S-38.310 Thesis Seminar

Author:
 Timo Viipuri

Title:
 Internet Protocol Traffic Analysis for Network Simulation Purposes

Supervisor:
 Jorma Jormakka (Prof.)

Instructor:
 Marko Luoma (Lic. Tech.), Networking laboratory, HUT
Context

- Background
- Objectives
- Network structure
- Measured parameters
- Traffic model
- Initial findings
- Conclusions
- Future work
Background

● Traffic is routinely analysed in nearly all operational networks
 - Monitoring user behaviour
 - Detecting faults
 - Analysing network performance
● Simulations are used to analyse network performance
 - Can be analysed before network is built
 - Middle ground between theory and practice
 - Accuracy and reliability of the results?
Objectives

• Analysing the network traffic
 – Traffic patterns
 – Network performance
 – Cost-effective

• Creating a traffic model
 – Used for replicating the traffic as accurately as possible in the simulation environment
 – Both qualitative and quantitative
 – Based on the traffic patterns

(Simulations are not part of this thesis)
Network Structure

- Core network with multiple PoPs (Point of Presence) to connect to LANs (Local Area Network) is analysed
- A traffic monitor is placed in each PoP
 - All incoming and outgoing traffic is monitored
 - Standard PCs used
Measured Properties

1. Network performance
2. User behaviour
3. Traffic self-similarity
1. Network Performance

- One way packet delay
 - Increased delay is a sign of higher traffic load
 - Packet timestamped on entering and exiting the network
 - Clocks synchronized with NTP

- Packet loss ratio
 - Increased PLR is sign of congestion
 - Sent packets which are not seen in expected destinations are considered lost
 - Possible traffic leak points are an issue!
2. User Behaviour

- Protocol composition
 - Transport and application layers (L4, L7)
- Traffic volume
 - Dependant of both user behaviour and network performance
- Flow analysis
 - Size distribution
 - Inter-arrival time distribution

Traffic model
3. Self-similarity

- If traffic volume as a function of time looks the same in all time-scales it is said to be self-similar, i.e. fractal-like

- Self-similarity is informative about users processes
 - if discovered, Poisson-model is not valid
 - user think time or transfer size distribution is heavy-tailed, e.g. Pareto

- Hurst parameter
 - single scalar value

- Comparison between the real and simulated network traffics
Traffic Model (1)

- Flow based model
 - 5-tuple of source and destination IPs and ports and the protocol
 - Measured in the network
 - Modelled with TCP- and UDP-connections
- Traffic of the whole network is included in the model
Traffic Model (2)

- Traffic model consists of traffic generators
 - A traffic generator defines the rate at which flows are generated and the size of the flows
 - Each traffic generator has a unique triplet of
 - source and destination PoPs
 - Full mesh point-to-point connectivity
 - protocol
 - The number of protocols (P) can be reduced with aggregation
 - Network with N PoPs and P protocols
 \[PN(N-1) \] traffic generators
Initial Findings

- Traffic volume
 - Highly dependent on location
 - Highly dependent on time
 - Typical busy and slow hours during the day
 - Periodic traffic bursts
- Varying levels of self-similarity
 - Highly dependant on location
 - Heavy-tailed arrival processes also found
 - Time dependency not yet measured
Future Work

• Making the simulations
 - Comparison between the real and simulated networks
• Improving the traffic models
 - Increasing accuracy by studying packet level phenomena
 - Reducing the number of traffic generators with better clustering methods
 - Automating the creation
• More accurate timestamps
 - More work on NTP and Linux kernel tuning
Thank you!

Questions, comments?

timo.viipuri@hut.fi