessage and closeCompartment. The events
sendMessage and closeCompartment do not change the state of the state machine.
However, the event receiveMessage moves the state machine to state Waiting if the
received message is a SigComp message. If the message is a SIP message, the state
machine stays in the state Idle. When the event compartmentId is received in the
Waiting state, the state machine returns to the Idle state.

The event sendMessage is used to request the sending of a new message. When it is
received, a message is compressed and placed into the payload of a SigComp message,
which is passed to the transport layer. The event closeCompartment occurs when the
SIP application wants to close a compartment and release its resources. When the event
receiveMessage is received, a SigComp message is decompressed and the resulting
message is passed to the SIP application. After this, the state machine makes a transition
to the state Waiting, in which it waits for the SIP application to provide a compartment
identifier. The identifier arrives in the form of a compartmentId event. Once this event
occurs, state information can be saved, after which the state machine returns to the state
Idle. The following subsections describe in detail what happens when each of the events
is received.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 61

7.10.2 Event SendMessage

Figure 31 – Sequence diagram for event sendMessage

A Unified Modelling Language (UML) diagram illustrating the actions taken when the
event sendMessage is received is shown in Figure 31. Only the most important
messages are included in the figure. The purpose of each message is explained below.
In the figure, it is assumed that shared compression and dynamic compression are used
and that the compartment has already saved state items in the state handler.

1: sendMessage The worker thread calls the function sendMessage of the

state object Idle.
1.1.1: getCompressor If the message is to be sent compressed, the Idle object

fetches a compressor from the compressor array using
the compartment identifier provided as an argument to
the function sendMessage.

1.1.2: compressMessage The state Idle orders the compressor, which is an
instance of the class LZSSCompressor, to compress the
SIP message provided by the worker thread.

1.1.2.1: getFeedback The LZZS compressor retrieves a feedback item from
the state handler. The correct feedback item is identified

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 62

using the compressor’s compartment identifier.
1.1.2.2: saveSharedState The LZSS compressor orders the state handler to save

the uncompressed SIP message as a shared state.
1.1.2.3.1: <constructor> If the remote UDVM snapshot identifier that is read

from the feedback item is empty, the opposite endpoint
has not yet acknowledged any UDVM memory
snapshots. Therefore, the LZSS compressor creates a
new instance of the class UdvmMemoryImage, the
purpose of which is to present the contents of the remote
UDVM’s memory.

1.1.2.3.2 initialise The UdvmMemoryImage object is initialised by setting
the values of UDVM registers and loading the static
SIP/SDP dictionary to the circular buffer of the memory
image.

1.1.2.3.3: insertSharedState The contents of the shared state are inserted to the
UDVM memory image.

1.1.2.3.4: getSearchBuffer The contents of the search buffer of the compression
algorithm are read from the memory image. The search
buffer is initialised using the retrieved value.

1.1.2.3.5:
insertDecompressedMessage

The memory image is updated to reflect the situation in
which the message this endpoint is about to send has
been decompressed. Also the values of affected registers
are updated.

1.1.2.4.1:
loadOldMemoryImage

If the state identifier of the remote UDVM memory
snapshot that was read from the FeedbackItem object
contained a value, the corresponding memory image is
retrieved from the compressor’s memory image table.

1.1.2.4.2: <constructor> A new UdvmMemoryImage object is created.
1.1.2.4.3:
initialiseFromOldImage

The contents of the old memory image are copied to the
new one.

1.1.2.4.4: insertSharedState The memory image is updated to contain the new shared
state.

1.1.2.4.5. getSearchBuffer The compressor’s search buffer is fetched from the
memory image.

1.1.2.4.6:
insertDecompressedMessage

The memory image is updated to reflect the situation in
which the new message has been decompressed.

1.1.2.5: saveMemoryImage The new UDVM memory image is stored in the
compressor’s memory image table

1.1.2.6: compress The SIP message is compressed using the modified
LZSS algorithm.

1.1.2.7:
createSigCompMessage

The LZSS compressor calls the function
createSigCompMessage of its super class, Compressor.
This function creates a SigComp message header and
places the compressed SIP message into the payload of
the message.

1.1.2.7.1:
getListOfLocalStates

The Compressor object accesses the state handler to get
a list of locally available state identifiers. This list is
included in the header of the SigComp message.

1.3: sendToSocket The SigComp message that was created is sent to a UDP
socket.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 63

1.4: setNextState The Idle object sets the next state of the state machine.

7.10.3 Event ReceiveMessage

Figure 32 – Sequence diagram for event receiveMessage

Figure 32 illustrates the sequence of actions that takes place when the event
receiveMessage is received by the state machine of the SigComp prototype.

1: receiveMessage The worker thread calls the function receiveMessage of the

class Idle after having fetched a receive task from the shared
buffer.

1.1:
processReceivedMessage

The function processReceivedMessage of the class Idle is
called. This function either reads the header fields and the
payload of the SigComp message or identifies the message
to be an uncompressed SIP message. In the latter, case the
message requires no processing. Whether a message is a SIP
or a SigComp message is determined by inspecting the first
five bits of the first byte of the message. If the first five bits
are all ‘1’s, the message is guaranteed to be a SigComp
message, since this bit sequence never occurs in UTF-8
encoded text messages. If some other bit sequence is found,
the message is considered to be a SIP message, in which
case the next action taken is the function call 1.2:
setNextState. Otherwise the next action is the creation of a
new Udvm object in step 1.1.1.1 or 1.1.2.1.

1.1.1.1: <constructor> If the SigComp message header contained bytecode, a new
Udvm object is created by calling the constructor that takes

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 64

the bytecode as an argument. This constructor initialises the
UDVM’s memory from scratch.

1.1.1.2:
decompressMessage

The payload of the SigComp message is passed to the Udvm
object created in the previous step. The Udvm object starts
executing the bytecode.

1.1.1.2.1: getState The bytecode contains an instruction that orders the UDVM
to load the static SIP/SDP dictionary from the state handler.

1.1.1.2.2: getState The state handler is accessed to load the shared state.
1.1.2.1: <constructor> If the message does not contain bytecode but instead a

partial state identifier of an earlier UDVM memory
snapshot, a new Udvm object is created by calling the
second constructor of the class Udvm. This constructor
initialises the memory using a previous UDVM memory
snapshot, which is loaded from the state handler.

1.1.2.2:
decompressMessage

The compressed message is handed to the UDVM. The
UDVM starts executing the bytecode included in the
snapshot loaded from the state handler.

1.1.2.2.1: getState The state handler is accessed to load the shared state. There
is no need to load the static dictionary, because it was
included in the snapshot loaded by the constructor of the
class Udvm in step 1.1.2.1.

1.2: setNextState The Idle object sets the next state of the state machine,
which is the state Waiting.

7.10.4 Event ReceiveCompartmentId

Figure 33 – Sequence diagram for event receiveCompartmentId

Figure 33 shows what happens when the state machine receives the event
receiveCompartmentId. It is assumed that the compartment already has a feedback item.

1: receiveCompartmentId A worker thread calls the function

receiveCompartmentId of a Waiting object. A pointer to
a Udvm object and a compartment identifier are passed to
the function as arguments.

1.1: provideCompartmentId The compartment identifier is provided to the UDVM.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 65

This allows the UDVM to save state information.
1.1.1: saveMemorySnapshot The UDVM orders the state handler to create a new state

item, which contains the contents of its memory.
1.1.2: saveSharedState The UDVM saves the message that it decompressed in

the state handler as a new state item.
1.1.3: saveFeedbackData Next, the UDVM orders the state handler to save the

feedback information that the message possibly
contained.

1.1.3.1: getFeedbackItem The state handler fetches the feedback item of the
compartment.

1.1.3.2: writeFeedbackData The feedback item is updated to contain the most recent
feedback information.

1.2.setNextState The Waiting object sets the next state of the state
machine, which is the state Idle.

7.10.5 Event CloseCompartment

Figure 34 - Sequence diagram for the event closeCompartment

The sequence of actions that takes place when the state machine receives the event
closeCompartment is illustrated in Figure 34. The purpose of each message in the
diagram is explained below.

1: closeCompartment A worker thread calls the function closeCompartment of

the object Idle. The identifier of the compartment that is
to be closed is passed to the function as an argument.

1.1: removeCompartment The state items and the feedback item that were created
by the specified compartment are removed from the state
handler.

1.2: removeCompressor The compressor of the specified compartment is deleted
from the compressor array.

1.3: setNextState The next state of the state machine is set.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 66

7.11 Implementation of Extended Operations
In this section, the way the SigComp prototype implements the SigComp extended
operations is illustrated through an example of a SIP session establishment message
sequence, in which all messages are compressed using SigComp and extended
operations. The example is depicted in Figure 35, which contains messages 1-3 and in
Figure 36, which includes messages 4-6. The notation used in the figures is presented in
Table 7.

Table 7 - Notation that is used in the figures

Notation Meaning
m1 Message 1
SD The SIP/SDP Static Dictionary
200 OK (N) The Nth 200 OK message that is exchanged between the

endpoints
ums_A(m1) UDVM Memory Snapshot (UMS) of a UDVM created at

endpoint A, reflecting the situation in which message 1 has just
been decompressed.

m2: 180 Ringing [SD + m1] m2, which contains a compressed 180 Ringing message, is
compressed using the SIP/SDP static dictionary and
information from message 1

It is assumed both in Figure 35 and Figure 36 that the circular buffers of the UDVMs of
endpoint A and B will not reach their maximum sizes and thus all data that are written
to the buffer remain there. It is also assumed that the state memories are large enough to
hold all the states that are established and that UDP is used for transport.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 67

SigComp A SigComp B

m1: INVITE [SD]

m2: 180 Ringing [SD + m1]

m1 contains:
- Bytecode
- Returned parameters = [m1]
- No acked_state_id
- No shared_state_id
- r-bit acknowledges m1

m2 contains:
- Bytecode
- Returned parameters = [m2]
- acked_state_id = ums_B(m1)
- shared_state_id = m1
- r-bit acknowledges m2

m3: 200 OK (1) [SD + m1]

m3 contains:
- Bytecode
- Returned parameters = [m3]
- acked_state_id = ums_B(m1)
- shared_state_id = m1
- r-bit acknowledges m3

SD

Compressor’s dictionary:

SD INVITE

Compressor’s dictionary:

SD INVITE

Compressor’s dictionary:

SD

UDVM’s dictionary:

SD

UDVM’s dictionary:

INVITE

shared

shared

shared

Local states:
INVITE

ums_B(m1)

Local states:
INVITE

180 Ringing
ums_B(m1)
ums_A(m2)

Local states:
INVITE

180 Ringing
ums_A(m2)
ums_B(m1)

Local states:
INVITE

180 Ringing
200 OK (1)
ums_B(m1)
ums_A(m2)
ums_A(m3)

SD

UDVM’s dictionary:

INVITE

shared

Figure 35 - Extended operations part I

m1 The first message shown in Figure 35 is a compressed INVITE message sent

from endpoint A to endpoint B. The process of sending the INVITE begins
when the SIP application of endpoint A hands an INVITE message to the
SigComp service running at the same endpoint. Since the INVITE is the first
message of the compartment, the SigComp message that is created has to
contain bytecode, i.e. the decompression algorithm uploaded to endpoint B. The
field acked_state_id is empty, because there are no states to acknowledge yet,
i.e. this endpoint has not saved any UDVM memory snapshots. Shared
compression cannot be applied yet because endpoint A has not received any
messages from endpoint B. Therefore, the field shared_state_id of the
SigComp message does not contain a state identifier. The r-bit of the SigComp
header is set to indicate that the INVITE message was saved at endpoint A. The
state identifier of the INVITE message is also included in the list of returned
parameters. This allows endpoint B to check the integrity of the shared state by
comparing the hash it calculated over the message to the value in the returned
parameters. Before compressing the INVITE, endpoint A has to construct an
image of the memory of endpoint B’s UDVM. This memory image reflects the
moment endpoint B has decompressed the message m1. Since there are not any
shared or acknowledged states available, the only states that are loaded to the
memory image are the static SIP/SDP dictionary and the INVITE message.
Next, the memory image, called ums_B(m1), is saved by endpoint A. The
search buffer of endpoint A’s compressor is initialised using the contents of the
constructed memory image excluding the INVITE message. Upon receiving
m1, endpoint B creates a new UDVM instance and initialises it with the
bytecode that was included in m1. The bytecode loads the static SIP/SDP

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 68

dictionary to the memory of the UDVM. It also instructs endpoint B to save the
decompressed INVITE message and a snapshot of the memory of the UDVM
as new states. The compressor of endpoint B will use the decompressed
INVITE as a shared state when it compresses the next SIP message it sends.
The snapshot can be used by endpoint B to initialise the contents of the memory
of a UDVM instance that is invoked to decompress the next SigComp message
endpoint B receives.

m2 The next message sent in Figure 35 is m2, which contains a compressed 180
Ringing message. Since endpoint B may use a different compression algorithm
than endpoint A, a bytecode containing endpoint B’s decompression algorithm
is included in the message. The only state identifier that is included in the list of
returned parameters is that of the next shared state (i.e. the message that is
being sent), because (1) the creation of snapshot ums_B(m1) is already
acknowledged by including its state identifier in the field acked_state_id and
(2) the creation of shared state, i.e. the INVITE message, is acknowledged by
including its state identifier in the field shared_state_id. The presence of a state
identifier in the field shared_state_id also indicates to endpoint A that shared
compression was used to compress the 180 Ringing message. The state
identifiers are calculated by using the SHA-1 algorithm. Since both endpoints
use this algorithm and the same data to calculate the identifiers (i.e. in this case
the INVITE message and the UDVM memory image/snapshot), both endpoints
are guaranteed to have similar state identifier values, assuming there are no
transmission or decompression errors. To utilise shared compression, endpoint
B loads the INVITE message, i.e. the most recent message it has received, to
the remote UDVM memory image ums_A(m2) it constructs. Naturally, also the
static SIP/SDP dictionary is loaded to the memory image as well as the 180
Ringing message. Since the search buffer is initialised using the memory image,
the search buffer will also contain the shared state. Therefore, the INVITE
message will be used in the compression process of the 180 Ringing message.
Before sending the message m2, endpoint B saves the uncompressed message
and the memory image ums_A(m2) it created.

Upon receiving m2, endpoint A initialises a UDVM instance with the bytecode
that is included in the message and starts executing the bytecode. The bytecode
loads the static SIP/SDP dictionary to the memory of the UDVM. It also reads
the field shared_state_id, which contains the state identifier of the INVITE
message, and loads this message to the circular buffer of the UDVM. Having
decompressed the message, endpoint A saves the uncompressed 180 Ringing
message. It also records to the feedback item of this compartment the
acknowledged state and shared state identifiers and the indication that the
sender has saved the uncompressed message (as indicated by the r-bit).

m3 The process of sending the third message, which is a 200 OK sent from
endpoint B to endpoint A, is presented in Figure 35. When endpoint B starts to
compress the message 200 OK, it cannot know whether endpoint A has
successfully received the previous message, m2, and created state ums_A(m2),
assuming that unreliable transport is used. This is because it has not received
anything from endpoint A after it sent the message m2. Therefore, endpoint B
has to include the bytecode also in message m3. The contents of the message

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 69

are identical to those of m2, except for the payload, which this time contains the
compressed 200 OK message.

m4 The process of sending the fourth message, m4, is shown in Figure 36.
Endpoint B acknowledged the creation of the UDVM memory snapshot state
ums_B(m1) by including the state identifier of this state to the field
acked_state_id of message m3 (and message m2). Because of this, endpoint A
can be sure that this state is available at endpoint B. It uses the state identifier of
ums_B(m1) to find the corresponding memory image, which was saved when
message m1 was created. Endpoint A updates the image by loading the new
shared state, i.e. the 200 OK message, and the message that is to be compressed
and sent, ACK, to the circular buffer of the memory image. Because endpoint A
utilises an old image in the compression process, endpoint A has to indicate to
endpoint B that endpoint B should initialise the UDVM it creates using an old
memory snapshot. This is done by writing the state identifier of the old memory
image, ums_B(m1), to the field partial_state_id. The creation of state
ums_A(m3) is acknowledged in the field acked_state_id and the identifier of the
new shared state, 200 OK, is included in the field shared_state_id. Returned
parameters contain only two state identifiers, that of ums_A(m2) and the
identifier of the ACK message; all other states available at endpoint A get
acknowledged in the other fields. When the ACK message is compressed, the
search buffer of the compressor contains the static SIP/SDP dictionary, the
INVITE message and the 200 OK message. These are the states that are used in
the compression process. Message m3 does not contain bytecode, because by
acknowledging state ums_B(m1), endpoint B also indicated that it has received
the bytecode. The reason for this is that because ums_B(m1) is a snapshot of the
memory of endpoint B’s UDVM, it also contains the bytecode. When the state
ums_B(m1) is loaded to the memory of endpoint B’s UDVM, the bytecode
comes together with it.

When endpoint B receives the message m4, it notices the state identifier the
field partial_state_id contains. This is the state identifier of the state
ums_B(m1). Endpoint B creates a new UDVM instance, retrieves the snapshot
state corresponding to the state identifier of ums_B(m1) from the state handler,
and initialises the UDVM’s memory using the snapshot. Therefore, at this
point, the contents of the memory of the UDVM contain an exact copy of the
memory from the time when message m1 was decompressed. The circular
buffer of the UDVM contains the static SIP/SDP dictionary and the
decompressed INVITE. When the UDVM starts executing, the bytecode loads
the shared state, which is the decompressed version of message m3, to the
circular buffer directly after the INVITE message. Now the contents of the
memory match exactly to those used when compressing the ACK at endpoint
A, and the UDVM can successfully decompress the message. Finally, the
bytecode saves the decompressed ACK message and a snapshot of the
UDVM’s memory, ums_B(m4), as new states.

m5 When endpoint B decides to terminate the session, it sends a BYE message to
endpoint A. The BYE is carried in the payload of message m5 shown in Figure
36. It is assumed that the BYE request and the 200 OK response belong to the
same compartment as the previous messages.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 70

Endpoint A acknowledged the UDVM memory snapshot state ums_A(m3) in
the previous message it sent to endpoint B. It also acknowledged the creation of
a state holding the payload of message m4, namely the ACK message, by
setting the r-bit. Therefore, endpoint B can order endpoint A to use the old
snapshot state by setting the field partial_state_id to contain the state identifier
of ums_A(m3). In addition, endpoint B can order endpoint A to load the shared
state, ACK, to the UDVM’s circular buffer. These are also the states endpoint B
uses to construct a new remote UDVM memory image ums_A(m5), and to
initialise its compressor’s search buffer. Since the snapshot state ums_A(m3)
contains the static SIP/SDP dictionary and messages m1 and m3 (i.e. INVITE
and 200 OK), the BYE is compressed using these three states and the shared
state, ACK. The state that is acknowledged in message m5 is ums_B(m4). The
returned parameters contain the state identifier of the message that is being sent
and the identifier of the state ums_B(m1).

Upon receiving message m5, endpoint A initialises its UDVM instance with
ums_A(m3) and the shared state. Having decompressed the message it saves a
new snapshot state ums_A(m5) and the decompressed message.

m6 The last message exchanged between the two endpoints is the 200 OK sent
from endpoint A to endpoint B. It is carried in the payload of the message m6
shown in Figure 36. Endpoint A orders endpoint B to initialise the memory of
its UDVM with snapshot state ums_B(m4) by including the state identifier of
this state to the field partial_state_id. It also announces that BYE is the new
shared state, acknowledges state ums_A(m5) and indicates the creation of a state
containing the 200 OK (2) message. Returned parameters that are carried in the
message m6 include the state identifier of the 200 OK (2) message and the
identifiers of the memory snapshots that were acknowledged previously,
ums_A(m2) and ums_A(m3). The 200 OK (2) is compressed using the static
SIP/SDP dictionary, the messages that are in the circular buffer of ums_B(m4),
i.e. INVITE, 200 OK (1), ACK and BYE, and, in addition to these, the new
shared state.

When endpoint B receives the message m6, it initialises a new UDVM with the
memory snapshot state ums_B(m5) and the shared state, i.e. BYE, and
decompresses the message.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 71

m4: ACK [SD + m1 + m3]

m4 contains:
- partial_state_id = ums_B(m1)
- Returned parameters = [ums_A(m2), m4]
- acked_state_id = ums_A(m3)
- shared_state_id = m3
- r-bit acknowledges m4

m5: BYE [SD+m1+m3+m4]

m5 contains:
- partial_state_id = ums_A(m3)
- Returned parameters = [ums_B(m1), m5]
- acked_state_id = ums_B(m4)
- shared_state_id = m4
- r-bit acknowledges m5

SD INVITE

Compressor’s dictionary:

200

UDVM’s dictionary:

SD INVITE 200

UDVM’s dictionary:

SD ACK

m6: 200 OK (2) [SD+m1+m3+m4+m5]

m6 contains:
- partial_state_id = ums_B(m4)
- Returned parameters = [ums_A(m2), ums_A(m3), m6]
- acked_state_id = ums_A(m5)
- shared_state_id = m5
- r-bit acknowledges m6

SD INVITE

Compressor’s dictionary:

BYE

SD

Compressor’s dictionary:

ACK

UDVM’s dictionary:

SD INVITE

shared

200

shared

shared

200

shared

ACK

ACK

shared

shared

INVITE

INVITE

200 BYE

200

Local states:
INVITE
180 Ringing
200 OK (1)
ACK
ums_A(m2)
ums_A(m3)
ums_B(m1)
ums_B(m4)

Local states:
INVITE
180 Ringing
200 OK (1)
ACK, BYE
ums_B(m1)
ums_B(m4)
ums_A(m2)
ums_A(m3)
ums_A(m5)

Local states (A):
INVITE, 180 Ringing
200 OK (1), ACK
BYE, 200 OK (2)
ums_A(m2)
ums_A(m3)
ums_A(m5)
ums_B(m1)
ums_B(m4)
ums_B(m6)

Local states (B):
INVITE, 180 Ringing
200 OK (1), ACK
BYE, 200 OK (2)
ums_B(m1),
ums_B(m3)
ums_B(m6)
ums_A(m2)
ums_A(m3)
ums_A(m5)

Figure 36 - Extended operations part II

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 72

8 Measurements
The approach used to describe the measurements carried out consists of a systematic
approach to performance evaluation introduced in [Jain 1991]. This chapter presents the
steps of the approach and describes the way they were applied to the measurements of
this thesis.

8.1 System Definition
The goal of this study is to measure the performance of the SigComp protocol. The key
components under study are SigComp compressor and the UDVM. The test
configuration consists of three computers connected to a closed network via a hub as
shown in Figure 37. Each of the computers executes either a UE process or a P-CSCF
process. The UE process is used to generate compressed SIP signalling traffic initiating
from the access network side. The P-CSCF process decompresses the traffic generated
by the UE process and forwards the traffic to the core network side. The P-CSCF
process also receives SIP traffic coming from the core network side, compresses the
traffic and forwards it to the access network side. As shown in Figure 37, computer A
acts as the access network side, computer C as the P-CSCF and computer B as the core
network side. Both computer A and computer B execute the UE process, while
computer C runs the P-CSCF process. The system under study consists of the P-CSCF
process running on computer C.

P-CSCF

Access
network

side
(UEs)

Core
network

side

Hub

SystemA

C

B

Figure 37 - System definition

8.2 Services
The system offers two services: compression of a SIP message and decompression of a
SigComp message. The system either receives a SigComp message from the A-side
(access network), decompresses the message and sends the resulting SIP message to the
B-side (core network), or receives a SIP message from the core network, compresses the
message and sends the resulting SigComp message to the access network. The traffic
sent between the access network and the P-CSCF is always compressed, whereas all the
traffic exchanged between the P-CSCF and the core network is uncompressed.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 73

8.3 Metrics
For both of the services defined in the previous section, the following issues are studied:
(1) responsiveness: the amount of CPU time consumed to compress and decompress a
SIP message, (2) productivity: the rate at which the service can be performed, i.e. the
throughput of the system, (3) resource utilization and (4) achievable compression ratios.
This leads to the following performance metrics: CPU time per compressed message
and decompressed message, compressed and decompressed bit rates per unit of time,
memory utilization of the SigComp process, state memory utilization of different
SigComp mechanisms and finally, the number of bytes sent per compressed message
compared to the number of bytes sent per uncompressed message. The
compressed/decompressed bit rate is equivalent to the time required to
compress/decompress a sequence of n bits.

The definition of CPU time used is discussed below. CPU time [Patterson 1998] is the
time the CPU spends computing for a particular task and does not include the time spent
waiting for I/O or running other programs. It can be further divided into the CPU time
spent in the program, called user CPU time and the CPU time spent in the operating
system performing tasks on behalf of the program, called system CPU time. The system
CPU time depends on the operating system on which the program is run. It may be
inaccurate, because of the inaccuracy of an operating system’s self-measurement.
However, no program runs without some operating system running on the hardware, so
a case can be made for using the sum of user CPU time and system CPU time as the
measure of program execution time. In this thesis, the term CPU time always refers to
the sum of the user CPU time and the system CPU time.

8.4 Parameters
The system parameters that affect the performance are discussed below. Perhaps the
single most important parameter is the speed of the CPU. On the other hand, also the
multithreading technique used by the CPU is likely to have an impact, since the
SigComp prototype uses multiple threads. Another interesting parameter is the
decompression memory size (DMS) of the UDVM. The DMS dictates the length of the
circular buffer on the compressor side, meaning that it has a major impact on the
efficiency of the compression. Other parameters that are likely to have an effect on
performance are the length of the compressor’s look-ahead buffer, the SigComp
mechanisms used, the length of shared states, the search technique used by the
compression algorithm, the size of the portion of the SIP/SDP static dictionary used and
the number of messages that can be compressed and decompressed concurrently.

The workload parameters affecting the performance are time between successive
messages, time between calls, total number of calls, the content and sizes of the
messages, type of the message sequence, number of messages in the message sequence,
and other loads on the CPU.

8.5 Factors
In this thesis, both the performance of the SigComp protocol in general and the
performance of the SigComp prototype that was implemented are studied. The key
factors chosen for the study of the SigComp protocol’s performance are the SigComp
mechanisms used and decompression memory size. However, also the impact of the
other factors mentioned in the previous section is studied. The following SigComp

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 74

mechanisms and their combinations are compared: the basic SigComp protocol, the
static SIP/SDP dictionary, dynamic compression and shared compression. The
following sizes are used for the decompression memory: 4096, 8192 and 16384 bytes.

The key factors chosen for the study of SigComp prototype’s performance are the type
of the message sequence and the CPU type used. Two different CPUs are compared:
Intel Pentium 4 2.66 GHz and Intel Pentium Hyper-Threading (HT) 3.0 GHz.

8.6 Evaluation Technique
Since a SigComp prototype is implemented as a part of this thesis, measurements will
be used for evaluation. One of the most important metrics studied is the CPU time. The
use of Linux system calls, like getrusage(), to record the CPU time is not enough for
our purposes, because the accuracy with which the Linux kernel reports the CPU time
consumed by a process is only one millisecond. Therefore, wall-clock time is used as an
estimate of the real CPU time consumed. The wall-clock time is monitored using Linux
command strace, the accuracy of which is one microsecond. Since all the measurements
are performed in an unloaded system, the wall-clock time is very close to the actual
CPU time. The measurement of memory consumption is carried out by examining the
information in file /proc/<$pid>/statm, which is maintained by the Linux operating
system. The throughput of the system is monitored using Ethereal, which is a network
protocol analyser.

8.7 Workload
The workload consists of synthetic SIP user agent clients and user agent servers
exchanging messages. The user agent clients are located on computer A, while the user
agent servers reside on computer B. Seven different session types are examined:

• Basic voice call
• Basic video call
• Registration in a 3GPP release 5 network taken from [3GPP TS 24.228]
• Voice and video call in a 3GPP release 5 network taken from [3GPP TS 24.228]
• An alternative message sequence for voice and video call in a 3GPP release 5

network with a RE-INVITE request
• An alternative message sequence for voice and video call in a 3GPP release 5

network with a RE-INVITE request and reliable delivery of provisional
responses

• Push-to-Talk over Cellular (PoC) session

8.8 Experimental Design
The experiments are conducted in three phases. The first and second phases focus on the
performance of the SigComp protocol, whereas in the third phase, the performance of
the SigComp prototype is measured. In the first phase, the goal is to determine the
relative effects of various factors and choose optimal values for these factors. A single-
threaded version of the SigComp prototype is used. In the second phase, the factors
determined during the first phase are used to measure compression time, decompression
time and compression ratios of the session types defined in the previous section. In the
third phase, the factors determined during the first phase are used to measure the
performance of the multi-threaded SigComp prototype.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 75

8.9 Data Analysis
Analysis of variability will be used where appropriate to take into account the
variability of the results.

8.10 Data Presentation
The final results will be presented in graphic form and also in table form where
necessary. The results of the measurements are included in Appendixes A-N.

8.11 Materials and Apparatus
The first and second phases of the measurements are conducted on an Intel Pentium
Hyper-Threading 3.0 GHz platform. In the third phase of the measurements a three-
computer 100 Mbit/s Ethernet network is constructed. The computers are connected via
an OfficeConnect Dual Speed Hub 8 10/100 Mbit/s hub. One of these computers acts as
a P-CSCF, one executes the UEs and one acts as the core network side. The CPU of the
computer acting as the P-CSCF is either an Intel Pentium 3,0 GHz supporting the
Hyper-Threading technology or an Intel Pentium 4 2.66 GHz. The CPU of the computer
executing the UEs is an Intel Pentium Mobile 1.6 GHz and that of the computer acting
as the core network side is an Intel Pentium III 600 MHz. The computer with the least
CPU power is used on the core network side because it does not need to compress or
decompress SigComp traffic. All the computers use SuSE Linux as the operating
system. The C++ compiler that is used is GNU project C and C++ compiler version
3.3.3. The POSIX threads library is used to implement threads. The computers used in
the measurements are presented in Table 8.

