

HELSINKI UNIVERSITY OF TECHNOLOGY Institute of Digital Communications Communications Laboratory

Codes for the Two-user Binary Adder Channel

DANIELE FABIO FUCCIO

danfu@cc.hut.fi

Helsinki University of Technology Institute of Digital Communications – Communications Laboratory P.O. Box 3000, FIN-02015 HUT – Finland

Supervisor: Prof. Patric R. J. Östergård

 \checkmark The binary adder channel (BAC)

Outline

- ✓ The binary adder channel (BAC) \checkmark
- \checkmark Capacity region and some bounds

- ✓ The binary adder channel (BAC) \checkmark
- \checkmark Capacity region and some bounds
- \checkmark Uniquely decodable codes (UD) and equivalent codes

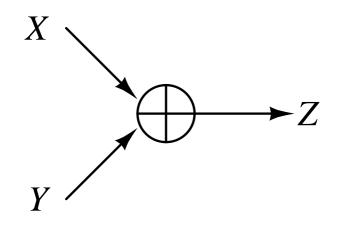
- ✓ The binary adder channel (BAC) \checkmark
- \checkmark Capacity region and some bounds
- \checkmark Uniquely decodable codes (UD) and equivalent codes
- \checkmark Method to approach the results

Outline

- ✓ The binary adder channel (BAC) \checkmark
- \checkmark Capacity region and some bounds
- \checkmark Uniquely decodable codes (UD) and equivalent codes
- \checkmark Method to approach the results
- $\checkmark\,$ Results and Conclusions

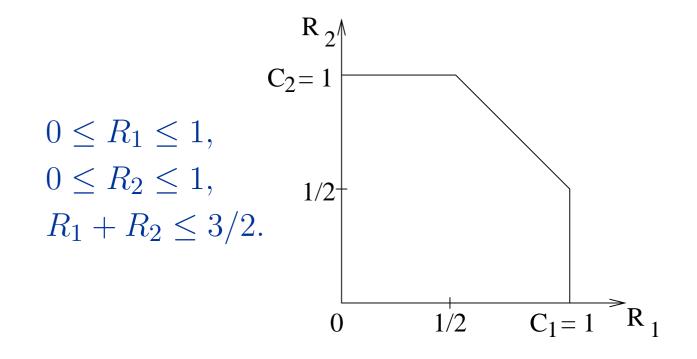
The BAC

✓ This channel has binary inputs, $X = Y = \{0, 1\}$ and a ternary output $Z = \{0, 1, 2\}$. There is no ambiguity in (X, Y) if Z = 0 or Z = 2 is received; but Z = 1 can result from either (0,1) or (1,0)



Shannon capacity region (C_S)

✓ The Shannon capacity region is obtained under the assumption to use codes with length that tends to infinity



Codes for the Two–user Binary Adder Channel – $\mathrm{p.4}/17$

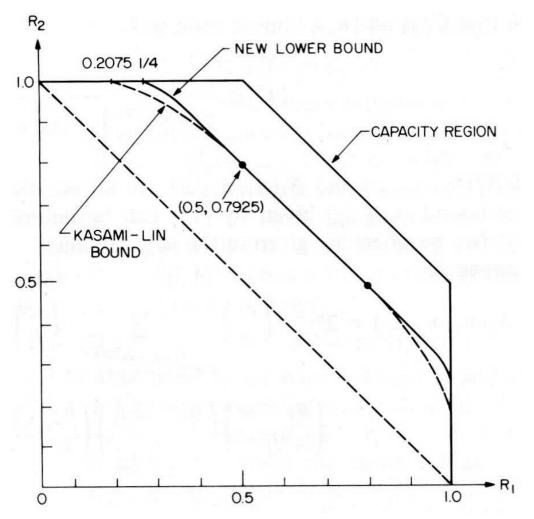
UD and inequivalent codes

- ✓ The code pair (C_1, C_2) is called **uniquely decodable** (UD) if the sums $c_1 + c_2$ of all pairs $(c_1, c_2) \in (C_1 \times C_2)$ are all different
- ✓ Two codes are said to be **equivalent** if there is a permutation of the coordinates (bits of the codeword) together with **n** permutations of the coordinate values, one for each of the coordinates that map one code into the other

Zero–error capacity region (C_S)

- ✓ In communication systems it is important to require to transmit over a noiseless synchronous 2–user BAC with error probability strictly zero
- ✓ The zero–error capacity region (C_{ZE}) , it is the convex closure of all rate pairs (R_X, R_Y) which corresponds to uniquely decodable codes

