S-38.3041 Operator Business

Course introduction
S-38.3041 – Contacts

• Personnel
 – Lectures Heikki Hämmäinen and team (tel. 4516144)
 – Course assistant Turo Brunou (tel. 4512462)

• Communications
 – Course web site http://www.netlab.hut.fi/opetus/s383041
 – News group opinnot.sahko.s-38.tietoverkkotekniikka
 – Email: see course web site
S-38.3041 - Completion

• Examination
 – An acceptable performance required in the examination
 – Exam includes 5 questions a 6 points

• Exercise
 – A one day session of mobile operator business game
 – Obligatory, grading of team and individual performance
 – Organized in April
 – Information about registration announced on web site
Lecture schedule

14.03 Course introduction. Big picture (HH)
19.03 Consumer customers (HH)
21.03 No lecture (Easter)
26.03 No lecture (Easter)
28.03 Enterprise customers (HH)
02.04 Operators (AK)
04.04 Pricing 1 (AK)
09.04 Competition and MOB game (HH/TB)
11.04 Pricing 2 (HV)
16.04 Investments (TS)
18.04 Interconnect and roaming (HH)
23.04 Charging and billing (HV)
25.04 Regulation (TS)
30.04 Spectrum, course wrap-up (TS)

April
Game sessions
15.4, 17.4, 19.4

07.05
Examination
Course materials

• Exam material
 – Lecture slides (to be available on web before/after each lecture)

• Other recommended readings
 – *ICT Regulation Toolkit (free, on-line)*: www.ictregulationtoolkit.org
What is operator business?
Application of microeconomic theory to networking services markets

Consumer theory

- Budget
- Preferences
- Utility
- Choice
- Demand

Consumer Surplus
Market Demand

Market Segmentation

Producer theory

- Profit Maximization
- (ICT) Technology
- Cost Minimization
- Production
- Firm Supply

Service Pricing
Cost Assessment
Regulation
Competition
Value Nets

Equilibrium

Helsinki University of Technology
Networking Laboratory

S-38.3041 Operator Business
Hämmäinen
Introduction – Big Picture
Common aspects of networked industries

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottleneck</td>
<td>Traffic stacks because capacity is limited or temporarily blocked</td>
<td>Airport, telephone switch, damaged railroad bridge</td>
</tr>
<tr>
<td>Access</td>
<td>Physical availability, economical affordability</td>
<td>Electricity, water, Internet</td>
</tr>
<tr>
<td>Small vs large customers</td>
<td>Unit cost depends on the volume of contract</td>
<td>Prices of electricity, water, communications, etc</td>
</tr>
<tr>
<td>Short vs long haul</td>
<td>Unit cost depends on distance. International miles cheaper than local miles.</td>
<td>Prices of postal mail, telephone, etc</td>
</tr>
</tbody>
</table>
About "signaling"
Core of information society

- Signaling controls the resources of a network
- Net enables signaling for physical non-ICT networks (e.g. energy)
- Signaling of non-ICT networks depends on signaling of Net
Visions of media convergence

- BigPipe
 - Single channel
 - Unified value nets
 - E.g. Internet

- Big Box
 - Single terminal
 - Several channels
 - Smart or dumb
 - E.g. Linux/Java

- Big Company
 - Global company
 - Single ecosystem
 - E.g. Vodafone, MS

- Big Pipe may happen as Internet evolution
- Big Box may result from the operating system battle
- Big Company may get control of Big Pipe and/or Big Box
 - Business ecosystems grow and die slowly (e.g. Microsoft ecosystem)
 - Governments may interfere

Source: P Longstaff, 2003
Worldwide subscriptions forecast

Source: Ericsson, 2003
Fast Increase of Users and Devices

- Internet Host Computers: 93 Million (Year 2001) vs. 450 Million (Year 2006)
- Internet Users: 407 Million (Year 2001) vs. 1050 Million (Year 2006)
- Automobiles: 663 Million (Year 2001) vs. 850 Million (Year 2006)
- Mobile telephones: 1.5 Billion (Year 2001) vs. 2500 Million (Year 2006)
- Electronic Chips: 30 Billion

Can Internet technology stretch to the need of:
- larger address space?
- higher transport capacity?
- lower costs?

