Analysis of QoS Routing Approaches and Algorithms

Ilmari Juva

Networking Laboratory Supervisor: Professor Samuli Aalto

28.2.2003

Ilmari Juva Analysis of QoS routing approaches and algorithms

Contents

- Background
- Metrics
- Link state information
- Routing problems
- Heuristics for complex routing problems
- Cost of QoS routing
- Inter-Class effects

Background

- Current Internet routing protocols forward packets to the shortest path based on hop count.
- QoS routing is a routing scheme, under which paths for flows would be determined based on some
 <u>knowledge of resource availability</u> in the network, as well as the <u>QoS requirements</u> of the flow.

Metrics

- To find feasible paths, the QoS requirements have to be represented by metrics
- The metrics define the types of QoS guarantees the network is able to support
- The metrics should be selected so that requirements can be represented by one metric or a reasonable combination of them

Metrics

- Metrics commonly used in QoS routing are divided to three categories:
 - Path constraints
 - 1. Additive: w(P)=w(i,j)+w(j,k)+...+w(l,m)
 - » Delay, cost, hop-count
 - 2. Multiplicative: w(P)=w(i,j) w(j,k)...w(l,m)
 - » Reliability
 - Link constraints
 - 3. Concave: w(P)=min{w(i,j),w(j,k),...,w(l,m)}
 - » Bandwidth

28.2.2003	Ilmari Juva	5				
Analysis of QoS routing approaches and algorithms						

Link State Information

- In order to compute routes supporting the QoS requirements, a router needs information about the availability of resources in the network
- Extensions on the link state advertisements to include information about the metrics.
 - When to inform about changes
 - Threshold based triggers
 - Class based triggers
 - Timer based triggers
 - Scope of Link state advertisement

Single metric routing problems

- Link optimization routing problem
 - Largest available bandwidth
- Link constrained routing problem
 - Available bandwidth larger than constraint C
- Path optimization routing problem
 - Shortest delay, smallest hop-count
- Path constrained routing problem
 - Delay/hop-count smaller than constraint C

7

Routing problems with two metrics

	Link-optimization	Link-constrained	Path-optimization	Path-constrained
Link-optimization	-	Link-constrained link- optimization routing problem	-	Path-constrained link- optimization routing problem
		POLYNOMIAL		POLYNOMIAL
Link-constrained		Multi-link-constrained routing problem	Link-constrained path- optimization routing problem	Link-constrained path- constrained routing problem
		POLYNOMIAL	POLYNOMIAL	POLYNOMIAL
Path-optimization			-	Multi-path-constrained optimization routing problem, MCOP
				NP-COMPLETE
Path-constrained				Multi-path-constrained routing problem, MCP
				NP-COMPLETE
28.2.2003		Ilmari Juya		8

Analysis of QoS routing approaches and algorithms

Bandwidth and hop count as metrics

Cost of QoS routing

• Factors contributing to cost and overhead

- Computational cost
 - Path selection algorithm: cost-efficiency trade-off
 - Path computation: On-demand vs pre-computation
 - Flexibility in routing: accounting for inaccuracy etc.
- Protocol overhead
 - Triggers for link state update messages
 - Scope of link state update messages
- "Processing cost remains well within the capabilities of medium-range processors" (Apostolopoulos et al. 1999)

Inter-class effects

- In an environment with both QoS guaranteed traffic and best-effort traffic, the task of routing is to maximize the resource efficiency.
 - 1. Minimize the call-blocking ratio of QoS flows
 - 2. Optimize the throughput and fairness for best-effort flows
- Routing algorithms: ebsp, multiclass routing
- Trunk reservation
 - Own contribution: effect of reservation level on blocking of QoS guaranteed traffic and bandwidth available for low priority traffic

QoS traffic's blocking vs available bandwidth for low priority traffic

Analysis of QoS routing approaches and algorithms