Network monitoring with simple network monitoring protocol in optical feeder network

Riikka Lemminkäinen VTT Information Technology, Telecommunications

Supervisor: Professor Jorma Jormakka **Instructor:** Kari Seppänen, Lic.Sc. (Tech.)

Riikka Lemminkäinen, October 7, 2003

Contents

- OAN (Optical Access Networking) project
- Network monitoring in OAN network
- Extending SNMP agent
- Conclusions and further work

OAN (Optical Access Networking) project

- TEKES funded, 2001-2003 (VTT, HUT, Nokia, Elisa)

Information Technology

Riikka Lemminkäinen, October 7, 2003

OAN protocol stack

- WDM, optics
- SDH, transport layer, prevailing protocol
 - + VC, efficient bandwidth allocation
 - + LCAS, dynamic bandwidth re-allocation,
- GFP, adaptation layer for both block-coded or packet-oriented data
 - + GFP-MD, VTT extension, supports multicast and provides faster packet forwarding

OAN network monitoring

- Mostly network performance monitoring
- Speeds up failure locating

Information Technology

Riikka Lemminkäinen, October 7, 2003

OAN network monitoring with SNMP (Simple Network Monitoring Protocol)

- Standardized by IETF, kept as simple as possible
- Presents management information as objects defined in management information bases (MIBs)
- Third version (SNMPv3) offers security and data encryption
- Extendable SNMP agent/manager software available (Net-SNMP)

Layered Network Management Scheme

- Combination of readily standardized MIBs and OAN-specific MIBs
- System management information: MIB-II, IETF RFC 1213
- Interfaces management information:
 - + basic information: Interfaces MIB, IETF RFC 2863
 - + SDH information: SONET/SDH MIB, IETF RFC 2558
 - + VC, LCAS extensions: OAN project (further work)
 - + GFP, GFP-MD: OAN project (further work)
 - + overlay protocols: IETF RFCs
- OAN components management information
 - + node cards + lasers: VTT-IT-OAN-NODECARD-MIB
 - + IO cards: OAN project

Riikka Lemminkäinen, October 7, 2003

Monitoring OAN node cards and lasers 1/2

- One OAN management system may contain several nodes
- Each OAN node card includes four lasers: two tunable, two fixed
- OAN node card management information: index, name, description, status, type of laser A and laser B
- Laser management information: different for fixed and tunable lasers

Monitoring OAN node cards and lasers 2/2

- The operating point of a tunable laser is set with three values: temperature (wavelength), bias current, and modulation current

Information Technology

Riikka Lemminkäinen, October 7, 2003

From use cases to SNMP MIBs

- MIBs are ASN.1 descriptions (readable both for machine and human)
- The needed management information (data-type, access rights) must be defined and placed into the MIB tree structure

- ASN.1 description for node card management information in VTT-IT-OAN-NODECARD-MIB
- Two traps for reporting about aged lasers: voNcLaserAEndOfLife and voNcLaserBEndofLife

From MIBs to SNMP agent source code

- Net-SNMP package includes mib2c compiler that produces agent-attachable C code from ASN.1 MIB descriptions
- Command mib2c voNodeCards produces two code files: voNodeCards.h and voNodeCards.c
- Produced code is only a skeleton which has to be fleshed out
- Programmer does not need to understand the deep internals of the SNMP agent extending the agent is straightforward
- Only functions for module initializing, variable handling, and value setting need to augmented

Riikka Lemminkäinen, October 7, 2003

System architecture

Including the module to SNMP agent

- Ready C-code must be compiled into a module and included into SNMP agent
- voNodeCards.c and the driver library liboan.so are compiled into shared object, voNodeCards.so
- voNodeCards module is linked dynamically into Net-SNMP agent by configuring agent configuration file
- Agent loads dynamic modules during re-start
- New module is tested by getting and setting the OAN node card management information
- Also the sending of laser A/B end-of-life traps must be tested

Riikka Lemminkäinen, October 7, 2003

OAN test network Management station tte2196.tte.vtt.fi 130.188.55.196 - SNMP applications System admistrato espok70867.ad.vtt.fi SNMP request / response 130.188.54.188 (over UDP) SNMP trap (only upstream) OAN rack 130.188.54.239 SNMP agent (snmpd) + voNodeCards module OAN library Kernel driver OAN node card OAN ring

Conclusion

- SNMP is easy to take in use due to ready tools and standardized MIBs
- The MIB structure does not support complex data types (such as arrays) or advanced queries (such as, all active node cards)
- SNMP does not support creating or deleting rows, returning parameters or executing functions, which could be nice if the network should really be managed instead of bare monitoring
- SNMP is applicable for simple network monitoring, extensive network monitoring is difficult
- The simple nature of SNMP makes things complex.

Riikka Lemminkäinen, October 7, 2003

Further work

- MIB for LCAS and VC extensions of SONET/SDH protocol
- MIB for GFP (and GFP-MD) protocols
- Extending the agent to support SONET/SDH MIB and OAN-specific MIBs
- Extending the driver to provide needed management information
- User interface hiding the complexity of MIB tree structure