KLWY lower bound

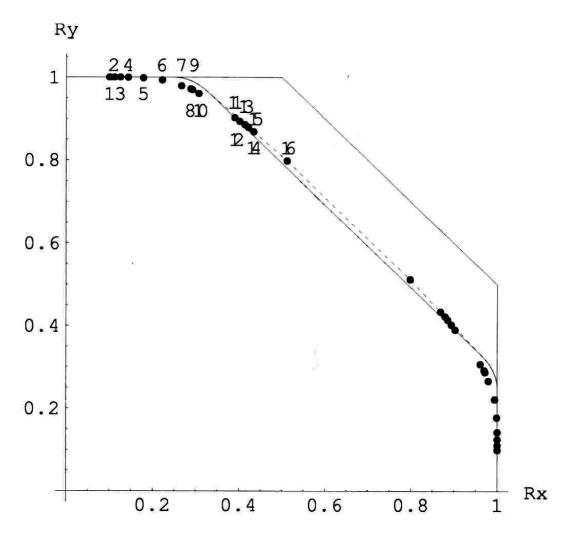


Codes for the Two–user Binary Adder Channel – p.7/17

CT-construction results

nr.	N	R_1	R_2	$R_1 + R_2$		nr.	N	R_1	R_2	$R_1 + R_2$
al	100	0.10000	0.99999	1.09999		b5	350	0.29185	0.96981	1.26165
a2	81	0.11111	0.99998	1.11109		b6	848	0.30695	0.96074	1.26769
a3	64	0.12500	0.99992	1.12492		b7	240	0.40224	0.89375	1.29599
a4	49	0.14286	0.99968	1.14254		b8	448	0.41425	0.88527	1.29951
b1	342	0.17823	0.99844	1.17667		b9	512	0.42204	0.87913	1.30116
a7	115	0.18622	0.99749	1.18370		b10	800	0.43425	0.86873	1.30298
b3	174	0.26662	0.97899	1.24561		a22	48	0.44514	0.85820	1.30334
b4	320	0.28796	0.97166	1.25962		b11	1344	0.44310	0.86056	1.30366

Non-constructive lower bound



Codes for the Two–user Binary Adder Channel – p.9/17

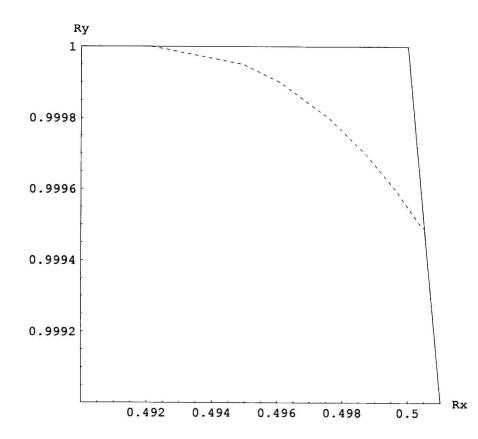
The best known UD code

- ✓ The best known UD code pair is obtained from a code of length 7, the sizes are $|C_1| = 12$ and $|C_2| = 48$
 - $\mathcal{C}_{1} = \{1, 13, 19, 34, 40, 52, 75, 87, 93, 108, 114, 126\}, \\ \mathcal{C}_{2} = \{6, 10, 14, 15, 16, 20, 21, 24, 26, 27, 30, 38, 39, 43, 46, \\ 47, 49, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 70, \\ 71, 74, 80, 88, 89, 96, 97, 99, 100, 101, 102, 103, 106, \\ 107, 112, 113, 120, 121\}$

 $R_1 + R_2 = 1.30999$ bits per transmission.

Urbanke–Li's upper bound

✓ The zero–error capacity region is strictly smaller than the Shannon capacity region.



Codes for the Two-user Binary Adder Channel – p.11/17

Maximum clique problem

- ✓ Clique of a graph G
- ✓ The size of a largest clique of G is called the clique number of G
- $\checkmark\,$ Maximum clique problem is NP–hard