Table 8 - Computers used in the measurements

 Intel
Pentium 4
Hyper-
Threading
3,0 GHz

Intel
Pentium 4
2,66 GHz

Intel
Pentium 4
1.8 GHz

Intel
Pentium
Mobile 1,6
GHz

Intel
Pentium III
600 MHz

Role in the
measurements

P-CSCF P-CSCF - UEs Core network
side

Operating
system

SuSE Linux
9.2
professional

SuSE Linux
9.0
professional

SuSE Linux
9.1
professional

SuSE Linux
9.1
professional

SuSE Linux
9.0
professional

Linux kernel
version

2.6.8-24.14-
smp

2.4.21-99-
default

2.6.4-52-
default

2.6.5-7.151-
default

2.4.21-99-
default

Main memory 1024 MB 504 MB 1024 MB 512 MB 192 MB
Free main
memory

783 MB 316 MB 33 MB 296 MB 8 MB

Type of
memory

DDR 400
MHz

DDR 333
MHz

DDR 333
MHz

DDR 333
MHz

SDRAM

L2 Cache
memory

1 MB 512 KB 512 KB 2 MB 256 KB

Front side bus 800 MHz 400 MHz 400 MHz 400 MHz 100 MHz

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 76

8.12 Assumptions
In this section, some common values and assumptions that are used throughout the
measurements are listed. Firstly, it is always assumed that partial state identifiers are of
the minimum length, i.e. six bytes. A complete list of locally available state items is
always included in the SigComp messages whenever stateful compression is applied.
State memory size, i.e. the number of bytes offered to a particular compartment for the
creation of state, is set to the maximum value, 131072 bytes. The parameter
cycles_per_bit, which specifies the number of UDVM cycles available to decompress
each bit in a SigComp message is set to value 32.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 77

9 Phase One – Effects of Different Factors
The goal of the measurements performed in the first phase is to determine the relative
effects of various factors and choose optimal values for these factors. In the
measurements, different combinations of the following SigComp mechanisms are used:
the static SIP/SDP dictionary, dynamic compression and shared compression. The
signalling flow is taken from [3GPP TS 24.228]. The flow is illustrated in Figure 1 and
its messages are shown in Table 9. The messages are those exchanged between a UE
and a P-CSCF during the establishment of a video call in a 3GPP Release 5 network.
All the measurements of the first phase are performed on the Intel Pentium 4 3.0 GHz
platform unless otherwise stated.

Table 9 - Message sequence

Message number Message Length [bytes]
1 INVITE 1437
2 100 Trying 254
3 183 Session progress 1440
4 PRACK (1) to 183 Session progress 1318
5 200 OK (1) to PRACK (1) 904
6 UPDATE 1291
7 200 OK (2) to UPDATE 865
8 180 Ringing 563
9 PRACK (2) to 180 Ringing 717
10 200 OK (3) to PRACK (2) 260
11 200 OK (4) to INVITE 1133
12 ACK 358

9.1 Linear Search versus Hashing
Two different versions of the LZSS compressor were implemented for the purposes of
this thesis. The first version uses linear searching, while the second version uses a hash
table to speed up searches. The goal of this measurement is to compare these two
approaches.

The results of the measurements are shown in Table 10. The values for the compression
times are averages calculated over seven measurements. The results imply that the hash
table is 2.8 times faster than linear searching. However, it uses six times more memory
than linear searching does.

Table 10 - Linear search versus hashing

Approach Compression time [ms] Memory requirement for N-byte message
[bytes]

Linear search 32,12 N
Hashing 11,47 6*N

Before analysing the differences between hashing and linear search, the compressibility
of the message sequence used in the measurements is examined. The compression ratio
for each message in the sequence of 12 SIP messages is shown in Figure 38. Naturally,
the compression ratios are identical for both linear searching and hashing since the

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 78

compression algorithm does not change. The compression ratios shown in Figure 38
were calculated without taking into account the overhead added by the SigComp
protocol. We can observe that there are two messages that cannot be compressed as well
as the others, namely messages 1 and 3. Message 1 is the initial INVITE sent from
endpoint A to endpoint B. The only information that can be utilised in the compression
of the INVITE is the SIP/SDP static dictionary, which explains the low compressibility
of the message. Message two, i.e. 100 Trying, is the first message sent from endpoint B
to endpoint A. In addition to the static dictionary, also the INVITE message can be used
when the 100 Trying is compressed. Because of the similarity of the content of the
INVITE and the content of the 100 Trying, compression is efficient. Message number 3,
i.e. 183 Session progress, sent from endpoint B to endpoint A is compressed exactly the
same way as the 100 Trying. However, this time there are not as much similarities
between the content of the INVITE and the content of the 183 Session progress.
Therefore, the compression is less efficient than in the case of the second message. All
the remaining messages starting from the fourth message achieve relatively good
compression ratios. This is because dynamic compression and shared compression can
be efficiently utilised as the amount of state information grows.

0,00 %

10,00 %

20,00 %

30,00 %

40,00 %

50,00 %

60,00 %

1 2 3 4 5 6 7 8 9 10 11 12

Message

C
om

pr
es

si
on

 ra
tio

Figure 38 - Compression ratio of each message without SigComp overhead

The compression time of each message is shown in Figure 39. The values in Figure 39
are averages calculated over seven measurements and include both linear search and
hashing. We can observe that the compression of the messages 1, 3, 6, 7 and 8 seems to
constitute a bottleneck for linear searching. Linear search compares the look-ahead
buffer with each of the positions in the search buffer and selects the maximum match.
The worst case of linear searching is performed in O(NM), where N is the size of the
search buffer and M the size of the look-ahead buffer. However, in most cases linear
searching can complete in O(M+N) time. Linear searching is inefficient when (a) there
are only few matches in the search buffer, or (b) the matches are located in such a
position that a lot of searching is required to find them (for instance near the end of the
buffer). In case of the first and the third messages, most of the content in the search
buffer is useless, which results in poor performance when linear searching is applied.
When messages 6, 7 and 8 are compressed, most of the useful content, i.e. the most
recent received and sent messages, are near the end of the search buffer. Therefore

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 79

many comparisons are required and the compression consumes a lot of time. On the
other hand, we can also observe that linear searching performs better than hashing in the
case of messages 2, and 9-12. Messages 2 and 10 are fast to compress because they are
the smallest ones in the sequence, 254 and 260 bytes. Linear searching performs well
for messages 9, 11 and 12 firstly because most of the content that can be utilised in the
compression is located at the beginning of the buffer. Secondly, these are also messages
with very good compression ratios as can be seen from Figure 38. Compression is fast
because long matches can be found in a short time.

0,00
1000,00
2000,00
3000,00
4000,00
5000,00
6000,00
7000,00
8000,00
9000,00

1 2 3 4 5 6 7 8 9 10 11 12

Message

C
om

pr
es

si
on

 ti
m

e
[u

s]

Hash table Linear search

Figure 39 - Linear search versus hashing

Thus, in some cases linear searching can outperform hashing, which is rather surprising.
The reason for this is that when a hash table is used, most of the compression time is
spent in organizing the table, the average being roughly 60%. This is illustrated in
Figure 40, which shows the building blocks of the total compression time for our SIP
sequence. When messages 1 and 2 are compressed, the hash table must be constructed
from scratch. Both the static dictionary and the compressed message need to be inserted,
which takes a lot of time. The other case in which hash table updates require a lot of
time is when content must be deleted in order to make room for new one. Such
behaviour takes place when messages 8-12 are compressed and partially when messages
6-7 are encoded. Deletion of old content is the reason hashing becomes slower than
linear searching. However, if the search buffer were bigger, hashing would most likely
outperform linear searching under all circumstances. In the rest of the measurements
presented in this thesis, the compression algorithm utilising hashing is used.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 80

0
200
400
600
800

1000
1200
1400
1600
1800

1 2 3 4 5 6 7 8 9 10 11 12

Message

To
ta

l t
im

e
[u

s]

Hash table update Compression

Figure 40 - Hash table updates

9.2 Length of Look-ahead Buffer
The purpose of this measurement is to determine the optimal size for LZSS
compressor’s look-ahead buffer. The average values for compression and
decompression times were calculated over seven measurements. The size of the look-
ahead buffer depends on the number of bits the compressor uses to encode the length of
matches and can be calculated as follows:

 22 +n , (9.1)

where n is the number of bits used to encode the length of matches. The maximum
length of a match equals to the size of the look-ahead buffer. Thus, when 4 bits are used
to encode length values, the maximum length of a match is 18 bytes. The more bits are
used, the longer the offset/length pairs become. Therefore, it is wasteful to allow very
long matches. Three look-ahead buffer lengths are examined: 18, 66 and 258 bytes.
Matches longer than 258 bytes are unlikely to occur in SIP messages. On the other
hand, if the maximum length of a match is restricted to less than 18 bytes, the
compression becomes highly inefficient.

The results are shown in Table 11. We can observe that the compression ratio improves
as the length of the look-ahead buffer grows. This is because we can encode longer
matches using a single offset/length pair. Secondly, both the compression and
decompression times decrease when the length of the buffer increases. When longer
matches are allowed, the amount of UDVM cycles consumed to decompress a message
is less than in the case of shorter matches. This is because the UDVM can retrieve
longer sequences from its circular buffer during a single fetch operation. When
compressing, the use of longer matches means that to find a match of maximum length,
more bytes in the search buffer need to be compared with the bytes in the look-ahead
buffer, i.e. more work needs to be done. However, the use of longer matches also means
that less search operations are required in total. This has the effect of slightly reducing
the compression time. Based on the results, a look-ahead buffer of length 258 appears to
be the best choice. All the remaining measurements presented in this thesis use a look-
ahead buffer of this size.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 81

Table 11 - Length of the look-ahead buffer

Size of look-ahead
buffer [bytes]

Bits in length
values [bits]

Compression
ratio

Compression
time [ms]

Decompression
time [ms]

18 4 0,224 11,97 14,47
66 6 0,164 11,58 11,75

258 8 0,155 11,47 11,27

9.3 Length of Shared States
The SigComp prototype described in this thesis uses fixed lengths for shared states in
order to simplify the calculation of shared state lengths in the bytecode. In this
measurement, the optimum length for the shared states is determined. Four different
lengths are used: 500, 750, 1000 and 1500 bytes in such a way that if the maximum
length of the shared state is n and the state that is used is longer than n, only n first bytes
of the shared state are inserted to the circular buffer. On the other hand, if the shared
state is shorter than n, the rest of the n-byte sequence in the circular buffer reserved for
the shared state is left untouched. The results of the measurements are show in Table 12.
The average values for compression and decompression times were calculated over
seven measurements. The compression ratios presented in Table 12 were calculated
without taking the SigComp overhead into account. By studying the results of Table 12,
we can observe that as the size of the shared states increases, the compression ratios
improve, compression time increases and decompression time decreases. Compression
ratios are better when longer shared states are used because there is more previous data
against which to compress. Decompression time decreases slightly because better
matches are found and the UDVM needs to do less work. However, compression time
increases because once the buffer has become full, previous data need to be deleted
from the hash map to make room for new data. The longer shared states are used the
more data must be deleted. If the maximum length of shared states is 1500 bytes, 1500
entries must be deleted from the hash map in the worst case. Based on these results, it
seems that the most appropriate value for the maximum length of the shared state
depends highly on the context of use. If CPU time is not an issue, large shared states
should be used to obtain the best compression ratios. However, if CPU time is scarce, it
is recommendable to use shorter shared states.

Table 12 - Shared state length

Shared state length
[bytes]

Compression ratio Compression time
[ms]

Decompression time
[ms]

500 0,155 11,47 11,27
750 0,148 13,40 10,76
1000 0,141 14,68 10,74
1500 0,128 17,85 10,62

9.4 Static Dictionary Priorities
Each string in the SIP/SDP static dictionary has a priority ranging from one to five. The
LZSS algorithm offers an increased efficiency when the most commonly used strings
are located at the bottom of the dictionary. The goal of this measurement is to determine
the effects of different static dictionary priorities on compression ratios, compression
time and decompression time. The average values for compression and decompression
times were calculated over seven measurements.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 82

The results of the measurements are reported in Table 13. The values presented for
compression ratios do not include the SigComp overhead. The results indicate that as a
bigger portion of the dictionary is used, compression ratios improve and compression
time and decompression time increase. Based on these results, it appears that the best
performance is achieved by using priorities 1-2 or 1-3, provided that we wish to
minimise compression and decompression times and still achieve satisfactory
compression ratios.

Table 13 - Static dictionary priorities

Priorities Length of static
dictionary
[bytes]

Compression
ratio

Compression
time [ms]

Decompression
time [ms]

1 only 218 0,194 7,03 11,43
1-2 1132 0,164 7,73 10,98
1-3 1492 0,161 8,11 10,81
1-4 3335 0,154 11,01 11,10
1-5 3468 0,155 11,47 11,27

The average compression time of each message in the sequence of 12 SIP messages is
shown in Figure 41. The use of different priorities seems to have the greatest impact in
the case of messages 1 and 2, the first messages sent in each direction. This is because
when these messages are sent, the search buffer has to be constructed from scratch. The
more priorities are used, the more insertions must be done to the hash table and the
more time is required. We can also observe that the compression time of messages 6-12
is considerably longer for priorities 1-4 and 1-5 than for the other priorities. The reason
for this is that when a bigger portion of the static dictionary is used, the circular buffer
becomes full earlier; at endpoint A this occurs during the compression of message 6 and
at endpoint B during message 7. As soon as the buffer becomes full, time must be spent
deleting entries from the hash map to make room for new ones. Finally, although the
use different static dictionary priorities has a clear impact on the compression time, the
same is not true for the decompression time; it was observed that the effect of different
priorities on the decompression time is negligible.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 83

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

1600,00

1800,00

1 2 3 4 5 6 7 8 9 10 11 12

Message

C
om

pr
es

si
on

 ti
m

e
[u

s]

Priority 1 Priorities 1-2 Priorities 1-3 Priorities 1-4 Priorities 1-5

Figure 41 - Effects of different priorities on messages

9.5 Secure Hash Algorithm
The use of both dynamic and shared compressions necessitates the calculation of SHA-
1 hashes both at the compressing and decompressing endpoints. In dynamic
compression, an SHA-1 hash is calculated over the contents of UDVM’s memory and in
shared compression, another SHA-1 hash is calculated over the SIP message. The
purpose of this measurement is to analyse the performance of the SHA-1 algorithm,
which was implemented as part of the SigComp prototype.

The results of the measurement are shown in Figure 42. In the measurement, SHA-1
hashes were calculated over three UDVM memory snapshots of lengths 4096, 8192 and
16384 bytes and six SIP messages having lengths 260, 458, 717, 904, 1133 and 1440
bytes. The values shown in Figure 42 are averages calculated over ten measurements.
From the figure, we can observe that for a 1440-byte message and a DMS of 8192
bytes, the combined overhead added by the calculation of an SHA-1 hash over the
message and over the UDVM’s memory is 580 microseconds. This is roughly 25
percent of the total compression time. For the other messages, the calculation of the
SHA-1 hashes requires 30-41 percent of the total compression time. A similar impact is
experienced on the decompressing side. Thus, we can conclude that especially in the
case of shared compression, a considerable part of the total compression time is spent in
calculating the SHA-1 hash values. We can expect that because of the calculation of
SHA-1 hash values, dynamic and shared compressions are likely to use more CPU time
than basic and static compressions.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 84

4096 bytes

16384
bytes

8192 bytes

260 bytes

1440 bytes

0,00

100,00

200,00

300,00

400,00

500,00

600,00

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Length of input [bytes]

Ti
m

e
[u

s]

Figure 42 - Calculation time of SHA-1 hash

9.6 SigComp Mechanisms
The SigComp mechanisms studied in this section include stateless and stateful basic
compressions, stateless and stateful static compressions, dynamic compression and
shared compression. In stateless basic compression, only basic, i.e. message-by-
message compression is applied. State information is not stored, meaning that bytecode
must be provided in the header of each SigComp message. In stateful basic
compression, the only state information that is stored is the bytecode, which therefore
needs to be provided only in the header of the first messages. In stateless static
compression, basic compression is applied together with the SIP/SDP static dictionary.
Bytecode is provided in each message. In stateful static compression, the bytecode is
stored and provided only in the first messages. In dynamic compression, the SIP/SDP
static dictionary and dynamic compression are used. Finally, in shared compression, the
SIP/SDP static dictionary, dynamic compression and shared compression are used.

The compression ratio that each mechanism achieves for the 3GPP session initiation
sequence is shown in Figure 43 and Table 14. The SigComp overhead like the bytecode
is included in the values shown in the figure and the table. Since the purpose here is to
compare various SigComp mechanisms, maximum values were used for the factors
affecting the compression efficiency of these mechanisms. In particular, the messages
were compressed against the entire SIP/SDP static dictionary (i.e., priorities 1-5) and
the shared state length was set to 1500 bytes. Three different values were used for the
DMS: 4096, 8192 and 16384 bytes. In addition, it was assumed that the underlying
transport layer protocol is unreliable. The session initiation sequence was taken from
[3GPP TS 24.228] and it contains the messages exchanged between a UE and the P-
CSCF.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 85

0,00 %
10,00 %
20,00 %
30,00 %
40,00 %
50,00 %
60,00 %
70,00 %
80,00 %
90,00 %

100,00 %

stateless
basic

stateful
basic

stateless
static

stateful
static

dynamic shared

Mechanism

C
om

pr
es

si
on

 ra
tio

4096 8192 16384

Figure 43 - Compression ratios, UDP, SD priorities 1-5 and shared state length 1500 bytes

From Figure 43, we can observe that both the stateless and stateful versions of the basic
compression scheme offer very poor compression ratios and are thus practically useless.
Stateless and stateful static compressions offer a clear improvement over the basic
compression scheme. The best compression ratio achieved by the stateful static
compression is 0.56, while that of stateful basic compression is 0.80. Thanks to static
compression, we can reduce the size of the messages being compressed by referring to
strings in the SIP/SDP static dictionary.

Table 14 - Compression ratios, UDP, SD priorities 1-5, shared state length 1500 bytes

Compression ratio [%] Compression mechanism
DMS 4096 bytes DMS 8192 bytes DMS 16384 bytes

Stateless basic compression 85,75 85,75 85,86
Stateful basic compression 79,92 79,92 79,94
Stateless static compression 65,02 63,83 63,93
Stateful static compression 57,03 55,84 55,85
Dynamic compression 29,16 28,69 28,81
Shared compression 28,21 24,04 24,09

The next mechanism shown in Figure 43 is dynamic compression, which is able to
achieve a compression ratio of 0.29. This is enabled by the ability of dynamic
compression to use previously sent messages in the decompression process; it is
possible to substitute portions of the message being compressed with pointers to
previously sent messages. The final improvement is offered by shared compression,
which achieves a compression ratio of 0.24 by using also received messages in the
compression process. Shared compression is clearly the most efficient compression
scheme with regard to achievable compression ratios.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 86

0,00 %

20,00 %

40,00 %

60,00 %

80,00 %

100,00 %

120,00 %

140,00 %

160,00 %

180,00 %

IN
VIT

E

10
0 T

ryi
ng

18
3 S

es
. P

rog
.

PR
AC

K (
1)

20
0 O

K (
1)

UP
DA

TE

20
0 O

K (
2)

18
0 R

ing
ing

PR
AC

K (
2)

20
0 O

K (
3)

20
0 O

K (
4)

AC
K

Message

C
om

pr
es

si
on

 ra
tio

Stateless basic Stateful basic Stateless static Stateful static Dynamic Shared

Figure 44 - Compressibility of SIP messages

The compressibility of each SIP message in the 3GPP session initiation sequence is
shown in Figure 44. The picture clearly indicates the superiority of dynamic and shared
compressions, especially when PRACK (1) and the later messages in the sequence are
compressed. The first three messages in the sequence, INVITE, 100 Trying and 183
Session Progress have rather modest compression ratios despite of the mechanism used.
This is firstly because the bytecode has to be sent in the header of the first three
SigComp messages, assuming that unreliable transport is used. The bytecode introduces
an overhead of 69-220 bytes depending on the mechanism and decompression memory
size used, as shown in Table 15. Secondly, there is not much state information available
when the first three messages are compressed. When the INVITE is processed, only the
static dictionary can be used in the compression process. Dynamic compression does
not have an effect until the fourth message in the sequence. However, shared
compression can be applied already to the second and the third messages. The second
message, 100 Trying is the most difficult message for all of the mechanisms, because it
is the shortest message in the sequence and the first message sent from endpoint B to
endpoint A. The size of the 100 Trying is 245 bytes while the size of the SigComp
overhead is 79-249 bytes depending on the mechanism used. This means that in the
worst case, the size of the SigComp header of the compressed 100 Trying message is
bigger than the entire uncompressed 100 Trying message.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 87

Table 15 - Bytecode lengths

Length of bytecode [bytes] Mechanism
DMS 4096 bytes DMS 8192 bytes DMS 16384 bytes

Stateful and stateless basic
compressions

69 69 70

Stateful and stateless static
compressions

86 86 87

Dynamic compression 216 216 220
Shared compression 216 216 220

We can observe from Figure 44 the poor performance of stateless and stateful basic
compressions. When the stateless basic compression is applied, there are five SigComp
messages that have almost the same size or are longer than the uncompressed SIP
message. Static compression offers a clear improvement over the basic compression
scheme, but still achieves only modest compression ratios. Another interesting finding
we can make from Figure 44 is that in the case of messages 4-12, dynamic compression
performs actually better than shared compression. This is because shared compression
uses much more buffer space than dynamic compression and has to overwrite the static
dictionary and the oldest messages in the buffer during its second iteration over the
circular buffer. When a DMS of 8192 bytes is used, shared compression uses 15129
bytes of buffer space at endpoint B, while dynamic compression consumes only 9129.
In practice, this means that dynamic compression can keep almost its entire dictionary
in the circular buffer at once.

The improved compression ratios of the more advanced compression mechanisms do
not come without a cost. This can be observed from Figure 45, which shows the average
compression times of basic, static, dynamic and shared compressions. The average
compression times were calculated over ten measurements. When the size of the
decompression memory is 8192 bytes, shared compression requires twice as much time
as basic compression, whereas dynamic compression is 1.4 times slower than basic
compression. Static compression consumes more time than basic compression because
the static dictionary needs to be hashed in the search buffer. The difference between the
compression times of these two mechanisms is small because even though the hashing
of the static dictionary consumes some time, the dictionary also helps to save time
because longer substitutions can be used. Encoding one long match is in most cases
faster than encoding many short matches because less searching is required. The
compression time of dynamic compression is clearly longer than that of static or basic
compressions, because dynamic compression requires additional time for the calculation
of SHA-1 hashes over the UDVM memory images. Shared compression requires even
more time than dynamic compression because one additional SHA-1 message digest
needs to be calculated for the shared state and because the shared state needs to be
hashed in the search buffer. Dynamic and shared compressions consume also time when
they delete content from the search buffer after it has become full.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 88

0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00

basic static dynamic shared

Mechanism
C

om
pr

es
si

on
 ti

m
e

[m
s]

DMS 4096 bytes DMS 8192 bytes DMS 16384 bytes

Figure 45 - Compression time

The average decompression time of the compressed 3GPP session initiation sequence is
shown in Figure 46 for basic, static, dynamic and shared compressions. The averages
were calculated over ten measurements. The results imply that in the case of
decompression memory sizes of 4096 and 8192 bytes, the decompression of the output
of dynamic compression consumes the least time. This is because the output of dynamic
compression is better compressed than the output of basic and static compressions. The
higher the compression ratio, the more pointers the compressed sequence contains and
the longer are the strings that these pointers substitute. Because longer matches can be
fetched from the dictionary during a single fetch operation, less UDVM cycles are
required to decompress the entire message. Even though the UDVM must calculate an
SHA-1 hash over its memory when dynamic compression is applied, the performance
improvement enabled by longer matches is more than enough to cover this additional
cost. However, when the shared compression scheme is used, the UDVM needs to
calculate another SHA-1 hash for the shared state. Therefore the decompression
consumes more time than in the case of dynamic compression.

0,00
5,00

10,00
15,00
20,00
25,00
30,00

basic static dynamic shared

Mechanism

D
ec

om
pr

es
si

on
 ti

m
e

[m
s]

DMS 4096 bytes DMS 8192 bytes DMS 16384 bytes

Figure 46 - Decompression time

The state memory usage of dynamic compression and shared compression is shown in
Figure 47 for the case that the 3GPP session initiation sequence is being compressed.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 89

The state memory consumption of stateless and stateful basic and static compressions is
not shown in the figure, because it is negligible. Since the only state information these
mechanisms save is the bytecode, the state memory usage of both of them is below 100
bytes. The size of UDVM memory images constructed by the compressor are not
included in the state memory usage. The maximum amount of state memory was limited
to 131 kilobytes per compartment. However, neither dynamic nor shared compression
reached this limit. We can observe from the figure that for instance with a
decompression memory size of 4096 bytes, shared compression uses roughly 1.4 times
more state memory than dynamic compression. This is because when shared
compression is used, shared state items need to be created and stored. Since the shared
state items consist of uncompressed messages, the difference in the state memory usage
between dynamic compression and shared compression equals to the size of the SIP
message sequence for all decompression memory sizes.

0

20

40

60

80

100

120

140

dynamic, endpoint A dynamic, endpoint B shared, endpoint A shared, endpoint B

Compression mechanism and endpoint

St
at

e
m

em
or

y
us

ag
e

[K
B]

DMS 4096 bytes DMS 8192 bytes DMS 16384 bytes

Figure 47 - State memory usage

9.7 Decompression Memory Size
When basic compression is used, all decompression memory sizes produce the same
compression ratio, as indicated by Figure 43. This is because all the content fits into the
search buffer and nothing needs to be replaced. However, when static compression and
a DMS of 4096 bytes are used, the static dictionary occupies the first 3468 bytes of the
buffer. If the message is long enough, it does not fit into the free space at the end of the
buffer and must replace some existing content. However, this has only a minor effect on
the compression ratio because the content being replaced consists of the static
dictionary’s lowest-priority strings: a DMS of 4096 bytes results in a compression ratio
of 0.65, while the use of a larger decompression memory results in a compression ratio
of 0.64. Replacement of content is also the reason static compression with a DMS of
4096 is slower than with the larger decompression memory sizes, as indicated by Figure
45.

We can observe from Figure 45 that the size of the decompression memory does not
have a significant impact on the compression ratio dynamic compression achieves. The
reason for this is the same as in the case of static compression: although previous
content needs to be overwritten in the circular buffer when the smallest buffer size is
used, the deleted content consists of the lowest-priority strings of the static dictionary.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 90

On the other hand, a DMS of 8192 bytes is large enough to store all the dictionaries
required by dynamic compression. This means that dynamic compression can use a
larger dictionary and does not have to spend time replacing strings in the dictionary.
Therefore, the compression requires one millisecond less time when the DMS is 8192
bytes than when it is only 4096 bytes. However, the use of a larger decompression
memory than 8192 bytes does not help to improve the compression ratio of dynamic
compression: a DMS of 16384 bytes only slows down the compression process, because
the calculation of the SHA-1 hash over the UDVM memory image requires more time.

Much like in the case of the other mechanisms, also when shared compression is
applied, decompression memory sizes of 8192 and 16384 bytes tend to produce almost
identical results. With shared compression and a DMS of 8192 bytes, the size of the
compressed sequence is 1361 bytes and the aggregate size of SigComp messages is
2558 bytes. On the other hand, when a DMS of 16384 bytes is used, the values are 1354
and 2563 bytes, respectively. Thus, with a DMS of 16384 bytes, the size of the
compressed sequence not including SigComp overhead is only 7 bytes less than when
the DMS is 8192 bytes. However, if we include the SigComp overhead and compare the
aggregate sizes of the SigComp messages, the DMS of 16384 bytes performs worse.
The reason behind this is that when a DMS of 8192 bytes is used, the bytecode that is
included in the header of the first three messages is four bytes shorter. We can also
observe from Figure 45 that shared compression is the only mechanism that clearly
benefits from the use of a decompression memory larger than 4096 bytes. This is
because shared compression requires so much buffer space that it overwrites the content
of a 4096-byte buffer two times during the compression process. When a DMS of 16384
bytes is used, nothing needs to be deleted from the buffer. This is the reason shared
compression is fastest with a 16384-byte decompression memory.

When the sequence is decompressed, decompression memory size has no significant
impact on the decompression time of the output of basic or static compression, as can be
observed from Figure 46. This is because these two mechanisms do not calculate SHA-
1 hashes over the UDVM’s memory. The situation is different when dynamic and
shared compressions are applied: the larger the decompression memory the more time is
required to calculate the hash. Because the calculation of the hash requires more time,
also the amount of decompression time required increases when larger decompression
memory sizes are used.

Figure 47 indicates that the state memory usage of dynamic and shared compressions
depends highly on the size of the decompression memory. This is because the length of
the state items containing UDVM memory snapshots equals to the decompression
memory size. Thus, doubling the decompression memory size has the effect of doubling
the size of the state items containing UDVM memory snapshots. When for instance
dynamic compression is applied, this means that the entire state memory usage is
doubled.

