Site Multihoming

Examining Site Multihoming in Finnish Networks

Pekka Savola
Done at CSC - Scientific Computing Ltd
Supervisor Raimo Kantola

Site Multihoming

Contents

- □ Cover and contents (2 slides)
- □Introduction (2)
- ☐ The problem statement (1)
- □ Methodology (1)
- □ Results (2)
- □Own work (1)
- □ Conclusions and future work (1)

2+8 slides total

Introduction (1)

Terminology

- Multihoming
 - oconnecting to more than one ISP simultaneously
 - ofor redundancy, independence or whatever reasons
- □ Site multihoming
 - oend-site, like an enterprise, multihoming
 - oie. network multihoming, not single node or whole ISP
- ☐ More specific route (with different path)
 - osomeone advertising e.g. 193.166.0.0/16 (the less specific)
 - osomeone else advertising e.g. 193.166.1.0/24 (the more specific)
 - oall traffic to 193.166.1.0/24 will go to the latter

Introduction (2)

Motivations for multihoming

- □Independence
 - onot locked in with one ISP
 - ono renumbering if you change ISPs
- □ Redundancy
 - onot affected by different failures (link, router, ...)
- □ Load sharing
 - oinbound and outbound traffic balancing
- □ Performance
 - opossibly different requirements etc. for heavy/light traffic
 - oe.g. VoIP with low latency/jitter with one ISP, bulk on the other
- □ Policy
 - oadministrative reasons, such as separation of research/commercial traffic

The problem statement

Problem

- □ The extent and methods of IPv4 site multihoming are not clear
 - odescribe the background and the techniques
 - oso, explore how it's done!
- ☐ There are no solutions for IPv6 site multihoming
 - odue to most IPv4 techniques being unscalable
 - osame mechanisms do not apply
 - onew mechanisms have been proposed but there is no consensus
 - oso, apply the observations learned from IPv4
 - ⊳analyze IPv6 mechanisms
 - ▶ create a model how to classify organizations and their requirements
 - based on that, suggest a roadmap on which mechanisms to pursue

Methodology

Methodology

- □ Literature
 - oreading a lot of RFCs, drafts, documents, etc.
- Operational experience
 - orouting design etc. at Funet for 2+ years
 - oparticipation in various IETF, RIPE, etc. working groups
- □ Collecting of routing data in FICIX for 6+ months
 - oanalyze route advertisements for different types of multihoming
 - oalso short analysis of the trend in 6 months
- □ Query to major Finnish ISP's
 - oask about questionable advertisements and multihoming practises

Results (1)

Results - IPv4

- □3-4 different types of site multihoming
 - having an AS number and address space
 - oadvertising a more specific route from different path
 - omulti-connecting to single ISP
 - othe use of NAT for multihoming
- □ Relative popularity
 - othe first two about equally common
 - othe third difficult to measure, but common
 - othe fourth in some use, difficult to measure
- ☐ Generic routing information
 - ○1661 prefixes announced, from /14 to /32
 - ○50% of prefixes /24, which are 1.7% of the advertised space
 - ○13% of all routes are more specifics
 - bduring 6 months, over 50% increase, only a fraction removed

Results (2)

Results - IPv6

- □ Analysis on Methods
 - oa lot of issues in many of them
 - omost depend on multiple addresses in every node from different ISPs
 - odetails omitted
- □ Classification of organizations
 - otypes: small, minimal, large, international
 - opossible requirements: independence, redundancy, load sharing
 - owhich reqs seem to be needed recorded in a matrix
- □ Choosing the multihoming mechanism
 - oclassify the solutions as immediate, short term and long term
 - odon't consider long term solutions here
 - describe which mechanisms fit for each organization type

Own/other work

Own/other work

- □ Other: some background mostly
 - omost multihoming motivations, some terminology
 - background knowledge on BGP, addressing, etc.
 - osite multihoming mechanism specifications themselves
 - oshould be more...
- □Own: the rest of the 80 pages :-)
 - oroute advertisement data collection, processing, etc.
 - oformulation of site multihoming scalability problem
 - oconstraints in IPv4 and IPv6 when defining the mechanisms
 - one IPv6 multihoming mechanism
 - ocategorization and presentation of route advertisements
 - ogathering the information by other means
 - IPv4 classification of organizations
 - oanalysis of IPv6 site multihoming mechanisms
 - oclassification to organization and requirements
 - methods for choosing the multihoming mechanism

Conclusions

Conclusions

- □ IPv4 site multihoming
 - odone with 3-4 mechanisms
 - omost of them architecturally unscalable
- □IPv6 site multihoming
 - olots of solutions, no consensus how to proceed
 - oa roadmap presented in the thesis
 - oa few short term mechanisms need a bit of work
 - oa lot of long term mechanisms to be researched
 - oaiming for architecturally good approaches
- □ The world is not ready yet :-)

Future work

- ☐ A lot of it, as always
 - Extending based on the thesis
 - ▶12 paragraphs worth of ideas
 - Short term work on IPv6 site multihoming
 - ⊳also a lot :-)