An improved result

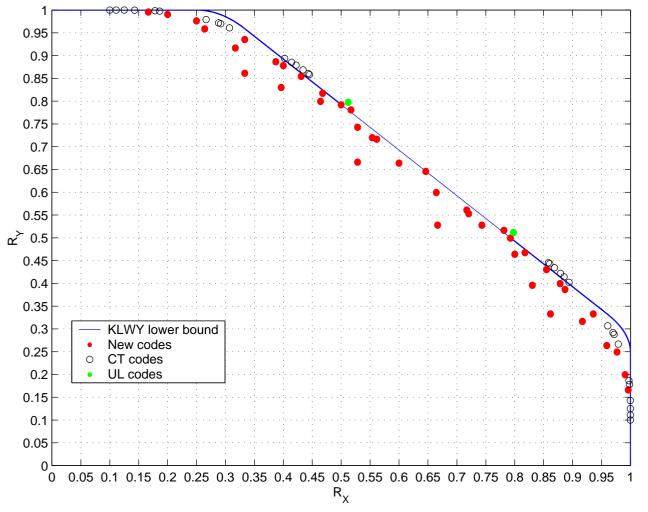
✓ Coebergh found a code pair (C_1, C_2) of length 7 and sizes 12 and 47 with $R_1 + R_2 = 1.30565$ bits per transmission

 $C_1 = \{1, 4, 10, 19, 28, 31, 96, 99, 108, 117, 123, 126\}$

 $\checkmark C_2$ has been improved:

 $\mathcal{C}_{2} = \{6, 7, 9, 10, 13, 15, 16, 18, 21, 22, 24, 25, 38, 39, 41, 42, \\43, 45, 47, 48, 50, 53, 54, 55, 56, 57, 58, 70, 71, 73, 74, \\75, 77, 79, 80, 82, 85, 86, 87, 88, 89, 90, 103, 106, 109, \\112, 118, 121\}$

Best obtained results



Codes for the Two–user Binary Adder Channel – $\mathrm{p.14}/\mathrm{17}$

Best obtained results

				n	$ \mathcal{C}_1 $	\mathcal{C}_1	Sum-rate
n	$ \mathcal{C}_1 $	\mathcal{C}_1	Sum-rate	4	4	0 3 12 15	1.292481
2	2	03	1.292481	4	6	$0\ 1\ 2\ 7\ 13\ 14$	1.292481
2	3	012	1.292481	4	6	$0\ 1\ 2\ 12\ 13\ 14$	1.292481
3	2	0 7	1.269118	4	6	$0\ 1\ 2\ 13\ 14\ 15$	1.292481
3	7	$0\ 1\ 2\ 3\ 4\ 5\ 6$	1.269118	4	6	$0\ 1\ 6\ 10\ 13\ 15$	1.292481
				4	9	$0\ 1\ 2\ 3\ 4\ 5\ 8\ 10\ 12$	1.292481
				4	9	$0\ 1\ 2\ 3\ 4\ 5\ 10\ 12\ 14$	1.292481

Best obtained results

n	$ \mathcal{C}_1 $	\mathcal{C}_1	Sum-rate
4	9	$0\ 1\ 2\ 3\ 4\ 11\ 12\ 13\ 15$	1.292481
4	9	$0\ 1\ 2\ 4\ 9\ 10\ 11\ 12\ 13$	1.292481
4	9	$0\ 1\ 2\ 4\ 9\ 10\ 13\ 14\ 15$	1.292481
4	9	$0\ 1\ 2\ 5\ 6\ 11\ 12\ 13\ 14$	1.292481
5	6	$0 \ 3 \ 12 \ 21 \ 26 \ 31$	1.298371
5	6	$0 \ 3 \ 12 \ 21 \ 27 \ 30$	1.298371
5	15	$0\ 1\ 2\ 3\ 4\ 7\ 8\ 15\ 16\ 23\ 24\ 28\ 29\ 30\ 31$	1.298371
5	15	0 1 2 3 4 8 12 19 21 22 23 27 28 29 30	1.298371
5	15	0 1 2 3 4 9 12 13 18 22 26 27 28 29 30	1.298371

 \checkmark Good results compared to the solved code length

- \checkmark Good results compared to the solved code length
- ✓ Exhaustive research has been completed for code length n = 2, 3, 4, 5 and code length 6 only partially (computational reasons)

- ✓ Good results compared to the solved code length
- ✓ Exhaustive research has been completed for code length n = 2, 3, 4, 5 and code length 6 only partially (computational reasons)
- ✓ Multiuser coding can achieve higher total rate of transmission (sum-rate) than traditional channel multiplexing techniques such as time-division

Conclusions

- ✓ Good results compared to the solved code length
- ✓ Exhaustive research has been completed for code length n = 2, 3, 4, 5 and code length 6 only partially (computational reasons)
- ✓ Multiuser coding can achieve higher total rate of transmission (sum-rate) than traditional channel multiplexing techniques such as time-division
- ✓ This work could find application in a T-user BAC