Figure 48 shows the results of using another signalling flow for the session
establishment, namely a basic voice session initiation sequence. It is rather different
from the 3GPP Release 5 sequence because it consists of only 5 messages, the
combined size of which is less than one fourth from that of the 12 messages of the
3GPP sequence. The figure implies that for a small sequence, a DMS as small as 2048
produces only slightly worse compression rations than the larger decompression

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 91

memory sizes. In addition, the compression and decompression times were always at
least as good for the DMS of size 2048 bytes than for the larger decompression
memories, 4096 and 8192 bytes. Therefore, we can conclude that the combined size of
the messages in the sequence is an important factor when selecting the most appropriate
decompression memory size.

0,00 %

20,00 %

40,00 %

60,00 %

80,00 %

100,00 %

2048 4096 8192

DMS [bytes]

C
om

pr
es

si
on

 ra
tio

Dynamic compression Shared compression

Figure 48 - Compression ratio for a basic voice session establishment sequence

9.8 Unreliable versus Reliable Transport
The purpose of the measurement presented in this chapter is to study the effects of using
reliable instead of unreliable transport. TCP is used as the reliable transport layer
protocol. All the results presented so far were collected using an unreliable transport
layer protocol, namely UDP. The first advantage of using TCP is that if stateful
compression is applied, the bytecode needs to be sent only once in each direction. An
example of this are the first two messages of the 3GPP session initiation sequence
received by endpoint A: 100 Trying and 183 Session Progress. When unreliable
transport is used, the P-CSCF must send bytecode together with each of these messages.
This is because after sending the 100 Trying, the P-CSCF does not have the information
whether the message was received successfully. In contrast, the use of reliable transport
eliminates the need to send the bytecode in the header of the compressed 183 Session
Progress message, because the P-CSCF can be certain that the SigComp message
carrying the 100 Trying message was received.

The second advantage of reliable transport also has to do with messages that are sent
consecutively. The 100 Trying and 183 Session Progress messages serve again as an
example. When an unreliable transport layer protocol is used, explicit state
announcements must be used. This means that the P-CSCF has to acknowledge the
reception of the INVITE message in the headers of both the compressed 100 Trying and
the compressed 183 Session Progress messages. In addition, the P-CSCF cannot apply
dynamic compression to compress the 183 Session progress, because it has not received
an acknowledgement indicating the reception of the 100 Trying message. When the
transport is reliable, dynamic compression can be applied already to the 183 Session
Progress message. In addition, explicit state announcements are not required, meaning
that the identifiers of these states do not need to be carried in the SigComp message
headers. Both the possibility to use dynamic compression earlier and the absence of
explicit state announcements help to reduce the size of SigComp messages.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 92

The performance of UDP and TCP is compared in Figure 49. The sequence used in the
measurements is the 3GPP session initiation sequence consisting of 12 SIP messages. A
DMS of 8192 bytes and the entire static dictionary were used and the size of shared
states was not restricted. Figure 49 implies that TCP clearly achieves better compression
ratios. In the case of dynamic compression, TCP achieves a compression ratio of 24.6%
and UDP a compression ratio of 28.7%. When shared compression is applied, the
compression ratios are 22.3% for TCP and 24.0% for UDP. The compression and
decompression times are nearly identical for both TCP and UDP based transports, the
only exception being compression time of shared compression, which is 32.8 ms with
TCP and 31.7 ms with UDP.

0,00 %
5,00 %

10,00 %
15,00 %

20,00 %
25,00 %

30,00 %
35,00 %

UDP TCP

Transport layer protocol

C
om

pr
es

si
on

 ra
tio

Dynamic compression Shared compression

Figure 49 - Reliable versus unreliable transport, 3GPP session initiation sequence

Figure 50 shows the performance of UDP and TCP based transports when SigComp is
used to compress the SIP messages of a basic voice session initiation sequence. A DMS
of 8192 bytes and static dictionary priorities from one to three were used and the size of
shared states was restricted to 500 bytes. In the case of dynamic compression, the use of
TCP has the effect of reducing the size of the compressed sequence by 914 bytes
compared to the size with UDP. The compression ratios of TCP and UDP are 47.8%
and 85.4% for dynamic compression, respectively. In the case of shared compression,
the compression ratio is 43.1% with TCP and 70.6% with UDP. With both dynamic and
shared compressions, the compression and decompression is slightly faster when TCP
based transport is used. The significant performance improvement enabled by TCP is
due to the more efficient compression of the first three messages sent by the P-CSCF.
The compression benefits from the use of TCP because these messages are sent
consecutively without receiving anything from the UE between them; when TCP is
used, the bytecode needs to be included only in the first message sent in each direction
and dynamic compression can be applied earlier.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 93

0,00 %
10,00 %
20,00 %
30,00 %
40,00 %
50,00 %
60,00 %
70,00 %
80,00 %
90,00 %

UDP TCP

Transport layer protocol

C
om

pr
es

si
on

 ra
tio

Dynamic compression Shared compression

Figure 50 – Reliable versus unreliable transport, basic voice call

9.9 Central Processor Unit
In this measurement, the compression and decompression times of two SIP message
sequences are studied on five different CPUs: Pentium 4 Hyper-Threading 3.0 GHz,
Pentium 4 2.66 GHz, Pentium 4 1.8 GHz, Pentium M 1.6 GHz and Pentium III 600
MHz. The SIP signalling sequences used are the establishment of a video call in a
release 5 network and the establishment and release of a basic voice call.

22,14 22,33

32,59

23,80

76,48

20,64 20,45
28,78

21,41

69,59

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

Pentium 4
Hyper-Threading

3.0 GHz

Pentium 4 2.66
GHz

Pentium 4 1.8
GHz

Pentium M 1.6
GHz

Pentium III 600
MHz

CPU

Ti
m

e
[m

s]

Compression time Decompression time

Figure 51 - Compression and decompression times on different CPUs, video sequence

The combined compression and decompression times of the messages of the video call
establishment sequence are presented in Figure 51. We can observe from the figure that
the performance of the Pentium 4 processors having clock rates of 3.0 and 2.66 GHz is
almost identical. The Hyper-Threading technology of the 3.0 GHz CPU has no effect in
this measurement, because the messages were not processed concurrently. The Pentium

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 94

M 1.6 GHz CPU is only slightly slower than the Pentium 4 processors having clock
rates of 3.0 and 2.66 GHz; the compression takes 1.5 milliseconds longer and the
decompression one millisecond longer than in the case of the Pentium 4 2.66 GHz CPU.
The Pentium 4 1.8 GHz is over 1.4 times slower than the Pentium 4 2.66 GHz, while the
Pentium III processor is nearly 3.5 times slower than the other CPUs.

6,56 6,39

9,05

5,85

20,73

7,11 6,54

9,53

6,71

21,97

0,00

5,00

10,00

15,00

20,00

25,00

Pentium 4
Hyper-Threading

3.0 GHz

Pentium 4 2.66
GHz

Pentium 4 1.8
GHz

Pentium M 1.6
GHz

Pentium III 600
MHz

CPU

Ti
m

e
[m

s]

Compression time Decompression time

Figure 52 - Compression and decompression times on different CPUs, voice sequence

The compression and decompression times of the basic voice call establishment and
release signalling flow are shown in Figure 52. We can observe that the Pentium III and
Pentium 4 1.8 GHz are again clearly slower than the other CPUs. The Pentium 4
processor having the 1.8 GHz clock rate is over 1.4 times slower than the Pentium 4
processor having the 2.66 GHz clock rate with regard to both compression and
decompression performance. The Pentium M 1.6 GHz is faster than any of the Pentium
4 processors regarding compression performance, although the two fastest Pentium 4
processors outperformed it in the previous measurement, in which the video session
establishment sequence was used. One reason for the high performance of the Pentium
M processor is that it has twice as much L2 cache memory as the Pentium 4 3.0 GHz
and four times more L2 cache memory than the Pentium 4 2.66 GHz processor. The
Pentium M 1.6 GHz CPU is the second fastest with regard to decompression
performance. The Pentium 4 Hyper-Threading 3.0 GHz is slightly slower than the
Pentium M and Pentium 4 2.66 GHz CPUs although it has the highest clock rate.

It should be taken into consideration that the differences between the computers used in
this measurement are not limited to the CPU. The computers had also different amounts
of main memory and cache memory, different main memory and fronts side bus speeds,
and different operating system and Linux kernel versions. Although the clock rate of the
CPU has the greatest impact on the compression and decompression times, also the
other factors are likely to have some effect.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 95

9.10 Impact of Signalling Compression on Radio Access Network
Delay

The one-way RAN delay experienced by the 12 messages of the SIP session initiation
signalling flow taken from [3GPP TS 24.228] was estimated in Section 2.1. In this
section, these calculations are repeated, this time assuming that the messages are
compressed using SigComp. The same signalling link bit rates are used as in Section
2.1, namely 9.6, 12.2, 16, 32, 64, 128 and 256 kbps. It is assumed that the underlying
transport protocol is reliable, that the size of the decompression memory is 8192 bytes,
that the entire static dictionary is used, and that the size of the shared states is limited to
1500 bytes. The overhead added by the layers below SigComp is not included in the
calculations. The results are depicted in Figure 53, which also includes the RAN delay
of the uncompressed SIP sequence.

16 kbps

12,2 kbps

9,6 kbps

256 kbps
128 kbps

64 kbps

32 kbps

0,00
1,00
2,00
3,00
4,00
5,00
6,00
7,00
8,00
9,00

10,00
11,00

0 25 50 75 100 125 150 175 200 225 250 275

Signalling link bit rate [kbps]

O
ne

-w
ay

 R
A

N
 d

el
ay

 [s
]

Uncompressed Compressed

Figure 53 - Impact of SigComp on one-way RAN delay

We can observe from Figure 53 that the improvement SigComp offers decreases as the
bit rate of the signalling link increases. The improvement in RAN delay is 6.9 seconds
for a bit rate of 9.6 kbps. With a bit rate of 64 kbps the improvement is 1.0 seconds and
with the bit rate of 256 kbps it is only 0.26 seconds. These values suggest that when the
bit rate of the signalling link is more than 64 kbps, the performance improvement
offered by SigComp may not be great enough to justify the use of the protocol.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 96

10 Phase Two – Compression of Different Message Sequences
The goal of the measurements presented in this chapter is to study the compressibility,
compression time and decompression time of different SIP message sequences. All the
measurements were carried out on the Intel Pentium 4 3.0 GHz platform. The seven SIP
signalling sequences listed in Section 8.7 are examined.

Figure 54 shows the SIP messages exchanged between a UAC and a proxy when a basic
voice or video session is established. The SIP messages of both the basic voice and
basic video session establishment sequences were taken from real SIP clients. Only the
information required by SigComp was inserted to the messages. A PoC session
establishment does not include the 180 Ringing message, but is otherwise identical to
the sequence presented in Figure 54. The PoC messages were taken from [OMA-TS-
POC]. The session establishment sequence for a video call in a 3GPP release 5 network
was taken from [3GPP TS 24.228] and is illustrated in Figure 1.

Proxy

1. INVITE

2. 100 Trying

3. 180 Ringing

4. 200 OK

5. ACK

UAC

Figure 54 - Messages of a basic voice or video session establishment

A registration signalling flow in a 3GPP Release 5 network [3GPP TS 24.228] is
illustrated in Figure 55. The figure shows the exchange of messages between a UE and
a P-CSCF. The P-CSCF should not create a SigComp compartment until the user
registration has completed successfully. Therefore, the 401 unauthorized response is
sent to the UE uncompressed without involving SigComp, and the compression of the
second REGISTER request can make use of neither shared nor dynamic compression.

P-CSCF

1. REGISTER

2. 401 Unauthorized

3. REGISTER

4. 200 OK

UE

Figure 55 - Messages of a 3GPP Release 5 registration sequence

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 97

The last two SIP message sequences in the list of signalling flows studied in this
measurement are alternatives to the 3GPP Release 5 session establishment sequence.
The contents of the messages were taken from [3GPP TS 24.228]. The goal is to study
whether the use of the alternative signalling flows would result in a better performance
when SigComp compression is applied. The first alternative is depicted in Figure 56. It
uses a RE-INVITE request instead of an UPDATE request and does not offer reliable
delivery of provisional responses. The second alternative uses a RE-INVITE request
and reliable delivery of provisional responses. The signalling flow is similar to the one
in Figure 56 with the exception that a PRACK message and a 200 OK response to the
PRACK are exchanged after the 180 Ringing message.

P-CSCF

1. INVITE

2. 100 Trying

3. 180 Ringing

4. 200 OK

5. ACK

UE

6. INVITE

7. 200 OK

8. ACK

Figure 56 - Session establishment signalling flow with RE-INVITE

The values of various factors that are used in this measurement are discussed below.
The results presented in Section 9.3 imply that compression is fastest when short shared
states are used. In order to minimize compression time while still being able to achieve
reasonable compression ratios, the size of shared states was restricted to 500 bytes.
Static dictionary priorities from one to three are used, because in Section 9.4, it was
concluded that the use of these priorities seems to result in good overall performance.
Size 4096 is selected for the decompression memory for the reason that the aggregate
sizes of the messages in different sequences range from 2766 to 10640 bytes. For the
shortest sequences, the use of a DMS of 8192 would slow down compression and
decompression. On the other hand, the cost of using a small decompression memory is
bearable in the case of the longest sequences. The shared compression scheme is used
because it is the one that will most likely be used in various SigComp implementations.
TCP is used as the transport layer protocol.

Compressed and uncompressed sizes of the different sequences are shown in Figure 57.
The compression ratios of the sequences are reported in Table 16. The results imply that
the signalling flows having the largest combined message sizes benefit the most from
SigComp compression. A high number of messages results in a good compression ratio
for the entire sequence, because the compressibility of the last messages is very high.
When the signalling flow consists of only four messages, as is the case with PoC and
registration signalling, the compressibility of the messages is rather low. The
registration sequence is, of course, a special case, since its second message is sent

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 98

uncompressed. However, even if we did not include the second message in the
calculations, the compression ratio of the registration sequence would still be only
0.875. Therefore, one could question whether it is worth the effort to compress the
registration sequence at all.

24
28 29

52

24
86

27
66

10
64

0

63
19

78
67

10
46

13
45

14
67 24

80 30
17

20
30 25

04

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000

B
as

ic
 v

oi
ce

ca
ll

B
as

ic
 v

id
eo

ca
ll P
oC

se
ss

io
n

R
eg

is
tra

tio
n

3G
P

P
vi

de
o

ca
ll

3G
P

P
 w

ith
R

E
-IN

V
IT

E

3G
P

P
 w

ith
R

E
-IN

V
IT

E
&

 P
R

A
C

K

Message sequence

Le
ng

th
 [b

yt
es

]

Size uncompressed Size compressed

Figure 57 - Sizes of uncompressed and compressed sequences, TCP

From Table 16, we can observe that the 3GPP video call achieves the best compression
ratio. However, the compressed size of the alternative sequence using RE-INVITE and
reliable delivery of provisional responses is 19.4% less and the size of the sequence
using RE-INVITE and unreliable delivery of provisional responses 34.6% less than the
compressed size of the original 3GPP sequence. The sequences making use of the RE-
INVITE request would thus be faster to transmit over the air interface. In addition, from
Figure 58 we can observe that these sequences also consume less CPU time during
compression and decompression. Therefore, if CPU time and the transmission time over
the air interface are an issue, the use of the alternative sequences is more efficient.

Table 16 - Compression ratios

Message sequence Number of
messages

Compression
ratio, TCP [%]

Compression
ratio, UDP [%]

Basic voice call 5 43,08 70,63
Basic video call 5 45,56 61,82
PoC session establishment 4 59,01 68,91
Registration 4 89,66 89,66
3GPP video call 12 28,36 28,24
3GPP video call with RE-INVITE 8 32,13 43,99
3GPP video call with RE-INVITE and
reliable delivery of provisional
responses

10 31,83 33,6

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 99

The average compression and decompression times of the various sequences are shown
in Figure 58. The averages were calculated over ten measurements. We can observe that
the registration sequence consumes less time than the other sequences consisting of five
or less messages, although its aggregate message size is the biggest. The reason is that
the second message in the registration sequence is sent uncompressed and thus its
compression and decompression times are both zero. Otherwise the results offer no big
surprises; the larger the content of the sequence is and the more messages it has, the
longer are the compression and decompression times. For example, the use of reliable
delivery of provisional responses can be directly seen in the increased compression and
decompression times. Another similar issue is the exchange of SDP content. If the SDP
content needs to be transferred in multiple SIP messages before the endpoints are able
to agree upon the set of codecs they will use, compression and decompression times of
the entire sequence increase. Although the compression of the SDP content becomes
more efficient with each new message exchanged, compression and decompression of
the extra content still require additional time.

5,
80 6,
38

5,
66

5,
18

23
,3

7

13
,1

7 17
,5

8

6,
41 7,
03

6,
42

5,
88

18
,6

1

11
,8

4 15
,2

1

0,00
2,50
5,00
7,50

10,00
12,50
15,00
17,50
20,00
22,50
25,00

Ba
si

c
vo

ic
e

ca
ll

Ba
si

c
vi

de
o

ca
ll Po

C
se

ss
io

n

R
eg

is
tra

tio
n

3G
PP

 v
id

eo
ca

ll

3G
PP

 w
ith

R
E-

IN
VI

TE

3G
PP

 w
ith

R
E-

IN
VI

TE
&

PR
AC

K
Message sequence

Ti
m

e
[m

s]

Compression time Decompression time

Figure 58 - Compression and decompression times, TCP

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 100

11 Phase Three – Measurements on the SigComp Prototype
In this chapter, the results of measurements carried out on the multithreaded SigComp
prototype are presented and analysed. The chapter begins with a study of the effects of
using different number of threads on the time messages stay in the system. Also the
throughput of the system and the average time a message stays in the system are
examined using realistic workloads. Also the memory consumption of the SigComp
prototype is studied. The chapter ends with a simulation of a Denial-of-Service (DoS)
attack, in which looping code is sent to the SigComp prototype acting as a P-CSCF.

11.1 Parameters Used in the Measurements
The SigComp prototype acts as a P-CSCF in the measurements presented in this
chapter. Two SIP message sequences are used: a basic voice session establishment
sequence and a video session establishment sequence in a 3GPP release 5 network. A
decompression memory of size 4096 bytes is used for the former sequence and a DMS
of 8192 bytes for the latter sequence. UDP based transport is used. The following
SigComp mechanisms are used: static dictionary, dynamic compression and shared
compression. The length of shared states is restricted to 500 bytes and strings with
priorities ranging from one to three are used from the static dictionary. It is assumed
that the duration, i.e. holding time, of voice calls is 180 seconds and the duration of
video calls 300 seconds. The duration of a call is equal to the time between the 200 OK
message sent in response to the initial INVITE request, and the BYE request. Knowing
the duration of a call and the amount of simultaneous calls in the system, we can
calculate the average call intensity λ using Little’s theorem [Iversen 2005]:

WL λ= , (11.1)

where L is the average number of calls in the system and W is the mean holding time in
the system per call. The interval between successive calls is 1/ λ. The call answer delay
of each call, i.e. the time between the 180 Ringing message and the 200 OK response to
INVITE, is five seconds. The measurement period is 10 minutes, starting from the
moment the first call arrives to the system. In the measurements, the number of
simultaneous ongoing calls is varied, which has a direct impact on the load of the
system. The minimum number of simultaneous calls used is 50 for video calls and 250
for voice calls. The maximum number of simultaneous calls that can be used depends
on the amount of physical memory available on the computer. If it was observed that
the computer under study started to run out of physical memory and had to use virtual
memory, experiments with higher number of simultaneous ongoing calls were not
continued. The computer with the Intel Pentium 4 2.66 GHz processor had only 512
megabytes of main memory, of which 270 was available for the use of SigComp
prototype process and the network protocol analyser program used. With this amount of
free memory available, the SigComp prototype was able to process the signalling of
1500 simultaneous voice calls and 500 simultaneous video calls. On the other hand, the
computer with the Intel Pentium 4 3.0 GHz Hyper-Threading CPU had 1024 megabytes
of main memory and was therefore able to support a higher number of calls in the
system.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 101

11.2 Number of Workers
The aim of this measurement is to study the effects of increasing the amount of
concurrency in the system. A limit can be placed on the maximum number of messages
that can be processed concurrently by restricting the number of threads in the thread
pool of the SigComp prototype’s thread dispatcher. In the measurement, the time a
single message stays in the system is monitored. This time consists of two parts: the
time the message stays in the buffer waiting for service, and the time the message is
being processed. The signalling of 5000 simultaneous ongoing voice calls is used as the
workload.

0

2000

4000

6000

8000

10000

12000

1 2 3 5 7 10 11 12 15 25 50 100 250 500

Size of thread pool

Ti
m

e
[u

s]

Processing time Time in buffer

Figure 59 - Time in system for different thread pool sizes, 5000 simultaneous voice calls

The results of the measurements are presented in Figure 59. We can observe that as
more threads are added to the thread pool, the time the messages stay in the buffer
decreases and the time the messages are being processed increases. When the size of the
thread pool is for instance one hundred threads, all of the one hundred threads might be
active during large traffic bursts. In this case, the available CPU time is divided among
the threads and each of them gets one percent of the speed of the CPU. In addition, the
threads compete for access to the shared resources. When one thread holds exclusive
access to a shared resource, other threads willing to access the resource have to wait.
Waiting increases the average processing time of messages: if there are a large number
of threads willing to write data to the state handler at the same instant, only one thread
at a time can access the state handler and the rest of the threads have to wait. The last
thread in the queue has to wait until all the other threads have completed their write
operations. Unfortunately, some operations requiring exclusive access to the state
handler take a lot of time. An example of this is the deletion of the state items a
compartment has created, which has to be done each time a compartment is closed. In
case of a video call, this typically means that 28 state items have to be located and
deleted. Also the memory allocated to the state items has to be freed.

When there is only one worker, it can execute on the CPU without other workers
interrupting it, and it never needs to wait for access to the shared resources. However,
the average time a message stays in the buffer is substantial, because only one message

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 102

at a time can be processed and the other messages in the buffer have to wait. Therefore,
we clearly want the system to have more than one worker.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 50 100 150 200 250 300 350 400 450 500 550

Size of thread pool

Ti
m

e
[u

s]

Processing time Time in buffer

Figure 60 - Processing time and time in buffer for different thread pool sizes

The development of the processing time of the messages and the time the messages stay
in the buffer is shown in Figure 60. The processing time increases steeply between
thread pool sizes 1 and 50, until it begins to gradually level off. Both the processing
time and the time in buffer start levelling off after the pool size 50, because the effects
of adding more threads to the system decrease as the size of the thread pool gets closer
to the maximum traffic burst size. There are only a few cases in which the number of
messages being processed concurrently is 50 or larger. When thread pool sizes larger
than 100 are used, the behaviour of the system does not change with the traffic load that
was used; the average number of active threads in the system remains the same although
the size of the thread pool is increased.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 103

700

720

740

760

780

800

820

840

860

880

0 50 100 150 200 250 300 350 400 450 500

Size of thread pool

Pr
oc

es
si

ng
 ti

m
e

/ n
um

be
r o

f a
ct

iv
e

w
or

ke
rs

Figure 61 - Ratio of average processing time and average number of threads in system

The ratio of the average processing time and average number of threads is depicted for
different thread pool sizes in Figure 61. In an ideal system, the ratio would remain
constant regardless of the average number of active workers the system has, meaning
that thread switches and queuing times to shared resources would not add any overhead.
If the average processing time was 1 millisecond when the system has one worker
thread, the average processing time with ten worker threads would be 10 milliseconds in
an ideal single-processor system. In reality, the average processing time with ten
workers is slightly more because of the overhead. This can also be observed from
Figure 61: the ratio is at minimum when the size of the thread pool is three, and starts to
grow from the value three onwards. When the size of the thread pool is grown from the
value three to value five, the average number of active workers increases from 2.13 to
2.96 and the average per-message overhead caused by thread switches and queuing
times to shared resources increases by 10 microseconds. When the average number of
active workers increases from 2.13 to 9.80, i.e. the size of the thread pool is changed
from 3 to 50, the average per-message overhead increases by 100 microseconds. With
9.80 active workers, the overhead caused by thread switches and queuing for access to
the shared resources constitutes 12 percent of the processing time.

The average number of active threads, i.e. the average number of messages being
processed concurrently, is depicted in Figure 62 for different thread pool sizes. We can
observe that starting from the thread pool size 100, the average number of messages
being processed concurrently remains at 10.7 messages. However, the momentary
number of concurrently processed messages varies greatly; for example with 500
available workers the momentary number of active workers is between 1 and 140. The
reason for the large variance is the bursty nature of the traffic, which is illustrated in
Figure 66. The Hyper-Threading CPU used in the measurements can execute two
threads in parallel on its logical processors. Therefore, we can expect that the average
time messages stay in the system is at minimum when the average number of messages
being processed simultaneously is near the value two. From Figure 62, we can observe
that when the size of the thread pool is three, the average number of active workers is

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 104

2.14. Figure 59 indicates that the time in system decreases until the thread pool size
three is reached and starts to grow from the size three onwards, meaning that the time in
system is indeed at minimum when there are on average two active workers. However,
with this amount of concurrency in the system, the waiting time constitutes 80 percent
of the time in system. In addition, it has a great variance. The waiting time and its
variance can be reduced dramatically by adding more threads to the system. Because we
want to keep the waiting times low, a thread pool that has enough threads to serve even
the largest traffic bursts is used in the rest of the measurements of this chapter.

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400 450 500
Size of thread pool

A
ve

ra
ge

 n
um

be
r o

f a
ct

iv
e

w
or

ke
rs

Figure 62 - Average number of active workers, 5000 calls in system

11.3 Time in System
In the measurements presented in this section, the time a single message stays in the
SigComp prototype is monitored. The measurements are performed on the Intel
Pentium 4 3.0 GHz Hyper-Threading platform.

0

1000

2000

3000

4000

5000

6000

7000

250 500 750 1000 1250 1500 1750 1875 1938 2000 2500 3000

Number of simultaneous voice calls

Ti
m

e
[u

s]

 -

Processing time Time in buffer

Figure 63 – Average time in system, voice calls, Intel Pentium 4 Hyper-Threading 3.0 GHz

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 105

The average time a single message stays in the system under different loads is shown in
Figure 63 for voice calls and in Figure 64 for video calls. We can observe that as the
number of simultaneous calls increases, also the time a single message stays in the
system increases. As the load of the system increases, both the time a single message
stays in the buffer and the time the message is being processed increase. When the
number of simultaneous calls increases, a higher number of SIP and SigComp messages
arrive to the system during each second. Therefore, there are also more active threads in
the system. If there are for example ten active threads, each thread gets one tenth of the
CPU time. The more active threads the system has, the smaller part of the CPU time is
allocated to each of them, which increases the delay a single message experiences.
Additional time is also required because the operating system has to perform thread
switches. One further reason for the messages staying longer in the system with higher
number of active threads is that each thread needs to get exclusive access to the state
handler at some point during the compression and decompression of a message. This
occurs when the thread needs to carry out an operation that modifies a shared data
structure. In addition, exclusive access to compressor array is required when a
compartment is created and destroyed. It is of vital importance to minimise the amount
of time each thread holds exclusive access to a shared resource, and to use right
scheduling policies to control access to the shared resources. As an example, the initial
implementation of the state handler used a regular array to hold the state items created
by SigComp compartments. This was found to be a poor approach, because if there are
thousands of simultaneous ongoing sessions, the state handler’s state item table must
store tens of thousands of state items. The use of a regular array meant that for example
find and delete operations required a linear time to complete. Therefore, the state
handler was modified to use a hash table. This resulted in a significant performance
improvement, because the use of a hash table allows insert, find and remove operations
to be performed in a constant average time. We observed that the heaviest operation
requiring exclusive access takes place when the state items a compartment has created
are removed from the state handler. This happens whenever a compartment is deleted.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

50 100 250 375 500 750 1000 1250 1500

Number of simultaneous video calls

Ti
m

e
in

 s
ys

te
m

 [u
s]

Processing time Time in buffer

Figure 64 - Average time in system, video calls, Intel Pentium 4 Hyper-Threading 3.0 GHz

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 106

We can observe from Figure 63, which shows the average time in system for video calls
that the time a single message stays in the system remains constant for traffic loads
ranging from 1250 to 1875 calls in the system. In addition, when the traffic load
increases from 1875 to 2000 simultaneous calls, the average time in system more than
doubles. This behaviour is explained by an increase in the number of active workers in
the system, as illustrated in Figure 65. The average number of active worker threads
remains constant between 1250 and 1875 calls in the system, but starts to increase from
the value 1938 onwards. With 2000 simultaneous calls, there are on average almost two
times more active threads in the system than with 1875 calls. This results in longer
processing times for the messages, because the time a thread processes a message
depends directly on the number of other threads being executed at the same instant. The
less active threads the system has, i.e. the lighter the load of the system is, the less time
each message stays in the system. From Figure 65, we can also see that the maximum
number of active threads increases rapidly as the traffic load grows. The increase in the
number of active threads is because there is more traffic to process and because
increased traffic results in bigger traffic bursts.

