Simulation Studies on Performance of Balanced Fairness

Vesa Timonen

Networking Laboratory

Instructor & supervisor: professor Jorma Virtamo
Contents

• Objectives
• Network model
• Fairness
• Balanced Fairness
• Simulations and Results
• Summary
Objectives

• Survey on concept of fairness
 – Focus on concept of balanced fairness
• To examine throughputs and sensitivity in different network topologies with three allocation policies: balanced, max-min and proportional
• To verify analytical results
Network model

• Assumptions
 – Packet level observations discarded
 – Fluid model – flows as continuous streams, no storing of data in queues or links
 – Propagation delays discarded – immediate changes, no delays at transfers
 – When a flow starts, it is immediately received at the destination at the sending rate
Network model (cont.)

- **Network model**
 - Set of links with finite fixed capacity
 - Set of fixed unique routes as flow classes
 - Network state is described by vector \mathbf{x} containing number of active flows of each flow class
 - Feasibility: allocated capacity may not exceed network resources
 - Traffic condition: traffic load may not exceed network resources
Fairness

• Classical fairness in static network scenario
• Max-min fairness
 – Traditional definition of fairness
 – All flows get as equal rate as possible
• Proportional fairness
 – “deviation from the fair allocation causes a negative average change”
Fairness (cont.)

• Utility-based fairness – generalization to optimization problem \(\max \sum_{r \in R} u^r_{\alpha}(\phi_r) \), where

\[
u^r_{\alpha}(\phi_r) = \begin{cases}
w_r x_r \log(\phi_r/x_r), & \alpha = 1 \\
w_r x_r \frac{(\phi_r/x_r)^{1-\alpha}}{1-\alpha}, & \alpha \neq 1 \end{cases}
\]

• For class \(r \)
 \(x_r : \) nof active flows
 \(\phi_r : \) the allocated capacity
 \(w_r : \) the weight

• Parameter \(\alpha \) defines the fairness criterion:
 \(\alpha \to 0 \) Throughput max.
 \(\alpha \to 1 \) Proportional fairness
 \(\alpha \to 2 \) Potential delay min.
 \(\alpha \to \infty \) Max-min fairness
Balanced Fairness

• Balance property

\[
\frac{\phi_k(x-e_k')}{\phi_k(x)} = \frac{\phi_k(x-e_k)}{\phi_k'(x)}, \forall x : x_k > 0
\]

– The experienced relative change in allocation of one flow class caused by the removal of a flow of the other class, is equal for all flow class pairs

• Balance function

– Path from state 0 to state \(x : \langle x, x-e_{k_1}, x-e_{k_1}-e_{k_2}, \ldots, x-e_{k_1}-\ldots-e_{k_{n-1}} \rangle \)

– Balance function \(\Phi(x) = \frac{1}{\phi_{k_1}(x)\phi_{k_2}(x-e_{k_1})\ldots\phi_{k_n}(x-e_{k_1}-\ldots-e_{k_{n-1}})} \).

11.11.2003 Timonen - Simulation Studies on Performance of Balanced Fairness
Balanced Fairness (cont.)

• Balanced allocation
 – Capacity allocation for flow class \(k \) defined by the balance function is
 \[\phi_k = \frac{\Phi(x - e_k)}{\Phi(x)}, \forall k : x_k > 0 \]

• Balanced fairness
 – No of different balanced allocations is infinite
 – Balanced fairness is unique allocation defined by recursion
 \[\Phi(x) = \max_{l \in L} \left\{ \frac{1}{C_{l, i \in r_i}} \sum \Phi(x - e_i) \right\} \]
 – defines the most efficient balanced allocation
Balanced Fairness (cont.)

• Properties
 – Insensitive to
 • Flow size distribution
 • Distribution of the nof flows per session
 • Correlation between successive flow sizes and think-time durations
 – Necessitates that session arrivals are Poisson
 – Distribution of the nof flows in progress and expected throughput depend only on the average load of each flow class
Simulations and Results

• Simulations
 – Three different allocation policies – balanced fairness, max-min fairness and proportional fairness
 – Throughput
 • Homogenous and heterogeneous traffic
 – Sensitivity
 • Unimodal, bimodal and uniform flow size distributions
 • Time-scale variation – constant demand with varying ratio of flow size and arrival rate
 – Flow duration variance
 – Slow-down factor
Simulations and Results (cont.)

• Setups
 – Linear network with 2 and 5 links
 – Parking lot network with 3, 4 and 5 links
 – 2×2 grid network
 – Hypercycle network with 3, 4 and 5 links
 – 4 different tree networks
Simulations and Results (cont.)

- **Results**
 - **Throughput**
 - In general, max-min fairness prefers long routes more than balanced fairness or proportional fairness
 - Differences between balanced fairness and utility-based criteria are quite small
 - **Sensitivity**
 - Balanced fairness is insensitive
 - Also the utility-based criteria are quite insensitive
Simulations and Results (cont.)

• Verified analytical results
 – Proportional fairness coincides with balanced fairness in hypercube network topologies (lines, grids)
 – Utility-based allocation coincide in tree network topologies (parking lot, trees)
 – Simulated throughputs followed exactly the analytical throughput curves in case of balanced fairness

• Main result
 – Simulations showed that balanced fairness provides an effective tool to approximate and evaluate the performance metrics in analytical way
Summary

• This study presented
 – Classical fairness criteria
 – Notion of balanced fairness
 – Main simulation results and verified analytical results

• Questions?