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Background

O New data services in cellular networks are
boosting like emails, downloading digital
documents...

0 Each service request corresponds to one elastic
flow which probably experiences rate fluctuation

0 Load balancing is used to “equalize” the workload
according to some specific criteria

BS: base station
MS: mobile station

Choose the optimal BS ‘
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Objective

O Propose a load balancing scheme for the
elastic flows in the overlapping area
between two adjacent cells to minimize
the mean flow delay in the packet-
switched cellular networks.
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Model

o Assumptions

-new flows arrive Al
according to Poisson

processes with rates
A+Ay v, Wherell > 4, .

V
-the flow size is
exponentially distributed
with mean 1/ u, .
o Notation: A2

- 1, means the flow
number in Bs .
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Static routing scheme

o Randomized Routing

- without state-dependent A1l ul
information
>
-new generated flows
are routed to P
BS, with probability 7 v
BS, with probability 1-p
19\
Thus, the system is modeled P |-12
as two separate p /M /1 -
gqueues with arriving rate A2

A+pvand L, +(1-p) .
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Static policy: ORR

o Optimized Random Routing: minimize the delay
in static manner. Basis of later iterations.
O Whole delay is the weighted sum of delay in each subsystem as

2 )
A; + piv 1
FED| =
D] Z)ﬁ.l—l—}ug—l—y [ — A — piv

i=1

o Optimal probability

% BRES 2V SV D VD Load Balance case (LB)
2= 0 At — A
V< Al — A2 No Load Balance case (NLB)

ORR balances the load as evenly as possible
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Some dynamic schemes

o When a flexible flow enters, switch-over curve

we can apply: JSQ / x2=S(x1)

0 Join the shortest queue (JSQ): *°
literally explicit. Just pick the
base station associated with
less flow number

O Least ratio routing (LRR):
select the base station with
the less relative load, i,/ 4,
If the capabilities of the two
stations are of the same, it o H

0 10 20 30 40 50
evolves to JSQ case. ;
1

Decision:
dark grey: to BS1
light grey: to BS2
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Policy iteration

o In brief, the optimal policy is derived via policy iteration
(developed in Markov Decision Process)

-fix the immediate cost, rate R, and average collecting
time 7;for each state !

-choose an basic policy & as a starting-point

-solve the relative value V; for each state along with the
average cost rate R from Howard equations.

- In state ; , select a better station associated with less
expected value R-7,(@) =R -7;(a)+Vv.(a) , where i =(,i,) .

-a better policy &' (with less cost ) is derived if we apply
the selection in each state

-an optimal policy a appears until cost cannot be further
optimized
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Policy iteration (cont.)

A typical example of policy iteration.
The expected cost: R-rf(a)—l_e-rf(a)wj(a)

(30 41)

(3040)  uBsy

dD

a0

in this state, routing
the flow to BSZ
renders less
expected cost, so..

1D

] 10 20 a0 L 11 30

o — o'
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FPI & FPI*

o First policy iteration (FPI) is based on the ORR
and it is derived by the policy iteration

o Iterated policy ' is given as,
o 1, v@E+D)=—v@E)<v,G,+1)-v,()
@ (i) = 2, V(@ +1) = (6) = v, (6, +1) = v, (i)

@ IMarginal cost | @
iy +1 ig + 1
H—AL =DV h— A2 — pav

o FPI is given as, (i, is) =

Marginal cost:
cost of accepting an additional flow
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Basic policy optimization

o If we only admit new
generated flows with
probability f and routes the
accepted flows to BS1 with

probability p. )
o FPI corresponds to basic e
i * 1.99
p0|lcy (1’p ) H 1.985 "‘.’ ”.
o FPI* corresponds to basic LLLATLAT 72
L7

policy (0,0)
o Each combination of f and
p forms an unique basic

policy
o However, f=0 is optimal ul=p2=20,11=10,12=6,v =5

FPI*
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Simulation results
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Simulation results (cont.)
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Systematic study

o Experiments are carried out to evaluate the performances
of different policies. Results are normalized by the optimal
policy result.

o In both symmetric and asymmetric case, FPI* closely
resembles the optimal policy.
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Conclusion

o Optimal policy can be characterized by a
switch-over curve

o FPI* scheme is proposed as a rather
robust scheme

O Flow delay can be alleviated significantly
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