1,18 1,92 2,43 2,58 3,09 4,82 5,32 6,438
17 22 21

33
42

66

108

0

20

40

60

80

100

120

500 1000 1250 1875 1938 2000 2500 3000

Number of voice calls in system

Nu
m

be
r o

f a
ct

iv
e

w
or

ke
rs

Average Maximum

Figure 65 - Number of active workers

Figure 64 indicates that the system behaves in a similar way with the signalling of video
calls as it did in the case of the voice calls: the time in system stays flat for traffic loads
between 50 and 375 and 500 and 750 calls in system, and starts to increase rapidly when
the load becomes higher than 750 calls in the system. This behaviour can again be
explained by the increase in the number of active threads.

Figure 66 shows the delays consecutive signalling messages experience in a system
serving 1000 simultaneous calls. In the figure, delays of 175 consecutive messages,
starting from the 10289th message arriving to the system, are shown. We can observe
that the delay of the most of the messages is below 1000 microseconds; these are
messages processed by a thread that has gotten the CPU entirely to itself, i.e. there are
no other messages being processed at the same time. However, certain messages
experience delays much longer than 1000 microseconds. Such messages appear as
peaks in the figure. We can observe that the wider the peaks are, the longer are the
delays experienced by the messages constituting the peak. The peaks are formed by

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 107

messages that are being processed concurrently. These messages experience longer
delays, because they get only a fraction of the CPU time to themselves. The more
messages are being processed simultaneously, the longer is the delay that each of the
messages experiences. As an example, it seems that messages 64, 65, 66, 67 were
processed concurrently, meaning that each of the workers processing the messages got
only one fourth of the CPU time.

0

1000

2000

3000

4000

5000

6000
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

Message

Ti
m

e
[u

s]

Processing time Time in buffer

Figure 66 - Time in system, 1000 simultaneous voice calls

11.4 Hyper-Threading Processor versus a Regular Processor
Because the SigComp prototype uses multiple threads, it is supposed to benefit from the
use of a CPU supporting the Hyper-Threading technology. In this measurement, the
performance of two CPUs, Intel Pentium 4 Hyper-Threading 3.0 GHz and Intel Pentium
4 2.66 GHz is compared. Different traffic loads ranging from 50 to 1500 simultaneous
calls in the system are used. The low amount of free main memory available on the
computer having the 2.66 GHz CPU limited the number of simultaneous calls that could
be used.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 108

0

500

1000

1500

2000

2500

3000

3500

4000

50 100 250 375 500

Number of simultaneous video calls

Ti
m

e
in

 s
ys

te
m

 [u
s]

Intel Pentium 4 Hyper-Threading 3.0 GHz Intel Pentium 4 2.66 GHz

Figure 67 - Hyper-threading Pentium 4 versus a regular Pentium 4, video calls

The time the signalling messages stay in the system on average is presented in Figure 67
for video calls and in Figure 68 for voice calls. We can observe from the figures that the
Hyper-Threading processor performs always better than the regular Pentium 4
processor. In addition, the difference between the processors seems to increase as the
traffic load increases. As the load increases, the number of active threads the system has
increases as well, meaning that a processor that can execute threads in parallel becomes
more and more efficient compared to a processor executing only one thread at a time.
For example, when the traffic load consists of 1500 simultaneous voice calls, the
average number of messages being processed concurrently is roughly 2.5, and the
Hyper-Threading CPU benefits from its ability to execute two threads in parallel on
separate logical processors. On the other hand, when the traffic load is only 500 calls in
system, the average number of messages being processed concurrently is close to 1.2. In
this case, the gains of using a Hyper-Threading CPU are smaller, because there are on
average only 1.2 threads being executed concurrently.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 109

0

500

1000

1500

2000

2500

3000

3500

250 500 750 1000 1250 1500

Number of simultaneous voice calls

Ti
m

e
in

 s
ys

te
m

 [u
s]

Intel Pentium 4 Hyper-Threading 3.0 GHz Intel Pentium 4 2.66 GHz

Figure 68 - Hyper-threading Pentium 4 versus a regular Pentium 4, voice calls

In Section 9.9, we saw that if messages are not processed concurrently, the performance
of the regular Pentium 4 and the Pentium 4 with the Hyper-Threading technology is
very close to being identical. On the other hand, Figure 68 indicates that if there are for
instance 1500 simultaneous voice calls, the average time in system per message is 1.43
times longer on the computer having the regular Pentium 4 processor than on the
computer with the Hyper-Threading Pentium 4 processor. Therefore, we can conclude
that the use of a CPU applying the Hyper-Threading technology seems to have a
positive impact on performance. However, it should be taken into consideration that the
performance gap between the two computers is not necessarily explained by the use of
the Hyper-Threading technology alone; the computer with the Pentium 4 3.0 GHz
processor also had other advantages: a faster front side bus, larger L2 cache memory,
higher clock rate and larger and faster main memory.

11.5 Throughput
The throughput of the system under different loads is shown in Figure 69 for video calls
and in Figure 70 for voice calls. The throughput is presented in terms of average-size
SIP messages. The throughput values were collected using the network protocol
analyser software Ethereal.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 110

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

0,5

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 13001400 1500 1600

Number of video calls in the system

Th
ro

ug
hp

ut
 [M

bi
t/s

]

Figure 69 - Throughput of the system, video calls

We can observe from Figure 69 and Figure 70 that the throughput of the system grows
in a linear fashion as the number of calls in the system increases. The throughput does
not begin to level off as the traffic load increases, meaning that the maximum capacity
of the system has not been reached. The greatest throughput, 0.448 Mbit/s, is achieved
when there are 1500 video calls in the system. With this traffic load, the maximum load
level of the two logical processors of the Intel Pentium 4 Hyper-Threading 3.0 GHz
CPU was 43.1% for CPU 1 and 31.2 for CPU 2. The maximum CPU loads of the
Hyper-Threading and regular Pentium 4 CPUs are presented in Table 17 for different
traffic loads.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750

Number of voice calls in the system

Th
ro

ug
hp

ut
 [M

bi
t/s

]

Figure 70 - Throughput of the system, voice calls

Table 17 indicates that for example the maximum load caused by 1000 simultaneous
video sessions is significantly larger than the load caused by 1000 voice calls in the

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 111

system. This is true also for all other cases in which the number of voice and video calls
in the system is equal. The higher load caused by the video calls is because the SIP
messages of the video calls are longer and the total number of messages per dialog is
greater. A minor contributing factor is that a larger decompression memory size was
used for the video calls. Finally, we can also observe from Table 17 that the maximum
load of the Pentium 4 2.66 GHz CPU is always substantially larger than the maximum
load of the Hyper-Threading CPU with the same number of calls in the system. This
suggests that the Hyper-Threading CPU benefits from the ability to schedule threads on
different logical processors.

Table 17 - Maximum CPU load

Maximum CPU load [%], Intel
Pentium 4 Hyper-Threading 3.0 GHz

Number of
calls in the

system

Call type Maximum CPU load
[%], Intel Pentium 4

2.66 GHz CPU 1 CPU 2
50 video 17.7 1.0 1.0

100 video 21.1 1.0 1.7
250 video 30.7 2.7 3.4
500 video 44.9 4.4 6.1
750 video - 7.1 7.5

1000 video - 10.5 12.5
1250 video - 34.1 14.6
1500 video - 43.1 31.2
250 voice 13.3 1 1.4
500 voice 17.4 1.4 2.7

1000 voice 27 3.7 4.1
1500 voice 32.9 4.4 5.7
2500 voice - 9.2 10.2
3000 voice - 15.6 16.6

11.6 Memory Consumption
In the measurements the results of which are presented in this section, the memory
usage of the SigComp prototype is studied under different loads for both video and
voice calls. The memory usage of voice calls is shown in Figure 71 and the memory
usage of video calls in Figure 72.

107

181
218

281

356

0

50

100

150

200

250

300

350

400

500 1000 1500 2000 2500

Number of voice calls in system

M
em

or
y

us
ag

e
[M

B]

Figure 71 - Memory consumption of voice calls

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 112

We can see from Figure 71 that when there are 1500 voice calls in the system, the
SigComp prototype uses 218 megabytes of memory. However, if the system serves the
same number of video calls, considerably larger amount of memory, 781 megabytes, is
required. The reasons for the difference between video and voice calls include that the
video sessions have twice as much SIP messages as voice calls, the average size of the
messages of the video sequence is twice the average size of the messages of the voice
sequence, and that the decompression memory size of the video calls is two times larger
than that of the voice calls. By comparing the values of Figure 71 and Figure 72, we can
observe that video calls use 2.8 - 3.6 times more memory than voice calls.

We can conclude that the memory requirement of the SigComp prototype is relatively
large. This is because for each decompressed message, a UDVM memory snapshot and
a shared state need to be stored. For each compressed message, a UDVM memory
image and a shared state need to be stored. The data structures of the state handler,
shared buffer and the compressor array require storage space. In addition, a compressor
object together with the hash table it uses and a feedback object must be stored for each
compartment. A state memory of size 131 kilobytes and a decompression memory size
of 8192 or 4096 bytes were used. The use of smaller values for decompression memory
size and state memory size would help in reducing the memory consumption. However,
this would also result in worse compression ratios. One additional way to reduce
memory usage at the cost of achievable compression ratios would be to switch off
shared compression, dynamic compression or both of them. This way UDVM memory
snapshots, UDVM memory images and shared states would not need to be stored.

177

297

547

781

0

100

200

300

400

500

600

700

800

900

250 500 1000 1500

Number of video calls in system

M
em

or
y

us
ag

e
[M

B
]

Figure 72 – Memory consumption of video calls

The way the memory usage of the SigComp prototype develops is illustrated in Figure
73, which shows the memory consumption of 1500 simultaneous voice calls during a
ten-minute measurement period. The holding time of each call is 180 seconds. During
the first 180 seconds of the measurement, no calls exit the system, which is the reason
the memory consumption grows steeply. When calls start exiting the system the
memory usage levels off. The reason the memory usage does not stay completely flat,
but grows slightly towards the end of the measurement period is that new memory has
to be allocated to hold for example the delay and memory usage values; the SigComp

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 113

prototype stores some information for each message arriving and leaving the system. In
addition, the time difference between the first and last signalling messages of a call is
longer than the duration of a call, meaning that the average number of calls in the
system grows slightly towards the end of the measurement period.

0

50

100

150

200

250

0 100 200 300 400 500 600 700

Time [s]

M
em

or
y

us
ag

e
[M

B
]

Figure 73 - Memory usage, 1500 voice calls in the system

11.7 Performance under Denial-of-service Attack
In the final measurement of this thesis, a Denial-of-Service (DoS) attack is simulated by
sending looping code to the SigComp prototype acting as a P-CSCF. The aim of the
measurement is to test whether the protection offered by the UDVM cycle limit is
sufficient. The bytecode corresponding to the following program written in the UDVM
assembly language is used:

:start
INPUT-BITS(16, 1024, loop)
JUMP(start)
:loop
SHA-1(0, 1, 1024)
JUMP(loop)

The assembly contains two loops formed by the JUMP instructions. During each
iteration of the first loop, 16 bits are read from the compressed message using the
INPUT-BITS instruction. [RFC 3320] specifies that if the UDVM reads successfully n
bits of compressed data, the number of available UDVM cycles is increased by n times
cycles_per_bit. The cycles_per_bit parameter specifies the number of UDVM cycles
available to decompress each bit in a SigComp message, and its value can be 16, 32, 64
or 128. In this measurement, the minimum value, 16, is used, meaning that each
successful INPUT-BITS instruction increments the number of available UDVM cycles
by 256. The first loop is over when the last complete 16-bit block has been read. In the
second loop, SHA-1 message digest values are calculated over one-byte sequences until
all the available UDVM cycles have been used. The cost of each SHA-1 instruction is 1
+ length, i.e. two UDVM cycles in this case.

In the measurement, SigComp messages carried the bytecode of the assembly presented
above in the message header and an INVITE message in the payload of the message.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 114

The length of the INVITE message used was 1437 bytes. The measurement was carried
out on the Pentium 4 3.0 GHz Hyper-Threading platform. It was observed that the
looping code managed to use on average 274 milliseconds of CPU time per message
before running out of UDVM cycles. In addition, a rate of at least eight messages per
second was sufficient to place a CPU load of one hundred percent, i.e. consume all
capacity of the P-CSCF.

The only protection the SigComp specifications offer against DoS attacks is the UDVM
cycle limit. However, this protection is clearly not enough. It can only limit the amount
of damage that can be caused, but does not remove the problem. If our DoS attack was
repeated in a system using a larger value for the parameter cycles_per_bit than the
minimum, and using a longer SIP message in the payload of the SigComp message, the
attack would have been even more successful. What SigComp needs is additional
protection mechanisms. One such mechanism is a bytecode verifier; even the simplest
kind of verifier would be able to detect the malicious nature of our bytecode.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 115

12 Conclusion
The main goal of this thesis was to examine the performance of the SigComp protocol
through measurements performed on the SigComp prototype implemented as a part of
the thesis work. The secondary goals were (1) to describe the way SigComp
functionality can be implemented and (2) to examine the way to minimise the load
SigComp places on the network node performing compression and decompression.

In this thesis, a SigComp prototype was implemented and its performance was
evaluated. The performance measurements were divided into three phases. In the first
and second phases of the measurements, the performance of the SigComp protocol was
studied. In the third phase of the measurements, the focus was on the performance of the
SigComp prototype. In the measurements, the prototype acted as a P-CSCF,
decompressing SIP signalling traffic initiated from the RAN side and compressing SIP
traffic terminating to the RAN side.

A modified version of the LZSS compression algorithm was implemented and a
decompression algorithm written in the UDVM assembly language to process the output
of the modified LZSS algorithm. Also a UDVM interpreter, which compiles UDVM
assembly language programs into UDVM bytecode, was implemented. The SigComp
prototype was implemented as a multithreaded application. Also another program was
designed to generate SIP signalling traffic for the SigComp prototype.

To the author’s best knowledge, SigComp performance on the core network side has not
been evaluated and techniques for optimising SigComp performance have not been
studied in detail before. In addition, this thesis is the first to describe how SigComp
functionality can be implemented. We implemented a SigComp prototype and evaluated
its performance through measurements. The results obtained in the first phase of the
measurements carried out for this thesis show how SigComp should be configured to
optimise its performance and minimise the load SigComp places. The results of the
second phase of the measurements demonstrate SigComp performance in various
contexts. Finally, the results obtained in the third phase of the measurements
demonstrate the performance of a network node performing compression and
decompression of SIP messages.

12.1 Advantages and Limitations of Signalling Compression
SigComp has numerous advantages. It is generic: besides SIP, it can be used to
compress any text-based protocol, for example the Real Time Streaming Protocol
(RTSP). The UDVM approach allows SigComp to be flexible; since the decompression
algorithm is supplied together with the first message, any compression algorithm can be
used. SigComp can run on a variety of platforms including mobile terminals, because of
the possibility to select the amount of memory, compression algorithm and compression
mechanisms used at the sending endpoint. Also other services than SIP-based call setup
can benefit from the use of SigComp. It can be used to decrease the delay of SIP-based
services like push-to-talk over cellular, instant messaging and presence information.
Finally, SigComp is able to coexist with other compression mechanisms such as robust
header compression.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 116

SigComp also has a number of limitations. Although the UDVM brings flexibility to
SigComp, it also introduces some challenges. Firstly, the ability to upload the
decompression algorithm to the network node performing SIP message decompression
makes SigComp vulnerable to Denial-of-Service attacks. The use of UDVM cycle
limits does not remove this problem, although it limits the amount of damage that a
malicious user can cause. Some additional mechanism is likely to be required. An
example of such a mechanism is the bytecode verifier used in the Java Virtual Machine
approach. Secondly, a virtual machine like the UDVM is rather complex. It is
challenging to design a UDVM that is robust and fast enough. In addition to the UDVM
being complex, also the entire protocol is getting more and more complex with each
new Internet Draft that is published to fix the problems that have been found in
SigComp.

Because SigComp builds compression dictionaries dynamically and also uses the static
SIP/SDP dictionary, most existing compression algorithms cannot be used with
SigComp without modifying or even redesigning them. Many compression algorithms
are also proprietary and there may be patent issues restricting their usage. Most well-
known compression algorithms have countless different variations. A UDVM bytecode
written for one variation will not work with a different version of the same algorithm. In
addition to the modifications required to existing compression algorithms, SigComp
also requires changes to existing SIP implementations.

SigComp increases the amount of state information that has to be stored for each
ongoing session. In addition, the system must be able to access this information rapidly
in order to keep the compression and decompression times as low as possible. The
maximum amount of state memory that can be used by a single session is 131 kilobytes.
It was observed that if shared compression and a decompression memory of sufficient
size are used, this limit can be reached without difficulties.

It remains to be seen whether the use of SigComp alone will be sufficient. It can only
affect the RAN delay; the core network delay, bearer establishment and the overhead
added by lower protocol layers will not be affected. Compression ratios that would
reduce the size of SIP signalling messages to the same level as in the case of GSM seem
unachievable.

12.2 Considerations

12.2.1 Performance of SigComp Protocol
The following considerations were made:

1. The compression time of the compressor and the decompression time of the
UDVM depend highly on the length of the uncompressed message, SigComp
mechanisms used, the amount of previous state information available, search
technique used by the compression algorithm, size of the decompression
memory, amount of bytes used from the static SIP/SDP dictionary, length of the
compressor’s look-ahead buffer etc. For instance, on an Intel Pentium 4 3.0 GHz
platform, the compression time of a single message varied between 669 and
3730 microseconds, and the decompression time of a single message between
843 and 3329 microseconds. Depending on the type of the message sequence
and the issues listed above, the compression time of the entire sequence varied

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 117

between 5091 and 32865 microseconds, while the decompression time of the
entire sequence was between 5875 and 25410 microseconds.

2. The overhead added by the UDVM approach is considerable compared to the
use of a fixed decompression algorithm. It is not unusual that the decompression
time of a message is longer than its compression time.

3. The use of hashing in the compressor of the SigComp prototype reduced the
amount of compression time consumed by 64% compared to linear searching.
When hashing is used, most of the compression time is spent in organizing the
hash map. It is beneficial to store the hash tables between messages instead of
re-generating the hash table each time a new message is compressed.

4. It was observed that compression is most efficient when the maximum size of
substituted strings is 258 bytes. Although as much as eight bits are required to
encode length values, this additional overhead is minor compared to the savings
achieved because longer matches can be encoded using a single offset/length
pair. The use of long matches also allows reductions in compression and
decompression times.

5. Most of the content in the static SIP/SDP dictionary is likely to be useless when
compressing any SIP sequence. If too large part of the static dictionary is
inserted to the search buffer, the penalty in compression time is significant. It
was found out that the best results are achieved by using static dictionary
priorities from one to two or from one to three.

6. When dynamic compression, shared compression, or both of them are applied,
the calculation of SHA-1 hashes constitutes a considerable part of the
compression and decompression times. It was observed that the calculation of
the hash constitutes 25-40 percent of the compression time, depending on the
message. It has an effect of the same magnitude on decompression times.

7. Basic, i.e. message-by-message compression is practically useless, because it
offers very poor compression ratios. The use of static compression with the
ability to save the bytecode clearly improves the efficiency of the compression.
However, only dynamic compression and shared compression offer satisfactory
compression ratios. The best compression ratio, 22.3%, was achieved by shared
compression.

8. The better performance of dynamic and shared compressions regarding the
achievable compression ratios does not come without a cost: when compressing,
shared compression can be two times slower and dynamic compression 1.4
times slower than basic compression. However, when decompressing, dynamic
and shared compressions perform slightly better than the less advanced
compression mechanisms.

9. The use of shared compression has a negative impact on compression time,
especially when a technique like hashing is used. It was observed that in the
worst case, the compression time of shared compression is 1.58 times the
compression time of dynamic compression, while the improvement in
compression ratio is only 8.4%. However, restricting the length of the shared
states can reduce the negative impact of shared compression on compression
time.

10. Because shared compression uses considerably more buffer space than dynamic
compression, dynamic compression can achieve higher compression ratios in the
case of the last messages of a large sequence. Therefore, it might be beneficial to
switch off shared compression after the first few messages of the sequence have
been sent.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 118

11. The combined size of the messages in a sequence and the mechanisms used are
important factors when selecting the most appropriate decompression memory
size. For instance, when a message sequence with a size of 10640 bytes was
being compressed, shared compression was the only mechanism that was found
to benefit from a decompression memory larger than 4096 bytes. A
decompression memory of size 16384 is too large for most SIP signalling flows.

12. SigComp benefits greatly from the use of reliable transport instead of unreliable
transport, especially in the case of message sequences with a low number of
messages. It was found out that when shared compression is applied, the
combined size of compressed messages of a basic voice session initiation
sequence transmitted over TCP was only 61% of the size achieved with UDP
based transport.

13. SigComp has been designed especially for narrowband links. When the bit rate
of the signalling link is more than 64 kbps, the performance improvement
offered by SigComp may not be great enough to justify the use of compression.
With a signalling link bit rate of 9.6 kbps, SigComp is able to reduce the RAN
delay by approximately 70%. In contrast, with a bit rate of 256 kbps the
improvement is only about 20%.

14. It was observed that the more messages a signalling flow has and the larger is
the combined size of the messages, the better compression ratios can be
achieved.

15. The compression ratio achieved for a registration sequence in a 3GPP release 5
network was only 0.88. Therefore, it might not be worth the effort to compress
the registration sequence at all.

16. The use of alternative signalling flows for a video call in a 3GPP release 5
network resulted in lower compression and decompression times and smaller
compressed size for the entire session initiation sequence. This suggests that
considerable improvements can be achieved by redesigning inefficient signalling
flows.

12.2.2 SigComp Prototype
1. The shared resources, i.e. the state handler and the compressor array can become

the bottlenecks of the SigComp architecture unless they are not carefully
designed. This is because threads require exclusive access when they modify the
content of the shared resources. It is of vital importance to minimise the amount
of time each thread holds exclusive access to a shared resource, and to use right
scheduling policies to control access to the shared resources. It is also important
to use data structures that minimise the cost of insert, delete and find operations.

2. Overhead caused by thread switches and especially queuing for access to the
shared resources increases considerably as more concurrency is allowed in the
system. However, a high number of threads are required to keep the time
messages wait for service low. Under the maximum traffic load and with the
maximum amount of concurrency in the system used, the per-message overhead
added by thread switches and queuing time to the shared resources formed
almost 17 percent of the total time messages stay in the system.

3. The SigComp prototype benefits from the use of a CPU supporting Intel’s
Hyper-Threading technology. The gains of using a Hyper-Threading CPU are
the bigger the more simultaneously active threads the system has. It was
observed that two CPUs, of which only one supported the Hyper-Threading
technology, had equal performance when messages were not processed

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 119

concurrently. However, when a workload of 1500 simultaneous voice calls was
used and messages were processed concurrently, the time in system per message
was 1.43 times less for the Hyper-Threading CPU.

4. The memory requirement of SigComp is relatively large: the signalling of 1500
simultaneous voice calls uses 218 megabytes of memory, and the signalling of
the same number of video calls consumes 781 megabytes of memory. However,
the memory requirement can be reduced at the cost of achievable compression
ratios by using less advanced compression mechanisms and smaller
decompression memory size.

5. The time in system, CPU load and memory usage depend highly on the type of
the SIP signalling traffic being compressed and decompressed. The video call
establishment and release sequence in a 3GPP release 5 network that was used
placed a higher load on the CPU, had longer delays and used more memory than
a basic voice call establishment and release sequence.

6. A Denial-of-Service attack, in which SigComp messages containing looping
code were send to the P-CSCF, was simulated. It was observed that a constant
stream of eight messages per second was enough to consume all CPU power of
the P-CSCF with the parameters and messages that were used.

12.3 Future Research
This thesis focused on SigComp performance on the core network side. Another equally
interesting topic is the performance of SigComp in the 3G mobile terminals supporting
SIP. It would be interesting to see whether the same algorithms that perform well in the
core network nodes performing compression and decompression are optimal for use in
the mobile terminals. After all, since the performance of the terminals keeps increasing
all the time, there might actually be more resources available on the UE side than in the
core network element which may have to take care of thousands of simultaneous
sessions.

SigComp security risks are another issue that has not yet been studied in detail. Much is
to be learned from for instance the Java programming language, since both the UDVM
and Java Virtual Machine use uploadable bytecodes. The design of a UDVM bytecode
verifier might become a necessity.

The use of highly optimised data structures in SigComp-aware compression algorithms
is another issue worth studying. Besides hash tables, there are a number of other data
structures that can be used in longest-match string searching. These include for example
linked lists, search tries and binary search trees. Also the hash table approach can be
improved by storing keys of different lengths. The performance of algorithms relying on
linear searching can be improved significantly by organizing carefully their search
buffers.

Since SigComp makes heavy use of shared resources, access to these resources is worth
optimising. One way of achieving performance improvements is through the use of
highly optimised scheduling policies.

Yet another topic for further work is the parallel use of payload compression like
SigComp and header compression like ROHC. In the measurements of this thesis,
header compression was not applied.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 120

13 References
[3GPP TS 23.002] 3GPP TS 23.002 V6.5.0, Technical Specification Group

Services and Systems Aspects; Network Architecture (Release
5), June 2004

[3GPP TS 23.228] 3GPP TS 23.228 V6.6.0, Technical Specification Group
Services and System Aspects, IP Multimedia Subsystem
(IMS); Stage 2 (Release 6), June 2004.

[3GPP TS 24.228
2004]

3GPP TS 24.228 V5.9.0, Technical Specification Group Core
Network; Signalling flows for the IP multimedia call control
based on SIP and SDP; Stage 3 (Release 5), June 2004.

[Andreadis 2003] Andreadis et al. 2003. Protocols for High-Efficiency Wireless
Networks. Kluwer Academic Publishers.

[Andrews 2000] Andrews, G. R. 2002. Foundations of Multithreaded, Parallel
and Distributed Programming. Addison Wesley.

[Balazs 2004] Balazs, A. 2004. Push-to-talk Performance over GPRS.

[Camarillo 2002] Camarillo, G. 2002. SIP demystified. McGraw-Hill.

[Camarillo 2004] Camarillo, G. & Garcia-Martin, M. 2004. The 3G IP
Multimedia Subsystem (IMS) – Merging the Internet and the
Cellular Worlds. Wiley.

[Doldi 2003]

Doldi, L. 2003. UML 2 illustrated : developing real-time and
communications systems. Toulouse: TransMeth Sud-Ouest.

[Draft Price] Price, R. et al. 2003. SigComp User Guide. <draft-price-rohc-
sigcomp-user-guide-02.txt>. Internet-Draft. Work in progress.

[Draft Roach] Roach, A. 2004. A Negative Acknowledgement Mechanism
for Signalling Compression. <draft-ietf-rohc-sigcomp-nack-
01>. Internet-Draft. Work in progress.

[Draft Surtees] Surtees, A. et al. 2004. Implementer's Guide for SigComp.
<draft-ietf-rohc-sigcomp-impl-guide-04.txt>. Internet-Draft.
Work in progress.

[Fidrich 2003] Fidrich, M. et al. 2003. SIP compression.

[FIPS 180] Secure Hash Standard. Federal Information Processing
Standards Publication 180-1. April 1995.

[Foster 2002] Foster, G. et al. 2002. Performance Estimation of Efficient
UMTS Packet Voice Call Control. Motorola & Cork Institute
of Technology.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 121

[Gamma 1995] Gamma, E. et al. 1995. Design patterns. Elements of reusable

object-oriented software. Addison-Wesley.

[Iversen 2005] Iversen, V. B. 2005. Teletraffic Engineering Handbook. ITU-
D.

[Jain 1991] Jain, R. 1991. The art of computer systems performance
analysis. Techniques for experimental design, measurement,
simulation and modeling. John Wiley & Sons.

[Lindholm 1997] Lindholm, T. et Yellin, F. 1997. The Java Virtual Machine
Specification. Addison-Wesley.

[Marr 2002] Marr, D. T. et al. 2002. Hyper-Threading Technology
Architecture and Microarchitecture. Intel Technology
Journal.Vol 6. p4-15.

[Nordberg 2003] Nordberg, M. et al. 2003. Improving SigComp performance
through extended operations. IEEE Vehicular Technology
Conference, 2003. VTC 2003-Fall. 2003. IEEE 58th 5: 3425-
3428.

[Nortel 2000] Nortel Networks 2000. A Comparison Between GERAN
Packed-Switched Call Setup Using SIP and GSM Circuit-
Switched Call Setup Using RIL3-CC, RIL3-MM, RIL3-RR
and DTAP Rev. 0.3.

[OMA-TS- POC] Open Mobile Alliance 2005. OMA PoC Control Plane.
Candidate Version 1.0 – 17 March 2005.

[Patterson 1998] Patterson, D. A. et Hennessy, J. L. 1998. Computer
organization and design: the hardware/software interface. 2nd
Edition. Morgan Kaufmann Publishers.

[Preiss 1999] Preiss, B. R. 1999. Data Structures and Algorithms with
Object-Oriented Design Patterns in C++. Wiley.

[RFC 959] Postel, J. et Reynolds, J. 1985. File Transfer Protocol (FTP).
RFC 959.

[RFC 3095] Bormann, C. et al. 2001. Robust Header Compression
(ROHC): Framework and four profiles: RTP, UDP, ESP, and
uncompressed. RFC 3095.

[RFC 3173] Shacham, A. et al. 2001. IP Payload Compression Protocol
(IPComp). RFC 3173.

[RFC 3174] Eastlake, D. 2001. US Secure Hash Algorithm 1 (SHA1). RFC
3174.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 122

[RFC 3261] Rosenberg, J. et al. 2002. SIP: Session Initiation Protocol. RFC

3261.

