Audit trail model for intermediated business document exchange

Mikael Ylijoki
Master’s thesis
2003

Supervisor: Prof. Jormakka
Contents

• Background
• Research objectives
• Outline of the solution
• Central problems
• The thesis
• Model 1
• Model 2
• Final structure
• Conclusions
• Future research
Background 1

• Growth in the exchange of B2B electronic documents
 – electronic invoicing
 – marketplaces
 – contract negotiation and conclusion

• Various XML standards for business
Background 2

• A need to fulfill the requirements of contract law electronically

• EU legislation on
 – electronic commerce
 – digital signatures
 – electronic invoicing
Background 3

• Assumed environment includes an intermediary, i.e. a third party service provider

• XML is predominantly used in the service
 – mappings and transformations must be performed between different XML standards

• Business processes are unambiguously defined and their instances are identifiable
Research objectives

• Create an audit trail model that reliably records all the relevant documents exchanged

• The audit trail must guarantee
 – data integrity
 – non-repudiation
 – authentication

• Documents must be able to act as a proof of legal commitment in case of dispute
Outline of the solution

• Cryptographic methods are used to accomplish the security objectives

• In addition to the business documents some control messages must be exchanged, e.g.
 – to guarantee non-repudiation of receipt
 – to be able to monitor the intermediary as well
The central problem

• What happens when a legally binding document with an electronic signature must go through an XML transformation?

 – the original signature will break in any case
The thesis

• Background (literature) research
 – business models
 – XML – basics and several business related standards
 – cryptographic methods
 – evolving EU legislation

• Proposed audit trail model
Model 1 (1/2)

Sender and recipient share a common XML standard
signature does not break
Model 1 (2/2)
Model 2 (1/2)

Sender and recipient use different standards. A transformation must be performed.
Model 2

Sender

Mediator

Recipient

\[V_{k+1}(C) \]
\[C \]
\[k+1 \]
\[T_{m2} \]
\[\text{Sig } m \]

\[V_k(C) \]
\[C \]
\[k+1 \]
\[H(\text{Trans}) \]
\[T_r \]
\[\text{Sig } r \]

\[V_{k+1}(C) \]
\[C \]
\[k+1 \]
\[T_{m2} \]
\[\text{Sig } m \]
Final structure

A Merkle hash tree
Conclusions

• Requires many public key operations
 – guarantees security objectives
 – heavy

• must consider more extensive use of symmetric encryption
 – if the intermediary is regarded as trustworthy, a simpler and lighter model is possible.
Future research

• Performance measurements
 – using different cryptographic methods
 – limitations on scalability