Audit trail model for intermediated business document exchange

Mikael Ylijoki Master's thesis 2003

Supervisor: Prof. Jormakka

Contents

- Background
- Research objectives
- Outline of the solution
- Central problems
- The thesis
- Model 1
- Model 2
- Final structure
- Conclusions
- Future research

Background 1

- Growth in the exchange of B2B electronic documents
 - electronic invoicing
 - marketplaces
 - contract negotiation and conclusion
- Various XML standards for business

Background 2

• A need to fulfill the requirements of contract law electronically

- EU legislation on
 - electronic commerce
 - digital signatures
 - electronic invoicing

Background 3

- Assumed environment includes an intermediary, i.e. a third party service provider
- XML is predominantly used in the service
 - mappings and transformations must be performed between different XML standards
- Business processes are unambiguously defined and their instances are identifiable

Research objectives

- Create an audit trail model that reliably records all the relevant documents exchanged
- The audit trail must guarantee
 - data integrity
 - non-repudiation
 - authentication
- Documents must be able to act as a proof of legal commitment in case of dispute

Outline of the solution

 Cryptographic methods are used to accomplish the security objectives

- In addition to the business documents some control messages must be exchanged, e.g.
 - to guarantee non-repudiation of receipt
 - to be able to monitor the intermediary as well

The central problem

- What happens when a legally binding document with an electronic signature must go through an XML transformation?
 - the original signature will break in any case

The thesis

- Background (literature) research
 - business models
 - XML basics and several business related standards
 - cryptographic methods
 - evolving EU legislation
- Proposed audit trail model

Model 1 (1/2)

Sender and recipient share a common XML standard \Box signature does not break

Model 1 (2/2)

Model 2 (1/2)

Sender and recipient use different standards. A transformation must be performed.

Model 2 (2/2)

Final structure

A Merkle hash tree

Conclusions

- Requires many public key operations
 - guarantees security objectives
 - heavy
- must consider more extensive use of symmetric encryption
 - if the intermediary is regarded as trustworthy, a simpler and lighter model is possible.

Future research

- Performance measurements
 - using different cryptographic methods
 - limitations on scalability