[RFC 3320] Price, R. et al. 2003. Signaling Compression (SigComp). RFC
3320.

[RFC 3321] Hannu, H. et al. 2003. Signaling Compression (SigComp) –
Extended Operations. RFC 3321.

[RFC 3322] Hannu H. 2003. Signaling Compression (SigComp)
Requirements & Assumptions. RFC 3322.

[RFC 3485] Garcia-Martin, M. et al. 2003. The Session Initiation Protocol
(SIP) and Session Description Protocol (SDP) Static
Dictionary for Signaling Compression (SigComp). RFC 3485.

[RFC 3486] Camarillo, G. 2003. Compressing the Session Initiation
Protocol (SIP). RFC 3486.

[Sayood 2006] Sayood, K. 1996. Introduction to data compression. Morgan
Kaufmann Publishers.

[Tanenbaum 2001] Tanenbaum, A. S. 2001. Modern Operating Systems. 2nd
Edition. Prentice Hall.

[Weiss 1999] Weiss, M. A. 1999. Data structures & algorithm analysis in
Java. Addison Wesley.

[West 2002] West, M. et al. 2002. IP header and signaling compression for
3G systems. Siemens/Roke Manor Research Limited, UK.

[Ziv 1977] Ziv, J. & Lempel, A. 1977. A Universal Algorithm for Data
Compression. IEEE Transactions on Information Theory.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 123

14 Appendices

14.1 Appendix A – The UDVM Instruction Set
Instruction Bytecode

value
Cost in

UDVM cycles
DECOMPRESSION-FAILURE 0 1
AND 1 1
OR 2 1
NOT 3 1
LSHIFT 4 1
RSHIFT 5 1
ADD 6 1
SUBTRACT 7 1
MULTIPLY 8 1
DIVIDE 9 1
REMAINDER 10 1
SORT-ASCENDING 11 ()()()nkceilingk +×+ 2log1
SORT-DESCENDING 12 ()()()nkceilingk +×+ 2log1
SHA-1 13 length+1
LOAD 14 1
MULTILOAD 15 n+1
PUSH 16 1
POP 17 1
COPY 18 length+1
COPY-LITERAL 19 length+1
COPY-OFFSET 20 length+1
MEMSET 21 length+1
JUMP 22 1
COMPARE 23 1
CALL 24 1
RETURN 25 1
SWITCH 26 n+1
CRC 27 length+1
INPUT-BYTES 28 length+1
INPUT-BITS 29 1
INPUT-HUFFMAN 30 n+1
STATE-ACCESS 31 lengthstate _1+
STATE-CREATE 32 lengthstate _1+
STATE-FREE 33 1

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 124

OUTPUT 34 lengthoutput _1+
END-MESSAGE 35 lengthstate _1+

14.2 Appendix B – LZSS Assembly
1 at (32)
2
3 :index pad (2)
4 :length_value pad (2)
5 :old_pointer pad (2)
6
7 at (42)
8
9 :requested_feedback_location pad (1)
10 :requested_feedback_length pad (1)
11 :requested_feedback_field pad(12)
12 :hash_start pad(8)
13
14 at (64)
15
16 :byte_copy_left pad (2)
17 :byte_copy_right pad (2)
18 :input_bit_order pad (2)
19 :decompressed_pointer pad (2)
20
21 :returned_parameters_location pad (1)
22 :returned_sigcomp_version pad (1)
23 :length_of_partial_state_id_a pad (1)
24 :partial_state_identifier_a pad (6)
25 :length_of_partial_state_id_b pad (1)
26 :partial_state_identifier_b pad (20)
27 :extended_flags pad (2)
28 :shared_state_id pad (6)
29 :padding pad (6)
30 :minimum_access_length pad (2)
31 :announcement_location pad (2)
32 :decompressed_start pad (2)
33 :decompressed_length pad (2)
34 :shared_hash_length pad (2)
35
36 align (64)
37
38 :initialize_memory
39
40 STATE-ACCESS (dictionary_id, 6, 0, 0, 1024, 0)
41
42 set (udvm_memory_size, 8192)
43 set (state_length, (udvm_memory_size - 64))
44
45 MULTILOAD (64, 4, circular_buffer, udvm_memory_size, 0, circular_buffer)

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 125

46
47 :decompress_sigcomp_message
48
49 INPUT-BYTES (1, extended_flags, !)
50

COMPARE ($extended_flags, 32768, initialize_state_announcement,
access_shared_state, access_shared_state)

51
52 :access_shared_state
53
54 INPUT-BYTES (6, shared_state_id, !)
55 STATE-ACCESS (shared_state_id, 6, 0, 0, $decompressed_start, 0)
56
57 :initialize_state_announcement
58
59

MULTILOAD (minimum_access_length, 4, 6, length_of_partial_state_id_a,
$decompressed_pointer, 5120)

60 COPY-LITERAL (padding, 8, $decompressed_pointer)
61
62 LSHIFT ($extended_flags, 1)
63

COMPARE ($extended_flags, 32768, algorithm_start, announce_acked_state_id,
announce_acked_state_id)

64
65 :announce_acked_state_id
66
67 LOAD (length_of_partial_state_id_a, 1536)
68 INPUT-BYTES (6, partial_state_identifier_a, !)
69 LOAD (announcement_location, length_of_partial_state_id_b)
70
71 :algorithm_start
72
73 :next_character
74
75

INPUT-HUFFMAN (index, end_of_message, 2, 9, 0, 255, 16384, 4, 4096, 8191, 1)

76 COMPARE ($index, 8192, length, end_of_message, literal)
77
78 :literal
79
80 set (index_lsb, (index + 1))
81
82 OUTPUT (index_lsb, 1)
83 COPY-LITERAL (index_lsb, 1, $decompressed_pointer)
84 JUMP (next_character)
85
86 :length
87
88 INPUT-BITS (4, length_value, !)
89 ADD ($length_value, 3)
90 LOAD (old_pointer, $decompressed_pointer)
91 COPY-OFFSET ($index, $length_value, $decompressed_pointer)
92 OUTPUT ($old_pointer, $length_value)
93 JUMP (next_character)

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 126

94
95 :end_of_message
96
97 LSHIFT ($extended_flags, 1)
98

COMPARE ($extended_flags, 32768, end, announce_shared_state,
announce_shared_state)

99
100 :announce_shared_state
101
102 COPY-LITERAL (decompressed_length, 1, $announcement_location)
103
104 set (buffer_size, (udvm_memory_size - circular_buffer))
105
106 MULTILOAD (decompressed_length, 2, 65528, $decompressed_pointer)
107 SUBTRACT ($shared_hash_length, $decompressed_start)
108 REMAINDER ($shared_hash_length, buffer_size)
109 ADD ($decompressed_length, $shared_hash_length)
110
111 LOAD ($decompressed_start, $decompressed_length)
112

SHA-1 ($decompressed_start, $shared_hash_length, $announcement_location)

113
114 :end
115
116 set (hash_length, (state_length + 8))
117
118 LOAD (requested_feedback_location, 1158)
119

MULTILOAD (hash_start, 4, state_length, 64, decompress_sigcomp_message, 6)

120 SHA-1 (hash_start, hash_length, requested_feedback_field)
121
122

END-MESSAGE (requested_feedback_location, returned_parameters_location,
state_length, 64, decompress_sigcomp_message, 6, 0)

123
124 :dictionary_id
125
126 byte (0xfb, 0xe5, 0x07, 0xdf, 0xe5, 0xe6)
127
128 :circular_buffer

14.3 Appendix C – SIP Message Sequences

14.3.1 Basic Voice Call

14.3.1.1 INVITE
INVITE sip:7040005004@192.168.55.54 SIP/2.0
Via: SIP/2.0/UDP 192.168.55.61;comp=sigcomp
Route: <sip:131.160.31.19;comp=sigcomp>
Call-ID: b0957730@192.168.55.61-1000
CSeq: 48733 INVITE
Contact: <sip:8881003@192.168.55.61;comp=sigcomp>

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 127

User-Agent: 3Com ICD 1.0.1.2.7
From: <sip:8881003@192.168.55.61>;tag=f3d981df
To: <sip:7040005004@192.168.55.54>
Proxy-Authorization: Digest
username="8881003",realm="192.168.55.61",nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093
",opaque="",uri="sip:7040005004@192.168.55.54",response="6629fae49393a0539745097850
7c4ef1"
Content-Length: 105
Content-Type: application/sdp

v=0
o=username 0 48732 IN IP4 192.168.55.61
s=
c=IN IP4 192.168.55.61
t=0 0
m=audio 7206 RTP/AVP 0

14.3.1.2 100 Trying
SIP/2.0 100 Trying
Via: SIP/2.0/UDP 192.168.55.61:5060;comp=sigcomp;received=192.168.55.61
From: <sip:8881003@192.168.55.61>;tag=f3d981df
To: <sip:7040005004@192.168.55.54>;tag=124871409
Call-ID: b0957730@192.168.55.61-1000
CSeq: 48733 INVITE
Content-Length: 0

14.3.1.3 180 Ringing
SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 192.168.55.61:5060;comp=sigcomp;received=192.168.55.61
Record-Route: 131.160.31.19;comp=sigcomp
From: <sip:8881003@192.168.55.61>;tag=f3d981df
To: <sip:7040005004@192.168.55.54>;tag=124871409
Call-ID: b0957730@192.168.55.61-1000
CSeq: 48733 INVITE
Contact: <sip:192.168.55.54:5060>
Allow: INVITE, ACK, CANCEL, BYE, OPTIONS, PRACK
Accept: application/sdp
Content-Length: 161
Content-Type: application/sdp

v=0
o=username 0 48732 IN IP4 192.168.55.61
s=Basic Session
c=IN IP4 192.168.55.15
t=0 0
m=audio 20000 RTP/AVP 0 103 19
a=rtpmap:103 telephone-event/8000

14.3.1.4 200 OK to INVITE

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.55.61:5060;comp=sigcomp;received=192.168.55.61
Record-Route: 131.160.31.19;comp=sigcomp
From: <sip:8881003@192.168.55.61>;tag=f3d981df

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 128

To: <sip:7040005004@192.168.55.54>;tag=124871409
Call-ID: b0957730@192.168.55.61-1000
CSeq: 48733 INVITE
Contact: <sip:192.168.55.54:5060>
Allow: INVITE, ACK, CANCEL, BYE, OPTIONS, PRACK
Accept: application/sdp
Content-Length: 161
Content-Type: application/sdp

v=0
o=username 0 48732 IN IP4 192.168.55.61
s=Basic Session
c=IN IP4 192.168.55.15
t=0 0
m=audio 20000 RTP/AVP 0 103 19
a=rtpmap:103 telephone-event/8000

14.3.1.5 ACK
ACK sip:192.168.55.54:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.55.61;comp=sigcomp
Route: <sip:131.160.31.19;comp=sigcomp>
Call-ID: b0957730@192.168.55.61-1000
CSeq: 48733 ACK
User-Agent: 3Com ICD 1.0.1.2.7
From: <sip:8881003@192.168.55.61>;tag=f3d981df
To: <sip:7040005004@192.168.55.54>;tag=124871409
Proxy-Authorization: Digest
username="8881003",realm="192.168.55.61",nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093
",opaque="",uri="sip:192.168.55.54:5060",response="6629fae49393a05397450978507c4ef1"
Content-Length: 0

14.3.1.6 BYE
BYE sip:192.168.55.54:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.55.61;comp=sigcomp
Route: <sip:131.160.31.19;comp=sigcomp>
Call-ID: b0957730@192.168.55.61-1000
CSeq: 48734 BYE
User-Agent: 3Com ICD 1.0.1.2.7
From: <sip:8881003@192.168.55.61>;tag=f3d981df
To: <sip:7040005004@192.168.55.54>;tag=124871409
Proxy-Authorization: Digest
username="8881003",realm="192.168.55.61",nonce="1cec4341ae6cbe5a359ea9c8e88df84f",op
aque="",uri="sip:192.168.55.54:5060",response="4767ead078938ad80e7b3a49defdcd64"
Content-Length: 0

14.3.1.7 200 OK to BYE
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.55.61:5060;comp=sigcomp;received=192.168.55.61
From: <sip:8881003@192.168.55.61>;tag=f3d981df
To: <sip:7040005004@192.168.55.54>;tag=124871409
Call-ID: b0957730@192.168.55.61-1000
CSeq: 48734 BYE
Content-Length: 0

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 129

14.3.2 Basic Video Call

14.3.2.1 INVITE
INVITE sip:888000@192.168.57.80:5061;transport=UDP;user=phone SIP/2.0
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821
Route: <sip:131.160.31.19;comp=sigcomp>
From: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673
To: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>
Call-ID: 11100604432@192.168.57.71
CSeq: 1 INVITE
Contact: <sip:192.168.57.71:5060;comp=sigcomp;transport=UDP>
Allow: INVITE, ACK, CANCEL, BYE, OPTIONS, PRACK
Accept: application/sdp
Supported: 100rel
Max-Forwards: 70
Privacy: none
P-Asserted-Identity: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>
Content-Length: 355
Content-Type: application/sdp

v=0
o=- 1100604476 1100604476 IN IP4 192.168.57.111
s=Basic Session
c=IN IP4 192.168.57.111
t=0 0
a=sendrecv
m=audio 30000 RTP/AVP 96 4 8 0
a=rtpmap:96 AMR/8000
m=video 30002 RTP/AVP 103 104 34 105
a=rtpmap:103 H263-2000/8000
a=fmtp:103 profile=0;level=10
a=rtpmap:104 H263-1998/8000
a=rtpmap:105 MP4V-ES/90000
a=fmtp:105 profile-level-id=8

14.3.2.2 100 Trying
SIP/2.0 100 Trying
From: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673
To: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>
Call-ID: 11100604432@192.168.57.71
CSeq: 1 INVITE
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821
Content-Length: 0

14.3.2.3 180 Ringing
SIP/2.0 180 Ringing
From: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673
To: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>;tag=1234
Call-ID: 11100604432@192.168.57.71
CSeq: 1 INVITE
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821
Record-Route: 131.160.31.19;comp=sigcomp
Contact: <sip:192.168.57.80:5061>
Allow: INVITE,ACK,CANCEL,BYE,OPTIONS,INFO

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 130

Accept: application/SDP
Content-Length: 0

14.3.2.4 200 OK to INVITE
SIP/2.0 200 OK
From: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673
To: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>;tag=1234
Call-ID: 11100604432@192.168.57.71
CSeq: 1 INVITE
Content-Type: APPLICATION/SDP
Content-Length: 163
Contact: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>;tag=1234
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821
Record-Route: 131.160.31.19;comp=sigcomp
User-Agent: Pingtel/0.4.0

v=0
o=Pingtel 5 0 IN IP4 131.160.21.57
s=phone-call
c=IN IP4 131.160.21.57
t=0 0
m=audio 8766 RTP/AVP 0
m=video 8767 RTP/AVP 96
a=rtpmap:96 H263-1998/8000

14.3.2.5 ACK
ACK sip:888000@192.168.57.80:5061;transport=UDP;user=phone SIP/2.0
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821
Route: <sip:131.160.31.19;comp=sigcomp>
From: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673
To: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>;tag=1234
Call-ID: 11100604432@192.168.57.71
CSeq: 1 ACK
Max-Forwards: 70
Content-Length: 0

14.3.2.6 BYE
BYE sip:888000@192.168.57.80:5061 SIP/2.0
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821
Route: <sip:131.160.31.19;comp=sigcomp>
From: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673
To: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>;tag=1234
Call-ID: 11100604432@192.168.57.71
CSeq: 2 BYE
Content-Length: 0
User-Agent: Pingtel/0.6.1

14.3.2.7 200 OK to BYE
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.57.71:5060;comp=sigcomp;branch=z9hG4bK11006044821
From: <sip:888000@192.168.57.80:5061;transport=UDP;user=phone>;tag=1234
To: <sip:+603002391@192.168.57.71:5060;transport=UDP;user=phone>;tag=229614673
Call-ID: 11100604432@192.168.57.71
CSeq: 2 BYE

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 131

Content-Length: 0

14.3.3 Push-to-talk over Cellular Session Establishment

14.3.3.1 INVITE
INVITE sip:PoCConferenceFactoryURI.networkA.net SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp
Route: <sip:SIPcoreA.networkA.net:7531;comp=sigcomp>
Call-ID: b0957730@networkA.net-1000
CSeq: 48733 INVITE
Contact: <sip:PoC-ClientA@networkA.net;comp=sigcomp>;+g.poc.talkburst
User-Agent: PoC-client/OMA1.0 Acme-Talk5000/v1.01
From: <sip:PoC-ClientA@networkA.net>;tag=f3d981df
To: <sip:PoC_ServerA@networkA.net>
P-Preferred-Identity: "PoC User A" <sip:PoC-UserA@networkA.net>
Accept-Contact: *;+g.poc.talkburst; require;explicit
Privacy: Id
Supported: Timer
Session-Expires: 1800;refresher=uac
Allow: INVITE,ACK,CANCEL,BYE,REFER,MESSAGE, SUBSCRIBE,NOTIFY, PUBLISH
Content-Length: 194
Content-Type: application/sdp

v=0
o=username 0 48732 IN IP6 5555::aaa:bbb:ccc:ddd
s=
t=0 0
c=IN IP6 5555::aaa:bbb:ccc:ddd
m=audio 3456 RTP/AVP 97
a=rtpmap:97 AMR
a=rtcp:5560
m=application 2000 udp TBCP
a=fmtp:TBCP queuing=1; tb_priority=2; timestamp=1

14.3.3.2 100 Trying
SIP/2.0 100 Trying
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp
From: <sip:PoC-ClientA@networkA.net>;tag=f3d981df
To: <sip:PoC_ServerA@networkA.net>
Call-ID: b0957730@networkA.net-1000
CSeq: 48733 INVITE
Content-Length: 0

14.3.3.3 200 OK to INVITE
SIP/2.0 200 OK
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp
Record-Route: sip:SIPcoreA.networkA.net:7531;comp=sigcomp
From: <sip:PoC-ClientA@networkA.net>;tag=f3d981df
To: <sip:PoC_ServerA@networkA.net>
Call-ID: b0957730@networkA.net-1000
CSeq: 48733 INVITE
Contact: <sip:Pre-establishedSessionIdentityA@PoC-ServerA.networkA.net>;+g.poc.talkburst
Accept: application/sdp
P-Asserted-Identity: <sip:PoC-ServerA@networkA.net>

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 132

Server: PoC-serv/OMA1.0
Require: Timer
Session-Expires: 1800;refresher=uac
Allow: INVITE,ACK,CANCEL,BYE,REFER,MESSAGE, SUBSCRIBE,NOTIFY, PUBLISH
Content-Length: 197
Content-Type: application/sdp

v=0
o=username 0 48732 IN IP6 57777::eee:fff:aaa:bbb
t=0 0
c=IN IP6 57777::eee:fff:aaa:bbb
m=audio 57787 RTP/AVP 97
a=rtpmap:97 AMR
a=rtcp:57000
m=application 57790 udp TBCP
a=fmtp:TBCP queuing=1; tb_priority=2; timestamp=1

14.3.3.4 ACK
ACK sip:PoCConferenceFactoryURI.networkA.net SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp
Route: <sip:SIPcoreA.networkA.net:7531;comp=sigcomp>
Call-ID: b0957730@networkA.net-1000
CSeq: 48733 ACK
User-Agent: PoC-client/OMA1.0 Acme-Talk5000/v1.01
From: <sip:PoC-ClientA@networkA.net>;tag=f3d981df
To: <sip:PoC_ServerA@networkA.net>
Content-Length: 0

14.3.3.5 BYE
BYE sip:PoCConferenceFactoryURI.networkA.net SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp
Route: <sip:SIPcoreA.networkA.net:7531;comp=sigcomp>
Call-ID: b0957730@networkA.net-1000
CSeq: 48734 BYE
User-Agent: PoC-client/OMA1.0 Acme-Talk5000/v1.01
From: <sip:PoC-ClientA@networkA.net>;tag=f3d981df
To: <sip:PoC_ServerA@networkA.net>
Content-Length: 0

14.3.3.6 200 OK to BYE
SIP/2.0 200 OK
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp
From: <sip:PoC-ClientA@networkA.net>;tag=f3d981df
To: <sip:PoC_ServerA@networkA.net>
Call-ID: b0957730@networkA.net-1000
CSeq: 48734 BYE
Content-Length: 0

14.3.4 3GPP Video Call

14.3.4.1 INVITE
INVITE tel:+1-212-555-2222 SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 133

Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>
P-Preferred-Identity: "John Doe" <sip:user1_public1@home1.net>
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
Privacy: none
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 127 INVITE
Require: precondition, sec-agree
Proxy-Require: sec-agree
Supported: 100rel
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321;
port-c=8642; port-s=7531
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE
Content-Type: application/sdp
Content-Length: 523

v=0
o=- 2987933615 2987933615 IN IP6 5555::aaa:bbb:ccc:ddd
s=-
c=IN IP6 5555::aaa:bbb:ccc:ddd
t=0 0
m=video 3400 RTP/AVP 98 99
b=AS:75
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:98 H263
a=fmtp:98 profile-level-id=0
a=rtpmap:99 MP4V-ES
m=audio 3456 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event

14.3.4.2 100 Trying
SIP/2.0 100 Trying
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 127 INVITE
Content-Length: 0

14.3.4.3 183 Session Progress
SIP/2.0 183 Session Progress
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 134

Record-Route: <sip:pcscf2.visited2.net;lr>, <sip:scscf2.home2.net;lr>,
<sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>
P-Asserted-Identity: "John Smith" <sip:user2_public1@home2.net>, <tel:+1-212-555-2222>
Privacy: none
P-Media-Authorization:
0020000100100101706466322e76697369746564322e6e6574000c020139425633303732
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 127 INVITE
Require: 100rel
Contact: <sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp>
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE
RSeq: 9021
Content-Type: application/sdp
Content-Length: 584

v=0
o=- 2987933623 2987933623 IN IP6 5555::eee:fff:aaa:bbb
s=-
c=IN IP6 5555::eee:fff:aaa:bbb
t=0 0
m=video 10001 RTP/AVP 98 99
b=AS:75
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos mandatory remote sendrecv
a=conf:qos remote sendrecv
a=rtpmap:98 H263
a=rtpmap:99 MP4V-ES
a=fmtp:98 profile-level-id=0
m=audio 6544 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos mandatory remote sendrecv
a=conf:qos remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event

14.3.4.4 PRACK to 183
PRACK sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>,
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr>
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 128 PRACK
Require: precondition, sec-agree

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 135

Proxy-Require: sec-agree
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321;
port-c=8642; port-s=7531
RAck: 9021 127 INVITE
Content-Type: application/sdp
Content-Length: 509

v=0
o=- 2987933615 2987933616 IN IP6 5555::aaa:bbb:ccc:ddd
s=-
c=IN IP6 5555::aaa:bbb:ccc:ddd
t=0 0
m=video 3400 RTP/AVP 98
b=AS:75
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos mandatory remote sendrecv
a=rtpmap:98 H263
a=fmtp:98 profile-level-id=0
m=audio 3456 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos mandatory remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event

14.3.4.5 200 OK to PRACK
SIP/2.0 200 OK
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
CSeq: 128 PRACK
Content-Type: application/sdp
Content-Length: 562

v=0
o=- 2987933623 2987933624 IN IP6 5555::eee:fff:aaa:bbb
s=-
c=IN IP6 5555::eee:fff:aaa:bbb
t=0 0
m=video 10001 RTP/AVP 98
b=AS:75
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos mandatory remote sendrecv
a=conf:qos remote sendrecv
a=rtpmap:98 H263
a=fmtp:98 profile-level-id=0
m=audio 6544 RTP/AVP 97 96

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 136

b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos mandatory remote sendrecv
a=conf:qos remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event

14.3.4.6 UPDATE
UPDATE sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>,
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr>
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 129 UPDATE
Require: sec-agree
Proxy-Require: sec-agree
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321;
port-c=8642; port-s=7531
Content-Type: application/sdp
Content-Length: 517

v=0
o=- 2987933615 2987933617 IN IP6 5555::aaa:bbb:ccc:ddd
s=-
c=IN IP6 5555::aaa:bbb:ccc:ddd
t=0 0
m=video 3400 RTP/AVP 98
b=AS:75
a=curr:qos local sendrecv
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos mandatory remote sendrecv
a=rtpmap:98 H263
a=fmtp:98 profile-level-id=0
m=audio 3456 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local sendrecv
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos mandatory remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event

14.3.4.7 200 OK to UPDATE
SIP/2.0 200 OK
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 137

From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 129 UPDATE
Content-Type: application/sdp
Content-Length: 526

v=0
o=- 2987933623 2987933625 IN IP6 5555::eee:fff:aaa:bbb
s=-
c=IN IP6 5555::eee:fff:aaa:bbb
t=0 0
m=video 10001 RTP/AVP 98
b=AS:75
a=curr:qos local sendrecv
a=curr:qos remote sendrecv
a=des:qos mandatory local sendrecv
a=des:qos mandatory remote sendrecv
a=rtpmap:98 H263
a=fmtp:98 profile-level-id=0
m=audio 6544 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local sendrecv
a=curr:qos remote sendrecv
a=des:qos mandatory local sendrecv
a=des:qos mandatory remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event

14.3.4.8 180 Ringing
SIP/2.0 180 Ringing
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Record-Route: <sip:pcscf2.visited2.net;lr>, <sip:scscf2.home2.net;lr>,
<sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 129 UPDATE
Require: 100rel
Contact: <sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp>
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE
RSeq: 9022
Content-Length: 0

14.3.4.9 PRACK
PRACK sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>,
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr>
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 138

Call-ID: cb03a0s09a2sdfglkj490333
Require: sec-agree
Proxy-Require: sec-agree
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321;
port-c=8642; port-s=7531
Cseq: 130 PRACK
RAck: 9022 127 INVITE
Content-Length: 0

14.3.4.10 200 OK to PRACK
SIP/2.0 200 OK
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 130 PRACK
Content-Length: 0

14.3.4.11 200 OK to INVITE
SIP/2.0 200 OK
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Record-Route: <sip:pcscf2.visited2.net;lr>, <sip:scscf2.home2.net;lr>,
<sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
CSeq: 127 INVITE
Contact: <sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp>
Content-Type: application/sdp
Content-Length: 584

v=0
o=- 2987933623 2987933623 IN IP6 5555::eee:fff:aaa:bbb
s=-
c=IN IP6 5555::eee:fff:aaa:bbb
t=0 0
m=video 10001 RTP/AVP 98 99
b=AS:75
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos mandatory remote sendrecv
a=conf:qos remote sendrecv
a=rtpmap:98 H263
a=rtpmap:99 MP4V-ES
a=fmtp:98 profile-level-id=0
m=audio 6544 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos mandatory remote sendrecv
a=conf:qos remote sendrecv
a=rtpmap:97 AMR

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 139

a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event

14.3.4.12 ACK
ACK sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>,
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr>
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 127 ACK
Content-Length: 0

14.3.4.13 BYE
BYE sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>,
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr>
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
Require: sec-agree
Proxy-Require: sec-agree
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321;
port-c=8642; port-s=7531
CSeq: 153 BYE
Content-Length: 0

14.3.4.14 200 OK to BYE
SIP/2.0 200 OK
Via: SIP/2.0/UDP pcscf2.visited2.net:5088;branch=z9hG4bK361k21.1, SIP/2.0/UDP
scscf2.home2.net;branch=z9hG4bK764z87.1, SIP/2.0/UDP
scscf1.home1.net;branch=z9hG4bK332b23.1, SIP/2.0/UDP
pcscf1.visited1.net;branch=z9hG4bK240f34.1, SIP/2.0/UDP
[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
CSeq: 153 BYE
Content-Length: 0

14.3.5 3GPP Video Call with RE-INVITE and Unreliable Delivery of
Provisional Responses

14.3.5.1 INVITE
INVITE tel:+1-212-555-2222 SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 140

Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>
P-Preferred-Identity: "John Doe" <sip:user1_public1@home1.net>
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
Privacy: none
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 127 INVITE
Require: sec-agree
Proxy-Require: sec-agree
Supported: 100rel
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321;
port-c=8642; port-s=7531
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE
Content-Type: application/sdp
Content-Length: 319

v=0
o=- 2987933615 2987933615 IN IP6 5555::aaa:bbb:ccc:ddd
s=-
c=IN IP6 5555::aaa:bbb:ccc:ddd
t=0 0
m=video 3400 RTP/AVP 98 99
b=AS:75
a=inactive
a=rtpmap:98 H263
a=fmtp:98 profile-level-id=0
a=rtpmap:99 MP4V-ES
m=audio 3456 RTP/AVP 97 96
b=AS:25.4
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event

14.3.5.2 100 Trying
SIP/2.0 100 Trying
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 127 INVITE
Content-Length: 0

14.3.5.3 180 Ringing
SIP/2.0 180 Ringing
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Record-Route: <sip:pcscf2.visited2.net;lr>, <sip:scscf2.home2.net;lr>,
<sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 129 UPDATE
Require: 100rel

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 141

Contact: <sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp>
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE
RSeq: 9022
Content-Type: application/sdp
Content-Length: 360

v=0
o=- 2987933623 2987933623 IN IP6 5555::eee:fff:aaa:bbb
s=-
c=IN IP6 5555::eee:fff:aaa:bbb
t=0 0
m=video 10001 RTP/AVP 98 99
b=AS:75
a=conf:qos remote sendrecv
a=rtpmap:98 H263
a=rtpmap:99 MP4V-ES
a=fmtp:98 profile-level-id=0
m=audio 6544 RTP/AVP 97 96
b=AS:25.4
a=conf:qos remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event
a=inactive

14.3.5.4 200 OK to INVITE
SIP/2.0 200 OK
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Record-Route: <sip:pcscf2.visited2.net;lr>, <sip:scscf2.home2.net;lr>,
<sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
CSeq: 127 INVITE
Contact: <sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp>
Content-Type: application/sdp
Content-Length: 360

v=0
o=- 2987933623 2987933623 IN IP6 5555::eee:fff:aaa:bbb
s=-
c=IN IP6 5555::eee:fff:aaa:bbb
t=0 0
m=video 10001 RTP/AVP 98 99
b=AS:75
a=conf:qos remote sendrecv
a=rtpmap:98 H263
a=rtpmap:99 MP4V-ES
a=fmtp:98 profile-level-id=0
m=audio 6544 RTP/AVP 97 96
b=AS:25.4
a=conf:qos remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 142

a=inactive

14.3.5.5 ACK
ACK sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>,
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr>
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 127 ACK
Content-Length: 0

14.3.5.6 INVITE
INVITE tel:+1-212-555-2222 SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>
P-Preferred-Identity: "John Doe" <sip:user1_public1@home1.net>
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
Privacy: none
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 128 INVITE
Require: sec-agree
Proxy-Require: sec-agree
Supported: 100rel
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321;
port-c=8642; port-s=7531
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE
Content-Type: application/sdp
Content-Length: 280

v=0
o=- 2987933615 2987933616 IN IP6 5555::aaa:bbb:ccc:ddd
s=-
c=IN IP6 5555::aaa:bbb:ccc:ddd
t=0 0
m=video 3400 RTP/AVP 98
b=AS:75
a=rtpmap:98 H263
a=fmtp:98 profile-level-id=0
m=audio 3456 RTP/AVP 97 96
b=AS:25.4
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event
a=sendrecv

14.3.5.7 200 OK to INVITE
SIP/2.0 200 OK
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 143

Record-Route: <sip:pcscf2.visited2.net;lr>, <sip:scscf2.home2.net;lr>,
<sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
CSeq: 128 INVITE
Contact: <sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp>
Content-Type: application/sdp
Content-Length: 338

v=0
o=- 2987933623 2987933624 IN IP6 5555::eee:fff:aaa:bbb
s=-
c=IN IP6 5555::eee:fff:aaa:bbb
t=0 0
m=video 10001 RTP/AVP 98
b=AS:75
a=conf:qos remote sendrecv
a=rtpmap:98 H263
a=fmtp:98 profile-level-id=0
m=audio 6544 RTP/AVP 97 96
b=AS:25.4
a=conf:qos remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; maxframes=2
a=rtpmap:96 telephone-event

14.3.5.8 ACK
ACK sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>,
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr>
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 128 ACK
Content-Length: 0

14.3.6 3GPP Video Call with RE-INVITE and Reliable Delivery of
Provisional Responses

14.3.6.1 INVITE
Same as the INVITE message presented in Section 14.3.5.1.

14.3.6.2 100 Trying
Same as the 100 Trying message presented in Section 14.3.5.2.

