Investigation on the fisheye state algorithm in context with QoS routing

Ø

Author: Yi Zhou

Prof: Raimo Kantola Instructor: Dr. Peng Zhang

Overview of Routing Algorithms

- Distance Vector
- Link State

Ø

• Comparison of DV & LS

Contraction of Proceeding	Algor	rithm	1			
	GTT Table					
	From	То	Linl	ĸ	Distance]
2 LK2 3	N1	N2	1		1	
	N1	N4	4		1	
	N2	N1	1		1	
LK1	N2	N3	2		1	
	N3	N2	2		1	
	N3	N4	3		1	
	N4	N3	3		1	
	N4	N1	4		1	
	Routing Tab	le Link		Cost		
	N1	Local Li	nk	0		
	N2	1		1		
	N3	1		2		
	N4	4		1		
		4				10

omparison	between DV & L	S algorithms
	Distance Vector	Link State
Routing algorithm	Bellman-Ford Algorithm	Dijkstra's Algorithm
Route computation	Shortest path	Shortest path
Functionality	Authentication, multicasting, etc.	Multiple metrics, multiple areas, external routes, etc.
Composition		Hello, Exchange and Flooding protocols
Scalability	Small network	Large network
Stability	Stable in small networks	Stable even in large networks
Complexity	Simple	Complex
Loop avoidance	Detected when counting to infinity	Found and removed after keeping LS databases consistent
Others	Over UDP	Over IP

Performance and Cost Analysis

Performance

- Total network throughput achieved by real-time traffic with bandwidth requirements
- $\quad \mbox{The larger the average network throughput is, the better the network performance should be.}$
- To get the total network throughput, we log the number of received packets in real-time traffic sinks during the simulation, then simply calculate the sum.
 - $\sum_i (N_i^* L_i),$ where N is the number of packets received by real-time traffic sinks, L is the size of the packet.

Cost

- Total processing time consumed by QOSPFs during the simulation time
- The cost grows large when the total processing time is higher.
- To get the total cost of the network, we log the total time consumed by each QOSPF in every node, and then simply calculate the sum.

No.	Cost(us)	Action	
1	1500	Find the next hop which can accept the required bandwidth	
2	100	Check a message from RSVP and decide what to do next	
3	1500	Compute the QoS path	
4	500	Update the local topology database	
5	200	Broadcast the link state information	
6	100	Broadcast a message packet	
7	1000	Compute normal routing table for best effort traffic	

Conclusions & Future Work (1)

1) In general FSR can achieve better performance and lower cost than LSU_PB.

2) The performance of FSR may depend on the topologies.

đ

In our simulations, FSR achieve very good performance in some topologies, e.g., tree, matrix 2*2, and ISP. However, the performance of FSR may vary in some topologies, e.g., matrix 3*3.

3) For matrix-type size network, when network size is small fisheye routing algorithm can reduce the cost without decreasing the network performance. When network size becomes larger, fisheye routing algorithm can reduce the cost but may achieve varied. With the increase of intrascope and interscope period, the cost of FSR decreases for small-size matrix networks. However, when the network increases, with the increase of intrascope and interscope period, the cost may vary, especially in matrix 4*4 topology.

 FSR algorithm achieves good performance and lower cost in an ISP network, which has more practical meaning. FSR achieves lower cost than LSU_PB and comparable throughput as LSU_PB.

5) The size of intrascope has little impact on the performance and cost $% \left({{{\left[{{{\left[{{\left[{{\left[{{\left[{{{\left[{{{\left[{{{\left[{{{\left[{{{\left[{{{\left[{{{\left[{{{\left[{{{\left[{{{}}}} \right]}}}} \right.}$

6) In particular, in all simulations, FSR achieve higher performance and lower cost than LSU_PB when both interscope and intrascope are small.

