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Background

� New data services in cellular networks are 
boosting like emails, downloading digital 
documents…

� Each service request corresponds to one elastic 
flow which probably experiences rate fluctuation

� Load balancing is used to “equalize” the workload 
according to some specific criteria

BS: base station

MS: mobile station

BS1 BS2

Choose the optimal BS

MS
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Objective

� Propose a load balancing scheme for the 
elastic flows in the overlapping area 
between two adjacent cells to minimize 
the mean flow delay in the packet-
switched cellular networks.
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Model

� Assumptions
-new flows arrive 
according to Poisson 
processes with rates 

,   ,    , where         .

-the flow size is 
exponentially distributed 
with mean        .

� Notation:
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number in       .
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Static routing scheme

� Randomized Routing

- without state-dependent 
information

-new generated flows 
are routed to 

with probability  

with probability

Thus, the system is modeled 
as two separate           

queues with arriving rate

and                 .
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Static policy: ORR

� Optimized Random Routing: minimize the delay 
in static manner. Basis of later iterations.

� Whole delay is the weighted sum of delay in each subsystem as 

� Optimal probability

Load Balance case    (LB)

No Load Balance case (NLB)

ORR balances the load as evenly as possible
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Some dynamic schemes

� When a flexible flow enters, 
we can apply:

� Join the shortest queue (JSQ): 
literally explicit. Just pick the 
base station associated with 
less flow number 

� Least ratio routing (LRR): 
select the base station with 
the less relative load,           . 
If the capabilities of the two 
stations are of the same, it 
evolves to JSQ case.
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Policy iteration

� In brief, the optimal policy is derived via policy iteration 
(developed in Markov Decision Process)

-fix the immediate cost rate      and average collecting 
time    for each state

-choose an basic policy    as a starting-point

-solve the relative value      for each state along with the 
average cost rate       from Howard equations.

- In state    , select a better station associated with less 

expected value                                          , where . 
-a better policy     (with less cost ) is derived if we apply 
the selection in each state

-an optimal policy      appears until cost cannot be further 
optimized
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Policy iteration (cont.)

A typical example of policy iteration.

The expected cost: )()()( ˆˆˆ αατατ
jii
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FPI & FPI*

� First policy iteration (FPI) is based on the ORR 
and it is derived by the policy iteration 

� Iterated policy    is given as,

� FPI is given as,

� If we simply ignore the flexible flow, FPI* is 
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cost of accepting an additional flow
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Basic policy optimization

� If  we only  admit new 
generated flows with 
probability f and routes the 
accepted flows to BS1 with 
probability p.

� FPI corresponds to basic 
policy (1,p*)

� FPI* corresponds to basic 
policy (0,0)

� Each combination of f and 
p forms an unique basic 
policy 

� However, f=0 is optimal
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Simulation results 
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Simulation results (cont.)

FPI* 2nd iteration 3rd iteration

4th iteration 5,62,101,2021 ===== νλλµµ
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Systematic study

� Experiments are carried out to evaluate the performances 
of different policies. Results are normalized by the optimal 
policy result.

� In both symmetric and asymmetric case, FPI* closely 
resembles the optimal policy. 
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Conclusion

� Optimal policy can be characterized by a  
switch-over curve

� FPI* scheme is proposed as a rather 
robust scheme

� Flow delay can be alleviated significantly 
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