14.3.6.3 180 Ringing
Same as the 180 Ringing message presented in Section 14.3.5.3.

14.3.6.4 PRACK to 180 Ringing
PRACK sip:[5555::eee:fff:aaa:bbb]:8805;comp=sigcomp SIP/2.0

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 144

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>,
<sip:scscf2.home2.net;lr>, <sip:pcscf2.visited2.net;lr>
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
Require: sec-agree
Proxy-Require: sec-agree
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321;
port-c=8642; port-s=7531
Cseq: 128 PRACK
RAck: 9022 127 INVITE
Content-Length: 0

14.3.6.5 200 OK to PRACK
SIP/2.0 200 OK
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>;tag=314159
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 128 PRACK
Content-Length: 0

14.3.6.6 200 OK to INVITE
Same as the 200 OK message presented in Section 14.3.5.4.

14.3.6.7 ACK
Same as the ACK message presented in Section 14.3.5.5.

14.3.6.8 INVITE
Same as the INVITE message presented in Section 14.3.5.6.

14.3.6.9 200 OK to INVITE
Same as the 200 OK message presented in Section 14.3.5.7.

14.3.6.10 ACK
Same as the ACK message presented in Section 14.3.5.8.

14.3.7 3GPP Registration Sequence

14.3.7.1 REGISTER
REGISTER sip:registrar.home1.net SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd];comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
From: <sip:user1_public1@home1.net>;tag=4fa3
To: <sip:user1_public1@home1.net>
Contact: <sip:[5555::aaa:bbb:ccc:ddd];comp=sigcomp>;expires=600000
Call-ID: apb03a0s09dkjdfglkj49111

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 145

Authorization: Digest username="user1_private@home1.net", realm="registrar.home1.net",
nonce="", uri="sip:registrar.home1.net", response=""
Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=23456789; spi-s=12345678; port-
c=2468; port-s=1357
Require: sec-agree
Proxy-Require: sec-agree
CSeq: 1 REGISTER
Supported: path
Content-Length: 0

14.3.7.2 401 Unauthorized
SIP/2.0 401 Unauthorized
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd];comp=sigcomp;branch=z9hG4bKnashds7
From: <sip:user1_public1@home1.net>;tag=4fa3
To: <sip:user1_public1@home1.net>
Call-ID: apb03a0s09dkjdfglkj49111
WWW-Authenticate: Digest realm="registrar.home1.net", nonce=base64(RAND + AUTN +
server specific data), algorithm=AKAv1-MD5
Security-Server: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321;
port-c=8642; port-s=7531
CSeq: 1 REGISTER
Content-Length: 0

14.3.7.3 REGISTER
REGISTER sip:registrar.home1.net SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
From: <sip:user1_public1@home1.net>;tag=4fa3
To: <sip:user1_public1@home1.net>
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>;expires=600000
Call-ID: apb03a0s09dkjdfglkj49111
Authorization: Digest username="user1_private@home1.net", realm="registrar.home1.net",
nonce=base64(RAND + AUTN + server specific data), algorithm=AKAv1-MD5,
uri="sip:registrar.home1.net", response="6629fae49393a05397450978507c4ef1"
Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=23456789; spi-s=12345678; port-
c=2468; port-s=1357
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321;
port-c=8642; port-s=7531
Require: sec-agree
Proxy-Require: sec-agree
CSeq: 2 REGISTER
Supported: path
Content-Length: 0

14.3.7.4 200 OK
SIP/2.0 200 OK
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Path: <sip:term@pcscf1.visited1.net;lr>
Service-Route: <sip:orig@scscf1.home1.net;lr>
From: <sip:user1_public1@home1.net>;tag=4fa3
To: <sip:user1_public1@home1.net>
Call-ID: apb03a0s09dkjdfglkj49111
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>;expires=600000

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 146

CSeq: 2 REGISTER
Date: Wed, 11 July 2001 08:49:37 GMT
P-Associated-URI: <sip:user1_public2@home1.net>, <sip:user1_public3@home1.net>,
<sip:+1-212-555-1111@home1.net;user=phone>
Content-Length: 0

14.4 Appendix D – Measurement Results: Linear Search versus
Hashing

14.4.1 Linear Search
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Compression ratio
(compr/uncompr)

INVITE 1437 750 983 0,522
100 Trying 254 21 266 0,083
183 Session Progress 1440 520 765 0,361
PRACK (1) 1318 110 151 0,083
200 OK (1) 904 44 85 0,049
UPDATE 1291 51 99 0,040
200 OK (2) 865 47 95 0,054
180 Ringing 563 29 77 0,052
PRACK (2) 717 34 96 0,047
200 OK (3) 260 14 69 0,054
200 OK (4) 1133 23 78 0,020
ACK 458 15 91 0,033
TOTAL 10640 1658 2855 0,156

Message User CPU time
[ms],
compression

User CPU time
[ms],
decompression

Wall-clock time
[us],
compression

Wall-clock time
[us],
decompression

INVITE 3,86 2,00 4456,29 2229,86
100 Trying 0,14 0,29 315,86 658,71
183 Session Progress 3,00 1,86 3209,86 1884,14
PRACK (1) 0,71 0,57 1025,14 902,71
200 OK (1) 0,43 0,57 634,29 676,29
UPDATE 8,00 0,57 8085,00 777,43
200 OK (2) 6,00 0,43 6153,14 815,43
180 Ringing 6,14 0,43 6239,71 684,71
PRACK (2) 0,71 0,57 608,57 659,86
200 OK (3) 0,29 0,43 365,00 559,43
200 OK (4) 0,71 0,43 646,71 783,43
ACK 0,00 0,43 380,14 595,14
TOTAL 30,00 8,57 32119,71 11227,14

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 147

14.4.2 Hashing
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Compression
ratio

INVITE 1437 739 972 0,514
100 Trying 254 20 265 0,079
183 Session Progress 1440 516 761 0,358
PRACK (1) 1318 109 150 0,083
200 OK (1) 904 43 84 0,048
UPDATE 1291 54 102 0,042
200 OK (2) 865 50 98 0,058
180 Ringing 563 30 78 0,053
PRACK (2) 717 34 96 0,047
200 OK (3) 260 16 71 0,062
200 OK (4) 1133 23 78 0,020
ACK 458 15 91 0,033
TOTAL 10640 1649 2846 0,155

Message User CPU time
[ms],
compression

User CPU time
[ms],
decompression

Wall-clock time
[us],
compression

Wall-clock time
[us],
decompression

INVITE 1,29 2,14 1550,00 2234,29
100 Trying 0,86 0,43 1204,43 644,29
183 Session Progress 0,43 1,57 772,71 2013,14
PRACK (1) 0,43 0,86 699,71 948,29
200 OK (1) 0,43 0,29 569,29 725,14
UPDATE 1,00 0,43 1005,14 749,57
200 OK (2) 0,86 0,71 761,71 693,86
180 Ringing 1,00 0,43 1036,29 657,57
PRACK (2) 1,00 0,29 1103,00 708,43
200 OK (3) 0,71 0,43 748,71 672,57
200 OK (4) 1,00 0,43 1144,71 642,43
ACK 0,86 0,57 875,14 575,71
TOTAL 9,86 8,57 11470,86 11265,29

14.4.3 Time Requirement of Hash Map Updates
Message Time, hash map

update [us]
Time,
compression [us]

Percentage of time
spent updating the
hash map

INVITE 1007 690 59,34 %
100 Trying 1096 254 81,19 %
183 Session Progress 272 677 28,66 %
PRACK (1) 303 573 34,59 %
200 OK (1) 302 355 45,97 %
UPDATE 669 525 56,03 %
200 OK (2) 515 386 57,16 %
180 Ringing 874 332 72,47 %
PRACK (2) 883 321 73,34 %
200 OK (3) 657 246 72,76 %
200 OK (4) 829 442 65,22 %
ACK 745 256 74,43 %
AVG 679,33 421,42 60,10 %

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 148

14.5 Appendix E – Measurement Results: Length of Look-ahead
Buffer

14.5.1 Buffer Length 18 Bytes, 4 Bits Used to Encode Length Values
Message Length

uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message [bytes]

Compression ratio
(compr/uncompr)

INVITE 1437 694 927 0,483
100 Trying 254 42 287 0,165
183 Session Progress 1440 515 760 0,358
PRACK (1) 1318 227 268 0,172
200 OK (1) 904 137 178 0,152
UPDATE 1291 188 236 0,146
200 OK (2) 865 127 175 0,147
180 Ringing 563 87 135 0,155
PRACK (2) 717 107 169 0,149
200 OK (3) 260 40 95 0,154
200 OK (4) 1133 155 210 0,137
ACK 458 65 141 0,142
TOTAL 10640 2384 3581 0,224

Message User CPU time
[ms],
compression

User CPU time
[ms],
decompression

Wall-clock time
[us],
compression

Wall-clock time
[us],
decompression

INVITE 1,43 2,14 1543,00 2282,86
100 Trying 1,00 0,00 1192,71 692,71
183 Session Progress 1,00 2,00 797,29 2064,86
PRACK (1) 0,86 1,14 761,57 1386,43
200 OK (1) 0,43 0,86 618,00 1019,29
UPDATE 0,86 1,00 1088,00 1310,29
200 OK (2) 0,86 0,43 820,14 959,71
180 Ringing 1,00 1,00 1056,29 885,43
PRACK (2) 1,00 0,86 1144,00 1122,57
200 OK (3) 0,29 0,29 758,71 701,43
200 OK (4) 1,57 1,00 1264,14 1235,29
ACK 0,71 0,57 928,14 811,14
TOTAL 11,00 11,29 11972,00 14472,00

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 149

14.5.2 Buffer Length 66 Bytes, 6 Bits Used to Encode Length Values
Message Length

uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message [bytes]

Compression ratio
(compr/uncompr)

INVITE 1437 706 939 0,491
100 Trying 254 24 269 0,094
183 Session Progress 1440 497 742 0,345
PRACK (1) 1318 125 166 0,095
200 OK (1) 904 61 102 0,067
UPDATE 1291 78 126 0,060
200 OK (2) 865 62 110 0,072
180 Ringing 563 44 92 0,078
PRACK (2) 717 50 112 0,070
200 OK (3) 260 20 75 0,077
200 OK (4) 1133 50 105 0,044
ACK 458 24 100 0,052
TOTAL 10640 1741 2938 0,164

Message User CPU time
[ms],
compression

User CPU time
[ms],
decompression

Wall-clock time
[us],
compression

Wall-clock time
[us],
decompression

INVITE 1,43 2,00 1538,29 2183,14
100 Trying 1,00 0,29 1181,86 652,14
183 Session Progress 0,71 1,57 781,29 1984,29
PRACK (1) 0,71 0,71 711,86 1019,71
200 OK (1) 0,57 0,57 587,86 775,00
UPDATE 0,86 0,57 1028,43 838,86
200 OK (2) 0,57 0,29 773,29 723,14
180 Ringing 1,00 0,57 1039,14 729,29
PRACK (2) 1,00 0,71 1111,57 785,43
200 OK (3) 0,57 0,43 752,71 688,29
200 OK (4) 1,29 0,71 1184,71 756,14
ACK 0,71 0,29 891,43 614,57
TOTAL 10,43 8,71 11582,43 11750,00

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 150

14.5.3 Buffer Length 258 Bytes, 8 Bits Used to Encode Length Values
Message Length

uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message [bytes]

Compression ratio
(compr/uncompr)

INVITE 1437 739 972 0,514
100 Trying 254 20 265 0,079
183 Session Progress 1440 516 761 0,358
PRACK (1) 1318 109 150 0,083
200 OK (1) 904 43 84 0,048
UPDATE 1291 54 102 0,042
200 OK (2) 865 50 98 0,058
180 Ringing 563 30 78 0,053
PRACK (2) 717 34 96 0,047
200 OK (3) 260 16 71 0,062
200 OK (4) 1133 23 78 0,020
ACK 458 15 91 0,033
TOTAL 10640 1649 2846 0,155

Message User CPU time
[ms],
compression

User CPU time
[ms],
decompression

Wall-clock time
[us],
compression

Wall-clock time
[us],
decompression

INVITE 1,29 2,14 1550,00 2234,29
100 Trying 0,86 0,43 1204,43 644,29
183 Session Progress 0,43 1,57 772,71 2013,14
PRACK (1) 0,43 0,86 699,71 948,29
200 OK (1) 0,43 0,29 569,29 725,14
UPDATE 1,00 0,43 1005,14 749,57
200 OK (2) 0,86 0,71 761,71 693,86
180 Ringing 1,00 0,43 1036,29 657,57
PRACK (2) 1,00 0,29 1103,00 708,43
200 OK (3) 0,71 0,43 748,71 672,57
200 OK (4) 1,00 0,43 1144,71 642,43
ACK 0,86 0,57 875,14 575,71
TOTAL 9,86 8,57 11470,86 11265,29

14.6 Appendix F – Measurement Results: Length of Shared States

14.6.1 Shared State Length 500 Bytes
Message Length

uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message
[bytes]

Compression ratio
(compr/uncompr)

Avg time [us],
compression

Avg time [us],
decompression

INVITE 1437 739 972 0,514 1550,00 2234,29
100 Trying 254 20 265 0,079 1204,43 644,29
183 Progress 1440 516 761 0,358 772,71 2013,14
PRACK (1) 1318 109 150 0,083 699,71 948,29
200 OK (1) 904 43 84 0,048 569,29 725,14
UPDATE 1291 54 102 0,042 1005,14 749,57
200 OK (2) 865 50 98 0,058 761,71 693,86
180 Ringing 563 30 78 0,053 1036,29 657,57
PRACK (2) 717 34 96 0,047 1103,00 708,43
200 OK (3) 260 16 71 0,062 748,71 672,57
200 OK (4) 1133 23 78 0,020 1144,71 642,43
ACK 458 15 91 0,033 875,14 575,71
TOTAL 10640 1649 2846 0,155 11470,86 11265,29

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 151

14.6.2 Shared State Length 750 Bytes
Message Length

uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message
[bytes]

Compression
ratio
(compr/uncompr)

Avg time [us],
compression

Avg time [us],
decompression

INVITE 1437 739 973 0,514 1592,57 2171,71
100 Trying 254 21 267 0,083 1321,14 651,00
183 Progress 1440 507 753 0,352 834,71 1993,29
PRACK (1) 1318 74 115 0,056 836,57 802,86
200 OK (1) 904 40 81 0,044 701,57 703,71
UPDATE 1291 54 102 0,042 1272,14 763,43
200 OK (2) 865 40 88 0,046 1164,00 637,00
180 Ringing 563 26 74 0,046 1061,29 631,14
PRACK (2) 717 27 89 0,038 1294,14 662,86
200 OK (3) 260 9 64 0,035 989,14 516,43
200 OK (4) 1133 23 78 0,020 1152,86 651,86
ACK 458 15 91 0,033 1175,57 574,71
TOTAL 10640 1575 2775 0,148 13395,71 10760,00

14.6.3 Shared State Length 1000 Bytes
Message Length

uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message
[bytes]

Compression ratio
(compr/uncompr)

Avg time [us],
compression

Avg time [us],
decompression

INVITE 1437 739 972 0,514 1545,00 2245,29
100 Trying 254 21 266 0,083 1327,86 654,71
183 Progress 1440 436 681 0,303 758,71 1778,14
PRACK (1) 1318 73 114 0,055 830,86 872,14
200 OK (1) 904 43 84 0,048 724,29 669,29
UPDATE 1291 52 100 0,040 1597,71 772,00
200 OK (2) 865 38 86 0,044 1532,71 660,71
180 Ringing 563 23 71 0,041 1096,71 643,00
PRACK (2) 717 29 91 0,040 1482,00 662,57
200 OK (3) 260 9 64 0,035 1094,71 526,71
200 OK (4) 1133 23 78 0,020 1215,29 660,71
ACK 458 15 91 0,033 1472,57 590,57
TOTAL 10640 1501 2698 0,141 14678,43 10735,86

14.6.4 Shared State Length 1500 Bytes
Message Length

uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message
[bytes]

Compression
ratio
(compr/uncompr)

Avg time [us],
compression

Avg time [us],
decompression

INVITE 1437 739 972 0,514 1564,57 2243,29
100 Trying 254 21 266 0,083 1456,14 667,71
183 Progress 1440 295 540 0,205 731,86 1538,14
PRACK (1) 1318 70 111 0,053 949,43 797,71
200 OK (1) 904 40 81 0,044 1267,86 762,57
UPDATE 1291 52 100 0,040 2140,00 806,29
200 OK (2) 865 38 86 0,044 1907,00 692,00
180 Ringing 563 29 77 0,052 1169,57 656,29
PRACK (2) 717 27 89 0,038 1940,71 668,43
200 OK (3) 260 9 64 0,035 1686,00 533,29
200 OK (4) 1133 26 81 0,023 1199,43 670,86
ACK 458 15 91 0,033 1840,29 582,29
TOTAL 10640 1361 2558 0,128 17852,86 10618,86

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 152

14.7 Appendix G – Measurement Results: Secure Hash Algorithm
Input Length [bytes] SHA-1 hash of the

input, avg time [us]
SHA-1 hash of the
input, standard
deviation [us]

200 OK (3) 260 99,70 5,03
ACK 458 120,90 30,46
PRACK (2) 717 130,50 30,15
200 OK (1) 904 136,10 19,72
200 OK (4) 1133 161,50 25,33
183 Session Progress 1440 167,60 21,37
UDVM memory snapshot 4096 4096 283,42 6,30
UDVM memory snapshot 8192 8192 408,25 26,59
UDVM memory snapshot 16384 16384 559,17 36,81

14.8 Appendix H – Measurement Results: SigComp Mechanisms

14.8.1 Basic Compression

14.8.1.1 DMS 4096 Bytes
Message Length

uncompr
Length
compr

Length of
SigComp
message

Length of
SigComp
message,
bytecode
saved

Cumulative
amount of
state
memory
used
[bytes]

Compr ratio
(SigComp/unc
ompr)

Compr ratio
(SigComp/unc
ompr),
bytecode
saved

INVITE 1437 1085 1164 1164 0 0,810 0,810
100 Trying 254 276 355 355 0 1,398 1,398
183 Progress 1440 1027 1106 1106 0 0,768 0,768
PRACK (1) 1318 996 1075 1006 0 0,816 0,763
200 OK (1) 904 641 720 651 0 0,796 0,720
UPDATE 1291 956 1035 966 0 0,802 0,748
200 OK (2) 865 625 704 635 0 0,814 0,734
180 Ringing 563 490 569 500 0 1,011 0,888
PRACK (2) 717 645 724 655 0 1,010 0,914
200 OK (3) 260 279 358 289 0 1,377 1,112
200 OK (4) 1133 759 838 769 0 0,740 0,679
ACK 458 397 476 407 0 1,039 0,889
TOTAL 10640 8176 9124 8503 0,858 0,799

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compr
time [us]

Avg time [us],
decompr

Standard
deviation,
decompr
time [us]

INVITE 1541 38,65 2799 71,16
100 Trying 1272 31,05 1167 27,60
183 Progress 1020 27,07 2585 50,71
PRACK (1) 1272 32,48 2579 44,59
200 OK (1) 1151 27,13 1873 22,70
UPDATE 1257 42,21 2502 79,26
200 OK (2) 977 25,57 1845 25,61
180 Ringing 892 44,26 1628 60,31
PRACK (2) 1060 24,40 1919 56,65
200 OK (3) 681 33,21 1231 45,58
200 OK (4) 880 70,55 2114 101,55
ACK 810 36,03 1410 38,46
TOTAL 12814 23650

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 153

14.8.1.2 DMS 8192 Bytes
Message Length

uncompr
Length
compr

Length of
SigComp
message

Length of
SigComp
message,
bytecode
saved

Cumulativ
e amount
of state
memory
used
[bytes]

Compr
ratio
(SigComp/
uncompr)

Compr
ratio
(SigComp/
uncompr),
bytecode
saved

INVITE 1437 1085 1164 1164 0 0,810 0,810
100 Trying 254 276 355 355 0 1,398 1,398
183 Session Prog. 1440 1027 1106 1106 0 0,768 0,768
PRACK (1) 1318 996 1075 1006 0 0,816 0,763
200 OK (1) 904 641 720 651 0 0,796 0,720
UPDATE 1291 956 1035 966 0 0,802 0,748
200 OK (2) 865 625 704 635 0 0,814 0,734
180 Ringing 563 490 569 500 0 1,011 0,888
PRACK (2) 717 645 724 655 0 1,010 0,914
200 OK (3) 260 279 358 289 0 1,377 1,112
200 OK (4) 1133 759 838 769 0 0,740 0,679
ACK 458 397 476 407 0 1,039 0,889
TOTAL 10640 8176 9124 8503 0,858 0,799

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compr
time [us]

Avg time
[us],
decompr

Standard
deviation,
decompr
time [us]

INVITE 1658 30,69 2744 67,57
100 Trying 1336 20,59 1193 26,87
183 Session Prog. 1069 36,44 2574 48,49
PRACK (1) 1402 36,42 2500 20,36
200 OK (1) 1304 29,01 1868 36,06
UPDATE 1406 33,73 2440 32,44
200 OK (2) 1113 35,29 1849 42,56
180 Ringing 1039 27,66 1558 32,67
PRACK (2) 1210 44,19 1878 73,89
200 OK (3) 762 26,76 1178 33,33
200 OK (4) 925 30,41 2088 26,80
ACK 919 44,25 1377 22,59
TOTAL 14145 23249

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 154

14.8.1.3 DMS 16384 Bytes
Message Length

uncompr
Length
compr

Length of
SigComp
message

Length of
SigComp
message,
bytecode
saved

Cumulative
amount of
state
memory
used [bytes]

Compr
ratio
(SigComp/
uncompr)

Compr
ratio
(SigComp/
uncompr),
bytecode
saved

INVITE 1437 1085 1165 1165 0 0,811 0,811
100 Trying 254 276 356 356 0 1,402 1,402
183 Session Prog. 1440 1027 1107 1107 0 0,769 0,769
PRACK (1) 1318 996 1076 1006 0 0,816 0,763
200 OK (1) 904 641 721 651 0 0,798 0,720
UPDATE 1291 956 1036 966 0 0,802 0,748
200 OK (2) 865 625 705 635 0 0,815 0,734
180 Ringing 563 490 570 500 0 1,012 0,888
PRACK (2) 717 645 725 655 0 1,011 0,914
200 OK (3) 260 279 359 289 0 1,381 1,112
200 OK (4) 1133 759 839 769 0 0,741 0,679
ACK 458 397 477 407 0 1,041 0,889
TOTAL 10640 8176 9136 8506 0,859 0,799

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compr
time [us]

Avg time
[us],
decompr

Standard
deviation,
decompr
time [us]

INVITE 1719 26,36 2768 33,69
100 Trying 1350 42,37 1235 14,48
183 Session Prog. 1175 40,63 2546 52,17
PRACK (1) 1527 37,95 2530 74,34
200 OK (1) 1412 32,44 1898 28,60
UPDATE 1544 42,70 2445 28,60
200 OK (2) 1205 22,07 1877 32,86
180 Ringing 1152 20,47 1594 23,35
PRACK (2) 1301 41,84 1916 44,33
200 OK (3) 843 41,86 1228 38,43
200 OK (4) 1025 46,34 2132 92,16
ACK 1049 27,61 1444 51,38
TOTAL 15302 23613

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 155

14.8.2 Static Compression

14.8.2.1 DMS 4096 Bytes
Message Length

uncompr
Length
compr

Length of
SigComp
message

Length of
SigComp
message,
bytecode
saved

Cumulative
amount of
state
memory
used
[bytes]

Compr
ratio
(SigComp/
uncompr)

Compr
ratio
(SigComp/
uncompr),
bytecode
saved

INVITE 1437 791 887 887 0 0,617 0,617
100 Trying 254 174 270 270 0 1,063 1,063
183 Session Prog. 1440 756 852 852 0 0,592 0,592
PRACK (1) 1318 739 835 749 0 0,634 0,568
200 OK (1) 904 448 544 458 0 0,602 0,507
UPDATE 1291 718 814 728 0 0,631 0,564
200 OK (2) 865 436 532 446 0 0,615 0,516
180 Ringing 563 339 435 349 0 0,773 0,620
PRACK (2) 717 491 587 501 0 0,819 0,699
200 OK (3) 260 183 279 193 0 1,073 0,742
200 OK (4) 1133 546 642 556 0 0,567 0,491
ACK 458 287 383 297 0 0,836 0,648
TOTAL 10640 5908 7060 6286 0,664 0,591

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compr
time [us]

Avg time
[us],
decompr

Standard
deviation,
decompr
time [us]

INVITE 1497 25,96 2455 64,91
100 Trying 937 31,18 1087 13,98
183 Session Prog. 987 22,40 2252 57,79
PRACK (1) 1337 23,44 2215 63,09
200 OK (1) 1183 29,98 1607 50,51
UPDATE 1272 38,28 2156 34,69
200 OK (2) 1002 44,21 1586 32,73
180 Ringing 880 31,02 1412 47,69
PRACK (2) 1088 30,13 1675 44,99
200 OK (3) 669 31,15 1089 42,05
200 OK (4) 891 46,13 1780 50,85
ACK 793 31,94 1271 29,80
TOTAL 12536 20586

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 156

14.8.2.2 DMS 8192 Bytes
Message Length

uncompr
Length
compr

Length of
SigComp
message

Length of
SigComp
message,
bytecode
saved

Cumulativ
e amount
of state
memory
used
[bytes]

Compr
ratio
(SigComp/
uncompr)

Compr
ratio
(SigComp/
uncompr),
bytecode
saved

INVITE 1437 791 887 887 0 0,617 0,617
100 Trying 254 174 270 270 0 1,063 1,063
183 Session Prog. 1440 756 852 852 0 0,592 0,592
PRACK (1) 1318 739 835 749 0 0,634 0,568
200 OK (1) 904 448 544 458 0 0,602 0,507
UPDATE 1291 718 814 728 0 0,631 0,564
200 OK (2) 865 436 532 446 0 0,615 0,516
180 Ringing 563 339 435 349 0 0,773 0,620
PRACK (2) 717 491 587 501 0 0,819 0,699
200 OK (3) 260 183 279 193 0 1,073 0,742
200 OK (4) 1133 546 642 556 0 0,567 0,491
ACK 458 287 383 297 0 0,836 0,648
TOTAL 10640 5908 7060 6286 0,664 0,591

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compr
time [us]

Avg time
[us],
decompr

Standard
deviation,
decompr
time [us]

INVITE 1574 35,40 2399 31,18
100 Trying 1030 45,49 1090 33,37
183 Session Prog. 1048 34,08 2295 74,28
PRACK (1) 1377 33,15 2259 71,28
200 OK (1) 1231 39,21 1647 36,81
UPDATE 1315 30,12 2236 101,25
200 OK (2) 1019 22,49 1613 25,35
180 Ringing 915 26,73 1390 28,55
PRACK (2) 1114 22,76 1708 51,99
200 OK (3) 709 29,61 1108 30,88
200 OK (4) 900 36,42 1837 53,08
ACK 830 34,87 1298 55,37
TOTAL 13060 20879

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 157

14.8.2.3 DMS 16384 Bytes
Message Length

uncompr
Length
compr

Length of
SigComp
message

Length of
SigComp
message,
bytecode
saved

Cumulative
amount of
state
memory
used [bytes]

Compr
ratio
(SigComp/
uncompr)

Compr
ratio
(SigComp/
uncompr),
bytecode
saved

INVITE 1437 791 888 888 0 0,618 0,618
100 Trying 254 174 271 271 0 1,067 1,067
183 Session Prog. 1440 756 853 853 0 0,592 0,592
PRACK (1) 1318 739 836 749 0 0,634 0,568
200 OK (1) 904 448 545 458 0 0,603 0,507
UPDATE 1291 718 815 728 0 0,631 0,564
200 OK (2) 865 436 533 446 0 0,616 0,516
180 Ringing 563 339 436 349 0 0,774 0,620
PRACK (2) 717 491 588 501 0 0,820 0,699
200 OK (3) 260 183 280 193 0 1,077 0,742
200 OK (4) 1133 546 643 556 0 0,568 0,491
ACK 458 287 384 297 0 0,838 0,648
TOTAL 10640 5908 7072 6289 0,665 0,591

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compr
time [us]

Avg time
[us],
decompr

Standard
deviation,
decompr
time [us]

INVITE 1685 24,61 2531 55,03
100 Trying 1129 45,98 1160 32,84
183 Session Prog. 1067 43,84 2293 28,00
PRACK (1) 1527 41,67 2311 84,17
200 OK (1) 1297 33,68 1696 26,16
UPDATE 1379 43,11 2256 56,43
200 OK (2) 1103 30,52 1702 44,93
180 Ringing 1009 41,15 1417 31,48
PRACK (2) 1219 40,68 1711 17,41
200 OK (3) 746 22,39 1135 17,09
200 OK (4) 920 15,78 1845 45,80
ACK 956 32,54 1294 16,29
TOTAL 14039 21352

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 158

14.8.3 Dynamic Compression

14.8.3.1 DMS 4096 Bytes
Message Length

uncompr
Length
compr

Length of
SigComp
message

Cumulative
amount of
state memory
used [bytes]

Compr
ratio
(SigComp/
uncompr)

INVITE 1437 791 1018 4032 0,708
100 Trying 254 174 407 4032 1,602
183 Session Prog. 1440 756 989 8064 0,687
PRACK (1) 1318 126 154 8064 0,117
200 OK (1) 904 43 71 12096 0,079
UPDATE 1291 52 87 12096 0,067
200 OK (2) 865 44 79 16128 0,091
180 Ringing 563 34 69 20160 0,123
PRACK (2) 717 30 79 16128 0,110
200 OK (3) 260 14 56 24192 0,215
200 OK (4) 1133 23 65 28224 0,057
ACK 458 18 81 20160 0,177
TOTAL 10640 2105 3155 0,297

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compr
time [us]

Avg time
[us],
decompr

Standard
deviation,
decompr time
[us]

INVITE 2456 38,66 2774 136,30
100 Trying 1063 23,06 1288 34,95
183 Session Prog. 1953 31,61 2695 135,42
PRACK (1) 1911 38,09 1294 26,77
200 OK (1) 1203 42,88 1112 32,05
UPDATE 2040 30,59 1118 21,30
200 OK (2) 1419 33,75 1109 32,63
180 Ringing 1413 28,49 1063 55,69
PRACK (2) 1282 30,86 1099 48,42
200 OK (3) 792 40,92 972 27,67
200 OK (4) 1884 30,29 1080 36,07
ACK 1007 30,34 1016 30,47
TOTAL 18423 16620

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 159

14.8.3.2 DMS 8192 Bytes
Message Length

uncompr
Length
compr

Length of
SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compr
ratio
(SigComp/
uncompr)

INVITE 1437 791 1018 8128 0,708
100 Trying 254 174 407 8128 1,602
183 Session Prog. 1440 756 989 16256 0,687
PRACK (1) 1318 123 151 16256 0,115
200 OK (1) 904 43 71 24384 0,079
UPDATE 1291 52 87 24384 0,067
200 OK (2) 865 44 79 32512 0,091
180 Ringing 563 27 62 40640 0,110
PRACK (2) 717 31 80 32512 0,112
200 OK (3) 260 16 58 48768 0,223
200 OK (4) 1133 23 65 56896 0,057
ACK 458 15 78 40640 0,170
TOTAL 10640 2095 3145 0,296

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compr
time [us]

Avg time
[us],
decompr

Standard
deviation,
decompr time
[us]

INVITE 2687 29,07 2877 64,41
100 Trying 1330 34,51 1424 32,42
183 Session Prog. 2187 31,03 2620 80,67
PRACK (1) 1885 33,62 1494 23,87
200 OK (1) 1411 38,50 1294 43,06
UPDATE 1735 32,99 1371 45,24
200 OK (2) 1262 28,09 1386 34,20
180 Ringing 1383 20,97 1248 22,53
PRACK (2) 1256 29,80 1294 23,27
200 OK (3) 819 35,67 1246 27,10
200 OK (4) 1632 25,39 1364 39,69
ACK 947 26,22 1241 46,99
TOTAL 18534 18859

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 160

14.8.3.3 DMS 16384 Bytes
Message Length

uncompr
Length
compr

Length of
SigComp
message

Cumulative
amount of
state memory
used [bytes]

Compr
ratio
(SigComp/
uncompr)

INVITE 1437 791 1022 16320 0,711
100 Trying 254 174 411 16320 1,618
183 Session Prog. 1440 756 993 32640 0,690
PRACK (1) 1318 123 151 32640 0,115
200 OK (1) 904 43 71 48960 0,079
UPDATE 1291 52 87 48960 0,067
200 OK (2) 865 44 79 65280 0,091
180 Ringing 563 27 62 81600 0,110
PRACK (2) 717 31 80 65280 0,112
200 OK (3) 260 16 58 97920 0,223
200 OK (4) 1133 23 65 114240 0,057
ACK 458 15 78 81600 0,170
TOTAL 10640 2095 3157 0,297

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compr
time [us]

Avg time
[us],
decompr

Standard
deviation,
decompr time
[us]

INVITE 2946 34,75 3084 45,18
100 Trying 1631 44,93 1824 37,21
183 Session Prog. 2338 39,99 2954 47,37
PRACK (1) 2040 19,26 1926 27,95
200 OK (1) 1573 19,93 1714 33,02
UPDATE 2030 24,67 1766 15,61
200 OK (2) 1550 25,48 1730 36,01
180 Ringing 1674 34,71 1733 48,57
PRACK (2) 1412 30,97 1802 37,29
200 OK (3) 1103 37,71 1666 25,64
200 OK (4) 1936 28,39 1697 27,26
ACK 1229 36,03 1645 26,88
TOTAL 21461 23541

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 161

14.8.4 Shared Compression

14.8.4.1 DMS 4096 Bytes
Message Length

uncompr
Length
compr

Length of
SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compr
ratio
(SigComp/
uncompr)

INVITE 1437 791 1025 5469 0,713
100 Trying 254 20 266 5723 1,047
183 Session Prog. 1440 546 792 11195 0,550
PRACK (1) 1318 111 152 12513 0,115
200 OK (1) 904 43 84 17449 0,093
UPDATE 1291 59 107 18740 0,083
200 OK (2) 865 44 92 23637 0,106
180 Ringing 563 62 110 28232 0,195
PRACK (2) 717 41 103 24917 0,144
200 OK (3) 260 14 69 33241 0,265
200 OK (4) 1133 56 111 38406 0,098
ACK 458 18 94 30800 0,205
TOTAL 10640 1805 3005 0,282

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compr
time [us]

Avg time
[us],
decompr

Standard
deviation,
decompr time
[us]

INVITE 2600 65,38 2910 143,78
100 Trying 1373 36,35 1176 40,60
183 Session Prog. 2182 45,66 2421 120,22
PRACK (1) 2349 37,65 1481 37,28
200 OK (1) 1866 43,80 1309 42,30
UPDATE 2609 49,60 1332 27,78
200 OK (2) 1984 35,40 1316 31,67
180 Ringing 1597 23,93 1295 30,28
PRACK (2) 1790 35,48 1283 25,64
200 OK (3) 1269 45,88 1148 35,93
200 OK (4) 2199 26,14 1384 43,86
ACK 1505 36,12 1192 27,50
TOTAL 23324 18247

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 162

14.8.4.2 DMS 8192 Bytes
Message Length

uncompr
Length compr Length of

SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compr
ratio
(SigComp/
uncompr)

INVITE 1437 791 1025 9565 0,713
100 Trying 254 20 266 9819 1,047
183 Session Prog. 1440 546 792 19387 0,550
PRACK (1) 1318 109 150 20705 0,114
200 OK (1) 904 43 84 29737 0,093
UPDATE 1291 52 100 31028 0,077
200 OK (2) 865 44 92 40021 0,106
180 Ringing 563 27 75 48712 0,133
PRACK (2) 717 31 93 41301 0,130
200 OK (3) 260 16 71 57817 0,273
200 OK (4) 1133 23 78 67078 0,069
ACK 458 15 91 51280 0,199
TOTAL 10640 1717 2917 0,274

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compr time
[us]

Avg time [us],
decompr

Standard
deviation,
decompr time
[us]

INVITE 2822 35,25 2941 57,28
100 Trying 1581 39,00 1332 48,31
183 Session Prog. 2301 35,14 2606 47,64
PRACK (1) 2125 41,49 1761 26,55
200 OK (1) 1609 35,23 1549 38,00
UPDATE 2088 34,30 1564 25,34
200 OK (2) 1681 36,35 1591 20,20
180 Ringing 1625 30,42 1443 15,80
PRACK (2) 1525 36,42 1540 23,40
200 OK (3) 1229 54,64 1401 51,39
200 OK (4) 1874 27,00 1520 63,13
ACK 1679 24,63 1396 27,45
TOTAL 22139 20644

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 163

14.8.4.3 DMS 16384 Bytes
Message Length uncompr Length compr Length of

SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compr
ratio
(SigComp/
uncompr)

INVITE 1437 791 1029 17757 0,716
100 Trying 254 20 270 18011 1,063
183 Session Prog. 1440 546 796 35771 0,553
PRACK (1) 1318 109 150 37089 0,114
200 OK (1) 904 43 84 54313 0,093
UPDATE 1291 52 100 55604 0,077
200 OK (2) 865 44 92 72789 0,106
180 Ringing 563 27 75 89672 0,133
PRACK (2) 717 31 93 74069 0,130
200 OK (3) 260 16 71 106969 0,273
200 OK (4) 1133 23 78 124422 0,069
ACK 458 15 91 92240 0,199
TOTAL 10640 1717 2929 0,275

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compr time
[us]

Avg time [us],
decompr

Standard
deviation,
decompr time
[us]

INVITE 3086 37,71 3217 34,28
100 Trying 1976 306,93 1724 251,34
183 Session Prog. 2561 30,40 2861 23,44
PRACK (1) 2381 48,02 2123 61,47
200 OK (1) 1896 54,87 1931 38,17
UPDATE 2356 42,38 2016 32,74
200 OK (2) 1873 42,41 1958 37,12
180 Ringing 1909 40,83 1920 46,50
PRACK (2) 1748 54,78 1999 63,98
200 OK (3) 1389 34,52 1833 24,77
200 OK (4) 2174 36,71 1896 34,63
ACK 1522 41,98 1887 49,12
TOTAL 24872 25365

14.9 Appendix I – Measurement Results: Decompression Memory Size
For the results of the measurements in which the 3GPP video call session establishment
sequence was used, see Appendix H.

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 164

14.9.1 Dynamic Compression

14.9.1.1 Basic Voice Call, DMS 2048 Bytes
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 514 248 475 1984 0,924
100 Trying 311 170 403 1984 1,296
180 Ringing 615 352 585 3968 0,951
200 OK (1) 610 352 585 5952 0,959
ACK 378 46 81 3968 0,214
TOTAL 2428 1168 2129 0,877

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 1330 42,87 1429 33,80
100 Trying 1003 36,82 1197 20,30
180 Ringing 1080 25,08 1535 30,04
200 OK (1) 1107 44,67 1585 51,88
ACK 747 16,83 925 14,88
TOTAL 5267 6670

14.9.1.2 Basic Voice Call, DMS 4096 Bytes
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 514 245 472 4032 0,918
100 Trying 311 170 403 4032 1,296
180 Ringing 615 327 560 8064 0,911
200 OK (1) 610 328 561 12096 0,920
ACK 378 43 78 8064 0,206
TOTAL 2428 1113 2074 0,854

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 1494 42,47 1514 31,37
100 Trying 1196 203,08 1264 33,97
180 Ringing 1027 30,09 1592 59,53
200 OK (1) 1086 33,24 1646 121,34
ACK 710 28,92 1030 37,25
TOTAL 5513 7046

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 165

14.9.1.3 Basic Voice Call, DMS 8192 Bytes
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 514 245 472 8128 0,918
100 Trying 311 170 403 8128 1,296
180 Ringing 615 327 560 16256 0,911
200 OK (1) 610 328 561 24384 0,920
ACK 378 43 78 16256 0,206
TOTAL 2428 1113 2074 0,854

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 1610 25,52 1605 24,67
100 Trying 1311 30,01 1454 132,52
180 Ringing 1184 43,82 1720 27,69
200 OK (1) 1270 39,07 1751 38,28
ACK 858 27,34 1352 23,69
TOTAL 6233 7882

14.9.2 Shared Compression

14.9.2.1 Basic Voice Call, DMS 2048 Bytes
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 514 248 482 2498 0,938
100 Trying 311 68 311 2809 1,000
180 Ringing 615 208 454 5408 0,738
200 OK (1) 610 208 454 8002 0,744
ACK 378 27 75 6396 0,198
TOTAL 2428 759 1776 0,731

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 1442 47,04 1508 31,76
100 Trying 1181 52,77 1176 20,56
180 Ringing 1278 27,40 1413 20,12
200 OK (1) 1350 28,79 1466 35,28
ACK 1235 36,87 1052 26,76
TOTAL 6487 6615

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 166

14.9.2.2 Basic Voice Call, DMS 4096 Bytes
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 514 245 479 4546 0,932
100 Trying 311 64 310 4857 0,997
180 Ringing 615 181 427 9504 0,694
200 OK (1) 610 180 426 14146 0,698
ACK 378 25 73 10492 0,193
TOTAL 2428 695 1715 0,706

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 1615 26,86 1599 33,31
100 Trying 1399 29,08 1251 18,11
180 Ringing 1202 27,71 1494 20,01
200 OK (1) 1281 24,05 1513 25,57
ACK 984 15,32 1157 25,58
TOTAL 6481 7013

14.9.2.3 Basic Voice Call, DMS 8192 Bytes
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 514 245 479 8642 0,932
100 Trying 311 64 310 8953 0,997
180 Ringing 615 181 427 17696 0,694
200 OK (1) 610 180 426 26434 0,698
ACK 378 25 73 18684 0,193
TOTAL 2428 695 1715 0,706

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 1718 32,37 1704 33,38
100 Trying 1603 40,90 1420 53,91
180 Ringing 1350 28,77 1642 26,35
200 OK (1) 1510 34,62 1644 45,91
ACK 1148 29,33 1408 36,30
TOTAL 7330 7817

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 167

14.10 Appendix J – Measurement Results: Unreliable versus
Reliable Transport

14.10.1 Unreliable Transport

14.10.1.1 Dynamic Compression, DMS 8192 Bytes, 3GPP Video Call
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Cumulative amount
of state memory
used [bytes]

Compression ratio
(SigComp/uncompr)

INVITE 1437 739 965 8128 0,672
100 Trying 254 173 405 8128 1,594
183 Session Prog. 1440 719 951 16256 0,660
PRACK (1) 1318 124 152 16256 0,115
200 OK (1) 904 43 71 24384 0,079
UPDATE 1291 52 87 24384 0,067
200 OK (2) 865 44 79 32512 0,091
180 Ringing 563 27 62 40640 0,110
PRACK (2) 717 31 80 32512 0,112
200 OK (3) 260 16 58 48768 0,223
200 OK (4) 1133 23 65 56896 0,057
ACK 458 15 78 40640 0,170
TOTAL 10640 2006 3053 0,287

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard deviation,
decompression
time [us]

INVITE 3322 48,96 2883 64,41
100 Trying 1852 41,94 1527 28,68
183 Session Prog. 2117 37,83 2779 44,61
PRACK (1) 1807 75,40 1612 25,29
200 OK (1) 1284 20,35 1271 20,65
UPDATE 1800 40,27 1351 21,85
200 OK (2) 1303 34,65 1270 32,97
180 Ringing 1426 29,60 1291 43,22
PRACK (2) 1371 36,19 1312 32,91
200 OK (3) 879 14,45 1219 39,01
200 OK (4) 1682 43,93 1310 60,09
ACK 1213 118,74 1208 25,85
TOTAL 20054 19031

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 168

14.10.1.2 Shared Compression, DMS 8192 Bytes, 3GPP Video Call
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 1437 739 972 9565 0,676
100 Trying 254 21 266 9819 1,047
183 Session Prog. 1440 295 540 19387 0,375
PRACK (1) 1318 70 111 20705 0,084
200 OK (1) 904 40 81 29737 0,090
UPDATE 1291 52 100 31028 0,077
200 OK (2) 865 38 86 40021 0,099
180 Ringing 563 29 77 48712 0,137
PRACK (2) 717 27 89 41301 0,124
200 OK (3) 260 9 64 57817 0,246
200 OK (4) 1133 26 81 67078 0,071
ACK 458 15 91 51280 0,199
TOTAL 10640 1361 2558 0,240

Message Avg time [us],
compression and
memory image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 3395 29,34 3062 47,92
100 Trying 2389 37,02 1364 37,98
183 Session Prog. 2287 34,76 2145 49,93
PRACK (1) 2405 31,58 1693 55,84
200 OK (1) 2313 49,72 1630 32,64
UPDATE 3499 42,60 1646 24,82
200 OK (2) 3000 36,54 1506 45,12
180 Ringing 2006 19,49 1499 28,98
PRACK (2) 2856 73,62 1495 24,85
200 OK (3) 2431 34,87 1339 15,95
200 OK (4) 2432 31,80 1547 31,10
ACK 2664 157,62 1488 35,95
TOTAL 31677 20413

14.10.1.3 Dynamic Compression, DMS 8192 Bytes, Basic Voice Call
See Section 14.9.1.3

14.10.1.4 Shared Compression, DMS 8192 Bytes, Basic Voice Call
See Section 14.9.2.3

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 169

14.10.2 Reliable Transport

14.10.2.1 Dynamic Compression, DMS 8192 Bytes, 3GPP Video Call
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 1437 739 959 8128 0,667
100 Trying 254 173 399 8128 1,571
183 Session Prog. 1440 570 585 16256 0,406
PRACK (1) 1318 124 146 16256 0,111
200 OK (1) 904 43 65 24384 0,072
UPDATE 1291 52 81 24384 0,063
200 OK (2) 865 44 73 32512 0,084
180 Ringing 563 21 50 40640 0,089
PRACK (2) 717 31 74 32512 0,103
200 OK (3) 260 14 50 48768 0,192
200 OK (4) 1133 23 59 56896 0,052
ACK 458 15 72 40640 0,157
TOTAL 10640 1849 2613 0,246

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 3246 33,56 2826 73,87
100 Trying 1857 20,32 1521 26,72
183 Session Prog. 2039 44,57 2526 53,33
PRACK (1) 1789 31,00 1517 27,95
200 OK (1) 1354 54,41 1274 29,06
UPDATE 1859 39,48 1342 39,08
200 OK (2) 1279 24,86 1308 25,97
180 Ringing 991 17,22 1352 21,90
PRACK (2) 1362 34,34 1323 30,69
200 OK (3) 962 32,29 1206 30,89
200 OK (4) 2059 32,95 1296 32,10
ACK 1183 35,71 1195 27,07
TOTAL 19978 18685

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 170

14.10.2.2 Shared Compression, DMS 8192 Bytes, 3GPP Video Call
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 1437 739 972 9565 0,676
100 Trying 254 21 260 9819 1,024
183 Session Prog. 1440 292 314 19387 0,218
PRACK (1) 1318 124 159 20705 0,121
200 OK (1) 904 40 75 29737 0,083
UPDATE 1291 52 94 31028 0,073
200 OK (2) 865 38 80 40021 0,092
180 Ringing 563 49 91 48712 0,162
PRACK (2) 717 24 80 41301 0,112
200 OK (3) 260 9 58 57817 0,223
200 OK (4) 1133 55 104 67078 0,092
ACK 458 15 85 51280 0,186
TOTAL 10640 1458 2372 0,223

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 3328 43,90 3017 56,85
100 Trying 2393 43,15 1348 38,17
183 Session Prog. 2006 29,97 2104 52,04
PRACK (1) 2288 29,14 1867 43,12
200 OK (1) 2431 32,30 1514 28,02
UPDATE 3520 57,09 1638 29,95
200 OK (2) 3003 45,82 1547 39,11
180 Ringing 2766 58,60 1526 25,09
PRACK (2) 2856 58,27 1481 19,74
200 OK (3) 2487 40,35 1392 33,67
200 OK (4) 3807 67,32 1585 32,18
ACK 1978 34,00 1423 24,26
TOTAL 32865 20441

14.10.2.3 Dynamic Compression, DMS 8192 Bytes, Basic Voice Call
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 514 245 472 8642 0,918
100 Trying 311 170 397 8953 1,277
180 Ringing 615 174 189 17696 0,307
200 OK (1) 610 15 30 26434 0,049
ACK 378 43 72 18684 0,190
TOTAL 2428 647 1160 0,478

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 1614 55,26 1603 19,81
100 Trying 1305 15,86 1390 23,52
180 Ringing 1079 48,38 1542 29,96
200 OK (1) 1018 43,80 1221 44,51
ACK 895 42,46 1233 35,16
TOTAL 5911 6989

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 171

14.10.2.4 Shared Compression, DMS 8192, Basic Voice Call
Message Length

uncompressed
Length
compressed

Length of
SigComp
message

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(uncompr/Sigcomp)

INVITE 514 245 479 8642 0,932
100 Trying 311 64 304 8953 0,977
180 Ringing 615 136 158 17696 0,257
200 OK (1) 610 15 37 26434 0,061
ACK 378 26 68 18684 0,180
TOTAL 2428 486 1046 0,431

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 1719 36,51 1726 46,99
100 Trying 1604 30,52 1421 52,31
180 Ringing 1049 27,39 1611 24,71
200 OK (1) 1007 28,94 1204 37,94
ACK 1192 37,00 1383 32,21
TOTAL 6571 7346

14.11 Appendix K – Measurement Results: Central Processor
Unit

14.11.1 Pentium 4 Hyper-Threading 3.0 GHz

14.11.1.1 Video Call
Message Avg time [us],

compression and
memory image

Standard deviation,
compression time
[us]

Avg time [us],
decompression

Standard deviation,
decompression time
[us]

INVITE 2822 35,25 2941 57,28
100 Trying 1581 39,00 1332 48,31
183 Session Prog. 2301 35,14 2606 47,64
PRACK (1) 2125 41,49 1761 26,55
200 OK (1) 1609 35,23 1549 38,00
UPDATE 2088 34,30 1564 25,34
200 OK (2) 1681 36,35 1591 20,20
180 Ringing 1625 30,42 1443 15,80
PRACK (2) 1525 36,42 1540 23,40
200 OK (3) 1229 54,64 1401 51,39
200 OK (4) 1874 27,00 1520 63,13
ACK 1679 24,63 1396 27,45
TOTAL 22139 20644

14.11.1.2 Voice Call
Message Avg time [us],

compression and
memory image

Standard deviation,
compression time
[us]

Avg time [us],
decompression

Standard deviation,
decompression time
[us]

INVITE 1532 17,28 1594 47,55
100 Trying 1436 35,91 1260 38,76
180 Ringing 1232 48,52 1542 111,69
200 OK (1) 1312 34,57 1540 41,21
ACK 1049 39,54 1172 33,01
BYE 1181 29,49 1169 28,78
200 OK (2) 959 37,21 1167 43,12
TOTAL 6561 7108

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 172

14.11.2 Pentium 4 2.66 GHz

14.11.2.1 Video Call
Message Avg time [us],

compression and
memory image

Standard deviation,
compression time
[us]

Avg time [us],
decompression

Standard deviation,
decompression time
[us]

INVITE 2820 37,12 3281 30,42
100 Trying 1635 20,05 1095 16,38
183 Session Prog. 2238 25,80 2988 424,67
PRACK (1) 2102 36,22 1745 396,56
200 OK (1) 1711 209,94 1482 381,07
UPDATE 2052 26,94 1462 250,98
200 OK (2) 1644 23,51 1537 407,28
180 Ringing 1769 19,33 1391 387,99
PRACK (2) 1454 23,65 1353 5,33
200 OK (3) 1178 194,39 1495 621,11
200 OK (4) 1922 17,76 1312 32,39
ACK 1805 22,50 1313 383,84
TOTAL 22329 20453

14.11.2.2 Voice Call
Message Avg time [us],

compression and
memory image

Standard deviation,
compression time
[us]

Avg time [us],
decompression

Standard deviation,
decompression time
[us]

INVITE 1499 20,80 1572 126,01
100 Trying 1441 20,79 1046 24,98
180 Ringing 1163 19,39 1510 406,89
200 OK (1) 1274 13,52 1442 15,28
ACK 1012 14,80 967 5,56
BYE 1105 14,06 962 10,73
200 OK (2) 946 11,79 981 8,29
TOTAL 6390 6537

14.11.3 Pentium 4 1.8 GHz

14.11.3.1 Video Call
Message Avg time [us],

compression and
memory image

Standard deviation,
compression time
[us]

Avg time [us],
decompression

Standard deviation,
decompression time
[us]

INVITE 4315 90,15 5157 76,76
100 Trying 2253 63,98 1564 53,72
183 Session Prog. 3502 481,59 4636 470,70
PRACK (1) 3268 209,01 2513 428,80
200 OK (1) 2382 330,43 2041 337,47
UPDATE 3098 135,58 1909 46,26
200 OK (2) 2335 83,12 1868 78,48
180 Ringing 2548 75,17 1722 52,65
PRACK (2) 2069 195,82 1919 83,33
200 OK (3) 1458 60,27 1959 125,58
200 OK (4) 2777 67,19 1788 102,04
ACK 2582 88,47 1704 116,89
TOTAL 32587 28780

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 173

14.11.3.2 Voice Call
Message Avg time [us],

compression and
memory image

Standard deviation,
compression time
[us]

Avg time [us],
decompression

Standard deviation,
decompression time
[us]

INVITE 2215 113,48 2396 163,85
100 Trying 2017 111,97 1569 105,43
180 Ringing 1647 16,27 2052 60,67
200 OK (1) 1846 36,87 2148 51,33
ACK 1327 17,98 1366 60,56
BYE 1676 13,48 1323 25,36
200 OK (2) 1277 48,01 1426 275,75
TOTAL 9051 9531

14.11.4 Pentium M 1.6 GHz

14.11.4.1 Video Call
Message Avg time [us],

compression and
memory image

Standard deviation,
compression time
[us]

Avg time [us],
decompression

Standard deviation,
decompression time
[us]

INVITE 3097 7,02 3348 14,54
100 Trying 1382 27,85 1318 7,01
183 Session Prog. 2765 33,18 2970 10,81
PRACK (1) 2497 16,89 1822 2,50
200 OK (1) 1744 35,17 1531 10,03
UPDATE 2456 30,79 1620 30,23
200 OK (2) 1768 34,84 1594 25,31
180 Ringing 1618 22,67 1454 8,63
PRACK (2) 1546 20,31 1559 4,60
200 OK (3) 1114 20,53 1354 6,43
200 OK (4) 2165 27,38 1492 39,72
ACK 1650 17,92 1345 7,66
TOTAL 23801 21406

14.11.4.2 Voice Call
Message Avg time [us],

compression and
memory image

Standard deviation,
compression time
[us]

Avg time [us],
decompression

Standard deviation,
decompression time
[us]

INVITE 1322 13,76 1537 12,46
100 Trying 1170 19,60 1115 20,39
180 Ringing 1177 29,75 1493 16,67
200 OK (1) 1262 25,79 1518 17,63
ACK 918 23,27 1043 18,95
BYE 1040 36,43 1053 20,46
200 OK (2) 842 12,82 1011 18,60
TOTAL 5847 6707

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 174

14.11.5 Pentium III 600 MHz

14.11.5.1 Video Call
Message Avg time [us],

compression and
memory image

Standard deviation,
compression time
[us]

Avg time [us],
decompression

Standard deviation,
decompression time
[us]

INVITE 10071 230,58 10931 156,94
100 Trying 4790 67,28 4086 219,57
183 Session Prog. 8588 189,88 9525 20,57
PRACK (1) 7757 167,27 5880 37,42
200 OK (1) 5611 17,57 5059 195,74
UPDATE 7539 18,30 5271 184,27
200 OK (2) 5559 15,38 4951 17,71
180 Ringing 5752 16,18 4738 91,19
PRACK (2) 4833 15,35 5070 6,70
200 OK (3) 3472 13,64 4836 251,70
200 OK (4) 6861 17,98 4789 73,15
ACK 5649 25,30 4451 196,82
TOTAL 76481 69588

14.11.5.2 Voice Call
Message Avg time [us],

compression and
memory image

Standard deviation,
compression time
[us]

Avg time [us],
decompression

Standard deviation,
decompression time
[us]

INVITE 5058 1009,05 5085 138,35
100 Trying 4339 469,75 3644 98,11
180 Ringing 3981 486,56 4746 85,85
200 OK (1) 4210 77,54 5061 529,15
ACK 3143 255,61 3431 36,34
BYE 3404 18,80 3384 10,82
200 OK (2) 2923 142,18 3380 17,86
TOTAL 20731 21967

14.12 Appendix L – Measurement Results: Different Sequences

14.12.1 Basic Voice Session Establishment
Message Length

uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message [bytes]

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 514 245 479 4546 0,932
100 Trying 311 64 304 4857 0,977
180 Ringing 615 136 158 9504 0,257
200 OK (1) 610 15 37 14146 0,061
ACK 378 26 68 10492 0,180
TOTAL 2428 486 1046 0,431

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 1539 30,86 1623 65,07
100 Trying 1436 49,11 1288 48,28
180 Ringing 915 47,94 1290 26,29
200 OK (1) 885 22,37 1035 41,36
ACK 1023 46,28 1171 38,13
TOTAL 5797 6407

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 175

14.12.2 Basic Video Session Establishment
Message Length

uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message [bytes]

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 1069 511 745 5101 0,697
100 Trying 317 20 260 5418 0,820
180 Ringing 472 67 89 9922 0,189
200 OK (1) 663 156 178 14617 0,268
ACK 431 31 73 11016 0,169
TOTAL 2952 785 1345 0,456

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 2099 23,40 2134 64,19
100 Trying 1457 67,47 1170 52,06
180 Ringing 808 52,87 1118 37,64
200 OK (1) 967 42,10 1401 36,78
ACK 1052 45,63 1203 28,17
TOTAL 6383 7026

14.12.3 Push-to-talk Session Establishment
Message Length

uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message
[bytes]

Cumulative
amount of
state
memory
used [bytes]

Compression ratio
(SigComp/uncompr)

INVITE 980 569 797 5012 0,813
100 Trying 244 23 263 5256 1,078
200 OK (1) 882 335 357 10170 0,405
ACK 380 15 50 10550 0,132
BYE 380 13 48 14962 0,126
200 OK (2) 237 12 54 15199 0,228
TOTAL 3103 967 1569 0,506
TOTAL without
BYE and 200 OK

2486 942 1467 0,590

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time
[us],
decompre
ssion

Standard
deviation,
decompress
ion time [us]

INVITE 2011 44,83 2326 28,58
100 Trying 1417 55,17 1152 34,91
200 OK (1) 1206 45,06 1779 35,98
ACK 1023 19,08 1160 32,76
BYE 1205 35,04 1206 31,31
200 OK (2) 1006 36,36 1145 31,75
TOTAL 7868 8768
TOTAL without
BYE and 200 OK

5657 6417

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 176

14.12.4 Registration
Message Length

uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message [bytes]

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

REGISTER 747 423 657 0 0,880
401 Unauthorized 476 476 476 0 1,000
REGISTER 963 565 799 4995 0,830
200 OK (1) 580 314 548 4612 0,945
TOTAL 2766 1778 2480 0,897

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

REGISTER 1756 29,84 1980 34,31
401 Unauthorized 0 0,00 0 0,00
REGISTER 1900 49,26 2201 61,21
200 OK (1) 1527 76,08 1695 46,06
TOTAL 5183 5875

14.12.5 3GPP Video Session Establishment
Message Length

uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message [bytes]

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 1437 791 1025 5469 0,713
100 Trying 254 20 260 5723 1,024
183 Session Prog. 1440 539 561 11195 0,390
PRACK (1) 1318 126 161 12513 0,122
200 OK (1) 904 46 81 17449 0,090
UPDATE 1291 59 101 18740 0,078
200 OK (2) 865 44 86 23637 0,099
180 Ringing 563 151 193 28232 0,343
PRACK (2) 717 41 97 24917 0,135
200 OK (3) 260 11 60 33241 0,231
200 OK (4) 1133 255 304 38406 0,268
ACK 458 18 88 30800 0,192
TOTAL 10640 2101 3017 0,284

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 2594 38,70 2793 84,81
100 Trying 1374 53,33 1175 39,06
183 Session Prog. 1910 37,89 2248 80,70
PRACK (1) 2332 35,06 1523 43,25
200 OK (1) 1950 43,10 1303 41,47
UPDATE 2598 42,24 1316 30,71
200 OK (2) 2010 46,74 1299 24,53
180 Ringing 1684 37,18 1503 27,12
PRACK (2) 1681 27,84 1329 28,81
200 OK (3) 1288 21,68 1135 31,13
200 OK (4) 2456 13,02 1793 20,33
ACK 1495 34,19 1196 34,06
TOTAL 23373 18613

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 177

14.12.6 3GPP Video Session Establishment with RE-INVITE Request
and Unreliable Delivery of Provisional Responses

Message Length
uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message [bytes]

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 1205 739 973 5237 0,807
100 Trying 255 21 261 5492 1,024
180 Ringing 1003 382 404 10527 0,403
200 OK (1) 905 29 51 15464 0,056
ACK 459 72 114 11891 0,248
RE-INVITE 1164 53 95 17087 0,082
200 OK (2) 869 31 73 21988 0,084
ACK 459 10 59 22447 0,129
TOTAL 6319 1337 2030 0,321

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 2268 36,38 2680 53,94
100 Trying 1395 60,49 1204 70,48
180 Ringing 1311 41,43 1854 49,62
200 OK (1) 1427 42,55 1059 49,43
ACK 1075 32,99 1312 20,44
RE-INVITE 2293 32,88 1316 25,80
200 OK (2) 1922 35,81 1264 37,33
ACK 1483 47,90 1151 43,86
TOTAL 13173 11839

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 178

14.12.7 3GPP Video Session Establishment with RE-INVITE and
Reliable Delivery of Provisional Responses

Message Length
uncompressed
[bytes]

Length
compressed
[bytes]

Length of
SigComp
message [bytes]

Cumulative
amount of state
memory used
[bytes]

Compression ratio
(SigComp/uncompr)

INVITE 1205 739 973 5237 0,807
100 Trying 255 21 261 5492 1,024
180 Ringing 1003 378 400 10527 0,399
PRACK 1318 201 236 11845 0,179
200 OK (1) 261 19 54 16138 0,207
200 OK (2) 905 23 58 21075 0,064
ACK (1) 459 15 64 17502 0,139
RE-INVITE 1164 263 312 22698 0,268
200 OK (3) 838 31 80 27568 0,095
ACK (2) 459 10 66 28027 0,144
TOTAL 7867 1700 2504 0,318

Message Avg time [us],
compression
and memory
image

Standard
deviation,
compression
time [us]

Avg time [us],
decompression

Standard
deviation,
decompression
time [us]

INVITE 2264 26,94 2679 56,05
100 Trying 1373 29,22 1189 40,73
180 Ringing 1306 28,83 1821 65,98
PRACK 2279 25,28 1660 37,75
200 OK (1) 1087 35,77 1223 40,63
200 OK (2) 1975 27,13 1226 37,16
ACK (1) 1472 31,93 1217 33,99
RE-INVITE 2345 25,92 1787 28,87
200 OK (3) 2005 42,52 1252 26,32
ACK (2) 1475 28,93 1158 30,62
TOTAL 17578 15211

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 179

14.13 Appendix M – Measurement Results: Number of Workers
1 worker Time in

system [us]
Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

9217 8412 805 1 1
8648 7839 809 1 1
9357 8549 808 1 1
8621 7812 809 1 1

AVG 8960,75 8153,00 807,75 1,00 1,00

2 workers Time in
system [us]

Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

8446 7244 1202 1,64 2
7852 6655 1197 1,63 2
8304 7104 1200 1,64 2

AVG 8200,67 7001,00 1199,67 1,64 2,00

3 workers Time in
system [us]

Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

7021 5491 1530 2,13 3
7834 6283 1551 2,15 3
6911 5391 1520 2,11 3

AVG 7255,33 5721,67 1533,67 2,13 3,00

5 workers Time in
system [us]

Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

7748 5588 2160 2,98 5
7384 5216 2168 2,99 5
7489 5363 2126 2,92 5
7357 5237 2120 2,93 5

AVG 7494,50 5351,00 2143,50 2,96 5,00

7 workers Time in
system [us]

Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

7604 4936 2668 3,66 7
7163 4495 2668 3,63 7
7674 4991 2683 3,67 7

AVG 7480,33 4807,33 2673,00 3,65 7,00

10 workers Time in
system [us]

Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

7810 4373 3437 4,59 10
7922 4365 3557 4,75 10
8151 4691 3460 4,65 10
6958 3600 3358 4,49 10

AVG 7710,25 4257,25 3453,00 4,62 10,00

11 workers Time in
system [us]

Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

7691 4078 3613 4,83 11
7832 4073 3759 4,97 11
7779 4168 3611 4,8 11
7593 4005 3588 4,8 11

AVG 7723,75 4081,00 3642,75 4,85 11,00

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 180

12 workers Time in
system [us]

Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

7622 3760 3862 5,1 12
7850 3942 3908 5,17 12
7781 3969 3812 5,07 12
7115 3382 3733 4,95 12

AVG 7592,00 3763,25 3828,75 5,07 12,00

15 workers Time in
system [us]

Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

7664 3317 4347 5,69 15
7926 3421 4505 5,8 15
8224 3663 4561 5,94 15

AVG 7938,00 3467,00 4471,00 5,81 15,00

25 workers Time in
system [us]

Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

8574 2417 6157 7,76 25
8891 2486 6405 8,05 25
7705 2013 5692 7,2 25

AVG 8390,00 2305,33 6084,67 7,67 25,00

50 workers Time in
system [us]

Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

8897 995 7902 9,66 50
9398 1051 8347 10,14 50
8709 834 7875 9,59 50

AVG 9001,33 960,00 8041,33 9,80 50,00

100 workers Time in
system [us]

Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

9764 774 8990 10,64 100
9787 749 9038 10,7 100
9569 880 8689 10,48 100

AVG 9706,67 801,00 8905,67 10,61 100,00

250 workers Time in
system [us]

Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

9665 858 8807 10,37 107
10692 885 9807 11,50 110
9562 854 8708 10,26 116

AVG 9973,00 865,67 9107,33 10,71 111,00

500 workers Time in
system [us]

Time in
buffer [us]

Processing
time [us]

Avg active
workers

Max active
workers

10024 878 9146 10,62 142
10492 886 9606 11,1 100
9932 883 9049 10,5 121

AVG 10149,33 882,33 9267,00 10,74 121,00

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 181

14.14 Appendix N – Measurement Results: Time in System and
Throughput

14.14.1 Pentium 4 Hyper-Threading 3.0 GHz

14.14.1.1 Voice Calls
Number of
simultaneous
calls

Session
initiation
interval [s]

Avg time in
system [us]

Avg time being
processed [us]

Avg time in
buffer [us]

Max CPU
load [%],
CPU 1

Max CPU
load [%],
CPU 2

250 0,760 927 879 48 1 1,4
500 0,380 1093 998 95 1,4 2,7
750 0,253 1470 1283 187 1,7 3,1

1000 0,190 2056 1735 321 3,7 4,1
1250 0,152 2277 1907 370 3,4 4,8
1500 0,127 2285 1895 390 4,4 5,7
1750 0,109 2307 1953 354 5,4 6,8
1875 0,101 2240 1899 341 5,4 6,5
1938 0,098 3421 2888 533 6,1 6,5
2000 0,095 5311 4583 728 6,1 7,1
2500 0,076 5983 5183 800 8,2 10,2
3000 0,063 7166 6209 957 15,6 16,6

Number of
simultaneous
calls

Avg
packets/s

Avg
packet
size
[bytes]

Total
traffic
[Mbit/s]

SigComp
traffic
[Mbit/s]

SIP traffic
[Mbit/s]

Number of
messages

Measurement
time [s]

250 16,94 408,90 0,055 0,022 0,033 10250 605
500 33,71 410,78 0,111 0,044 0,067 20378 604
750 50,39 411,60 0,166 0,066 0,100 30584 607

1000 67,10 412,24 0,221 0,088 0,130 40703 607
1250 83,81 412,34 0,276 0,110 0,167 50801 606
1500 100,21 412,70 0,331 0,131 0,200 60708 606
1750 116,52 412,86 0,385 0,153 0,232 70812 608
1875 126,30 412,72 0,417 0,165 0,252 77369 613
1938 129,97 412,79 0,429 0,170 0,259 79204 609
2000 133,77 412,90 0,442 0,175 0,266 81497 609
2500 167,04 413,25 0,552 0,219 0,333 101491 608
3000 184,02 420,72 0,619 0,249 0,370 111598 606

14.14.1.2 Video Calls
Number of
simultaneous
calls

Session
initiation
interval [s]

Avg time in
system [us]

Avg time being
processed [us]

Avg time in
buffer [us]

Max CPU
load [%],
CPU 1

Max CPU
load [%],
CPU 2

50 6,2 2261 2175 86 1 1
100 3,100 2249 2154 95 1 1,7
250 1,240 2251 2158 93 2,7 3,4
375 0,827 2272 2176 96 2,7 4,1
500 0,620 2597 2484 113 4,4 6,1
750 0,413 2721 2600 121 7,1 7,5

1000 0,310 3869 3640 229 10,5 12,5
1250 0,248 5533 5096 437 34,1 14,6
1500 0,207 7635 7166 469 43,1 31,2

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 182

Number of
simultaneous
calls

Avg
packets/s

Avg packet
size [bytes]

Total
traffic
[Mbit/s]

SigComp
traffic
[Mbit/s]

SIP
traffic
[Mbit/s]

Number of
packets

Measurement
time [s]

50 4,405 561,251 0,02 0,005 0,015 2659 604
100 8,563 573,803 0,039 0,009 0,03 5195 607
250 21,127 579,738 0,098 0,023 0,075 12811 606
375 31,494 582,381 0,147 0,034 0,112 19062 605
500 41,966 582,535 0,196 0,046 0,15 25429 606
750 62,842 584,044 0,294 0,069 0,225 38139 607

1000 83,564 584,772 0,391 0,091 0,299 50489 604
1250 104,487 585,158 0,489 0,114 0,375 63168 605
1500 124,842 585,622 0,585 0,137 0,448 75780 607

14.14.2 Pentium 4 2.66 GHz

14.14.2.1 Voice Calls
Number of
simultaneous
calls

Session
initiation
interval [s]

Avg time
in system
[us]

Avg time being
processed [us]

Avg time in
buffer [us]

Max CPU
load [%]

Avg
packets/s

250 0,76 1046 987 59 13,3 16,954
500 0,38 1158 1023 135 17,4 33,678
750 0,253 1717 1325 392 26,6 50,404

1000 0,19 2333 1613 720 27 67,096
1250 0,152 2884 1866 1018 32,1 83,726
1500 0,127 3257 2254 1003 32,9 100,323

Number of
simultaneous
calls

Avg packet
size [bytes]

Total traffic
[Mbit/s]

Number of
messages

Measurement
time [s]

250 407,996 0,055 10267 606
500 410,907 0,111 20380 605
750 411,812 0,166 30554 606

1000 412,31 0,221 40761 608
1250 412,695 0,276 50759 606
1500 412,819 0,331 60642 605

14.14.2.2 Video Calls
Number of
simultaneous
calls

Session
initiation
interval [s]

Avg time
in system
[us]

Avg time being
processed [us]

Avg time in
buffer [us]

Max CPU
load [%]

Avg
packets/s

50 6,2 2660 2549 111 17,7 4,4
100 3,100 2652 2552 100 21,1 8,599
250 1,240 2721 2594 127 30,7 21,116
375 0,827 2736 2614 122 36,7 31,441
500 0,620 3405 3100 305 44,9 41,935

Performance of Signalling Compression in the Third Generation Mobile Network

Jouni Mäenpää 183

Number of
simultaneous
calls

Avg packet
size [bytes]

Total
traffic
[Mbit/s]

Number of
messages

Measurement
time [s]

50 559,266 0,02 2647 602
100 571,335 0,039 5197 604
250 579,659 0,098 12755 604
375 582,053 0,146 19044 606
500 583,115 0,196 25370 605

	Preface
	 Table of Contents
	
	 Abbreviations
	1
	1 Introduction
	1.1 Background
	1.2 The Goals and Objectives of the Thesis
	1.3 Scope of the Thesis
	1.4 The Structure of the Thesis
	2 Third Generation Mobile Network
	2.1 Comparison of Call Setup Delay in Second and Third Generation Mobile Networks
	2.2 Third Generation Mobile Network Architecture
	2.3 IP Multimedia Subsystem
	2.4 Location of Signalling Compression Functions
	2.5 Session Initiation Protocol
	2.5.1 Compressibility of Session Initiation Protocol

	3 Signalling Compression
	3.1 Requirements
	3.2 Architecture
	3.2.1 Compressor Dispatcher
	3.2.2 Compressor
	3.2.3 Decompressor Dispatcher
	3.2.4 Universal Decompressor Virtual Machine
	3.2.5 State Handler
	3.2.6 UDVM Interpreter

	3.3 Messages
	3.4 Extended Operations
	3.4.1 Dynamic Compression
	3.4.2 Shared Compression
	3.4.3 User-specific Dictionary
	3.4.4 Impacts on SigComp Messages

	3.5 Feedback Mechanism
	3.6 Negative Acknowledgement Mechanism
	3.7 SigComp Operation

	4 Applying Signalling Compression to the Session Initiation Protocol
	4.1 Requirements of Signalling Compression on the Session Initiation Protocol
	4.2 A Mechanism to Signal That Compression Is Required
	4.3 The Static Session Initiation Protocol and Session Description Protocol Dictionary

	5 Computer and Operating System Architectures
	5.1 Memory Hierarchy
	5.2 Multithreaded and Parallel Programming
	5.2.1 Processes and Threads
	5.2.2 Processors and Multiprocessors

	6 Previous Research on Signalling Compression
	7 Signalling Compression Implementation
	7.1 From Single-threaded to Multi-threaded Code
	7.2 Test Configuration
	7.3 Process Interaction Paradigms
	7.3.1 Bag-of-tasks
	7.3.2 Producers and Consumers

	7.4 Shared Resources
	7.5 Data Structures
	7.6 Classes of the Signalling Compression Prototype
	7.6.1 BitOperations
	7.6.2 Compressor
	7.6.3 CompressorArray
	7.6.4 Config
	7.6.5 FeedbackItem
	7.6.6 LZSSCompressor
	7.6.7 PartialStateId
	7.6.8 SecureHashAlgorithm
	7.6.9 SigCompDispatcher
	7.6.10 SigCompState, Idle, Waiting SigCompStateFactory and SigCompStateMachine
	7.6.11 SipParser
	7.6.12 StateHandler
	7.6.13 StateItem
	7.6.14 StaticDictionary
	7.6.15 Task
	7.6.16 UdvmDecompressor
	7.6.17 UdvmMemoryImage

	7.7 Classes of Universal Decompressor Virtual Machine Interpreter Implementation
	7.7.1 BitOperations
	7.7.2 Instruction
	7.7.3 Interpreter
	7.7.4 StringOperations
	7.7.5 Variable, Label, LabelReference and StandardVariable.
	7.7.6 VariableArray

	7.8 Compression Algorithm
	7.8.1 Dictionary Techniques
	7.8.2 LZ77
	7.8.3 LZSS
	7.8.4 The Modified LZSS Algorithm
	7.8.5 Hash Function of the Modified LZSS Algorithm

	7.9 Decompression Algorithm
	7.10 State and Sequence Diagrams
	7.10.1 State Diagram
	7.10.2 Event SendMessage
	7.10.3 Event ReceiveMessage
	7.10.4 Event ReceiveCompartmentId
	7.10.5 Event CloseCompartment

	7.11 Implementation of Extended Operations

	
	8 Measurements
	8.1 System Definition
	8.2 Services
	8.3 Metrics
	8.4 Parameters
	8.5 Factors
	8.6 Evaluation Technique
	8.7 Workload
	8.8 Experimental Design
	8.9 Data Analysis
	8.10 Data Presentation
	8.11 Materials and Apparatus
	8.12 Assumptions

	9 Phase One – Effects of Different Factors
	9.1 Linear Search versus Hashing
	9.2 Length of Look-ahead Buffer
	9.3 Length of Shared States
	9.4 Static Dictionary Priorities
	9.5 Secure Hash Algorithm
	9.6 SigComp Mechanisms
	9.7 Decompression Memory Size
	9.8 Unreliable versus Reliable Transport
	9.9 Central Processor Unit
	9.10 Impact of Signalling Compression on Radio Access Network Delay

	10 Phase Two – Compression of Different Message Sequences
	11 Phase Three – Measurements on the SigComp Prototype
	11.1 Parameters Used in the Measurements
	11.2 Number of Workers
	11.3 Time in System
	11.4 Hyper-Threading Processor versus a Regular Processor
	11.5 Throughput
	11.6 Memory Consumption
	11.7 Performance under Denial-of-service Attack

	12 Conclusion
	12.1 Advantages and Limitations of Signalling Compression
	12.2 Considerations
	12.2.1 Performance of SigComp Protocol
	12.2.2 SigComp Prototype

	12.3 Future Research

	13 References
	14 Appendices
	14.1 Appendix A – The UDVM Instruction Set
	14.2 Appendix B – LZSS Assembly
	14.3 Appendix C – SIP Message Sequences
	14.3.1 Basic Voice Call
	14.3.1.1 INVITE
	14.3.1.2 100 Trying
	14.3.1.3 180 Ringing
	14.3.1.4 200 OK to INVITE
	14.3.1.5 ACK
	14.3.1.6 BYE
	14.3.1.7 200 OK to BYE

	14.3.2 Basic Video Call
	14.3.2.1 INVITE
	14.3.2.2 100 Trying
	14.3.2.3 180 Ringing
	14.3.2.4 200 OK to INVITE
	14.3.2.5 ACK
	14.3.2.6 BYE
	14.3.2.7 200 OK to BYE

	14.3.3 Push-to-talk over Cellular Session Establishment
	14.3.3.1 INVITE
	14.3.3.2 100 Trying
	14.3.3.3 200 OK to INVITE
	14.3.3.4 ACK
	14.3.3.5 BYE
	14.3.3.6 200 OK to BYE

	14.3.4 3GPP Video Call
	14.3.4.1 INVITE
	14.3.4.2 100 Trying
	14.3.4.3 183 Session Progress
	14.3.4.4 PRACK to 183
	14.3.4.5 200 OK to PRACK
	14.3.4.6 UPDATE
	14.3.4.7 200 OK to UPDATE
	14.3.4.8 180 Ringing
	14.3.4.9 PRACK
	14.3.4.10 200 OK to PRACK
	14.3.4.11 200 OK to INVITE
	14.3.4.12 ACK
	14.3.4.13 BYE
	14.3.4.14 200 OK to BYE

	14.3.5 3GPP Video Call with RE-INVITE and Unreliable Delivery of Provisional Responses
	14.3.5.1 INVITE
	14.3.5.2 100 Trying
	14.3.5.3 180 Ringing
	14.3.5.4 200 OK to INVITE
	14.3.5.5 ACK
	14.3.5.6 INVITE
	14.3.5.7 200 OK to INVITE
	14.3.5.8 ACK

	14.3.6 3GPP Video Call with RE-INVITE and Reliable Delivery of Provisional Responses
	14.3.6.1 INVITE
	14.3.6.2 100 Trying
	14.3.6.3 180 Ringing
	14.3.6.4 PRACK to 180 Ringing
	14.3.6.5 200 OK to PRACK
	14.3.6.6 200 OK to INVITE
	14.3.6.7 ACK
	14.3.6.8 INVITE
	14.3.6.9 200 OK to INVITE
	14.3.6.10 ACK

	14.3.7 3GPP Registration Sequence
	14.3.7.1 REGISTER
	14.3.7.2 401 Unauthorized
	14.3.7.3 REGISTER
	14.3.7.4 200 OK

	14.4 Appendix D – Measurement Results: Linear Search versus Hashing
	14.4.1 Linear Search
	14.4.2 Hashing
	14.4.3 Time Requirement of Hash Map Updates

	14.5 Appendix E – Measurement Results: Length of Look-ahead Buffer
	14.5.1 Buffer Length 18 Bytes, 4 Bits Used to Encode Length Values
	14.5.2 Buffer Length 66 Bytes, 6 Bits Used to Encode Length Values
	14.5.3 Buffer Length 258 Bytes, 8 Bits Used to Encode Length Values

	14.6 Appendix F – Measurement Results: Length of Shared States
	14.6.1 Shared State Length 500 Bytes
	14.6.2 Shared State Length 750 Bytes
	14.6.3 Shared State Length 1000 Bytes
	14.6.4 Shared State Length 1500 Bytes

	14.7 Appendix G – Measurement Results: Secure Hash Algorithm
	14.8 Appendix H – Measurement Results: SigComp Mechanisms
	14.8.1 Basic Compression
	14.8.1.1 DMS 4096 Bytes
	14.8.1.2 DMS 8192 Bytes
	14.8.1.3 DMS 16384 Bytes

	14.8.2 Static Compression
	14.8.2.1 DMS 4096 Bytes
	14.8.2.2 DMS 8192 Bytes
	14.8.2.3 DMS 16384 Bytes

	14.8.3 Dynamic Compression
	14.8.3.1 DMS 4096 Bytes
	14.8.3.2 DMS 8192 Bytes
	14.8.3.3 DMS 16384 Bytes

	14.8.4 Shared Compression
	14.8.4.1 DMS 4096 Bytes
	14.8.4.2 DMS 8192 Bytes
	14.8.4.3 DMS 16384 Bytes

	14.9 Appendix I – Measurement Results: Decompression Memory Size
	14.9.1 Dynamic Compression
	14.9.1.1 Basic Voice Call, DMS 2048 Bytes
	14.9.1.2 Basic Voice Call, DMS 4096 Bytes
	14.9.1.3 Basic Voice Call, DMS 8192 Bytes

	14.9.2 Shared Compression
	14.9.2.1 Basic Voice Call, DMS 2048 Bytes
	14.9.2.2 Basic Voice Call, DMS 4096 Bytes
	14.9.2.3 Basic Voice Call, DMS 8192 Bytes

	14.10 Appendix J – Measurement Results: Unreliable versus Reliable Transport
	14.10.1 Unreliable Transport
	14.10.1.1 Dynamic Compression, DMS 8192 Bytes, 3GPP Video Call
	14.10.1.2 Shared Compression, DMS 8192 Bytes, 3GPP Video Call
	14.10.1.3 Dynamic Compression, DMS 8192 Bytes, Basic Voice Call
	14.10.1.4 Shared Compression, DMS 8192 Bytes, Basic Voice Call

	14.10.2 Reliable Transport
	14.10.2.1 Dynamic Compression, DMS 8192 Bytes, 3GPP Video Call
	14.10.2.2 Shared Compression, DMS 8192 Bytes, 3GPP Video Call
	14.10.2.3 Dynamic Compression, DMS 8192 Bytes, Basic Voice Call
	14.10.2.4 Shared Compression, DMS 8192, Basic Voice Call

	14.11 Appendix K – Measurement Results: Central Processor Unit
	14.11.1 Pentium 4 Hyper-Threading 3.0 GHz
	14.11.1.1 Video Call
	14.11.1.2 Voice Call

	14.11.2 Pentium 4 2.66 GHz
	14.11.2.1 Video Call
	14.11.2.2 Voice Call

	14.11.3 Pentium 4 1.8 GHz
	14.11.3.1 Video Call
	14.11.3.2 Voice Call

	14.11.4 Pentium M 1.6 GHz
	14.11.4.1 Video Call
	14.11.4.2 Voice Call

	14.11.5 Pentium III 600 MHz
	14.11.5.1 Video Call
	14.11.5.2 Voice Call

	14.12 Appendix L – Measurement Results: Different Sequences
	14.12.1 Basic Voice Session Establishment
	14.12.2 Basic Video Session Establishment
	14.12.3 Push-to-talk Session Establishment
	14.12.4 Registration
	14.12.5 3GPP Video Session Establishment
	14.12.6 3GPP Video Session Establishment with RE-INVITE Request and Unreliable Delivery of Provisional Responses
	14.12.7 3GPP Video Session Establishment with RE-INVITE and Reliable Delivery of Provisional Responses

	14.13 Appendix M – Measurement Results: Number of Workers
	14.14 Appendix N – Measurement Results: Time in System and Throughput
	14.14.1 Pentium 4 Hyper-Threading 3.0 GHz
	14.14.1.1 Voice Calls
	14.14.1.2 Video Calls

	14.14.2 Pentium 4 2.66 GHz
	14.14.2.1 Voice Calls
	14.14.2.2 Video Calls