WWRF predicts:
7 trillion wireless devices serving 7 billion people by 2017 (c. 1000 devices per person)

Source: Internet World Stats, 2006
• Internet traffic continues doubling per year
• Growth is currently limited by user-to-network bandwidth
• Machine readability increasing rapidly
• No obvious upper limit for non-human traffic (P2P and M2M)
Evolution of network value
Positive Network Effect

1. Sarnoff’s Law
 - Value $\approx N$ (viewers in TV/radio broadcast networks)
2. Metcalfe’s Law
 - Value $\approx N^2$ (two-way connections in phone and data networks)
3. Reed’s Law
 - Value $\approx 2^N$ (social groups in group-forming networks)

Value of Internet evolves favorably also because
- N grows (PCs, cars, mobiles, automatic devices)
- usage time per N grows (always-on)
- new service types
 - new delivery techniques (datacasting, audio&video, multicast)
 - new interaction techniques (MMS, chat, conferencing)
- more applications and content (commercial and user-created)
Adoption of New Handset Functions
Case Finland

Penetration of active users (%)

Source: LEAD project, 2004
Service Classification

<table>
<thead>
<tr>
<th>Market segment</th>
<th>Consumer</th>
<th>Business</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location of use</td>
<td>Home</td>
<td>Office</td>
</tr>
<tr>
<td>Service class</td>
<td>Calling</td>
<td>Messaging</td>
</tr>
<tr>
<td>Pricing</td>
<td>Per transaction</td>
<td>Per minute</td>
</tr>
<tr>
<td>Usage amounts</td>
<td>Transactions</td>
<td>Minutes</td>
</tr>
<tr>
<td>QoS class</td>
<td>Conversational</td>
<td>Streaming</td>
</tr>
<tr>
<td>Required data rate</td>
<td>Uplink</td>
<td>Downlink</td>
</tr>
<tr>
<td>Traffic asymmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic time profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio access network</td>
<td>GSM</td>
<td>EDGE</td>
</tr>
</tbody>
</table>

Source: ECOSYS, T.Smura, 2005
Innovation model for Internet technologies

- Compare with the invention of electricity
- Processes and business models change slowly
Technology vision

Wireless systems

2005

- 28kb+ packet IP in all new handsets (GSM & WCDMA)
- Multiradio handsets spreading (GPRS & WLAN & Bluetooth)
- Bluetooth common in lightweight apps, and WLAN in heavy apps
- GPRS handset positioning common (GSM, GPS)

2010

- 100kb+ subscriber speed common in cellular (WCDMA)
- Energy conservation efficiency only tripled (fuel cells, solar cells)
- Seamless support for multiradio common (WCDMA & GSM & WLAN & PAN)
- Spectral efficiency of antennas clearly improved (adaptive antennas, MIMO)
- UWB (Ultra Wide Band) competing with BlueTooth and WLAN
- 4G spec maturing if WRC2006 has allocated bandwidth

Battery, heat, and radio are the bottlenecks

Source: TEKES NETS, 2003
Technology vision
Broadband packet networks

2005
- 512kb+ packet IP common in homes (ADSL, HFC)
- Access operators starting the prioritisation of traffic (diffserv, less than best effort)
- Optics increased in core and access networks (DWDM, MPLS)
- Ethernet changing the architecture of access networks

2010
- 10Mb+ IP common in homes (VDSL, HFC)
- Roaming common in fixed networks (WLAN/BlueTooth in homes)
- Increased capacity and operability in optical networks (all-optical, switching)

Network is the bottleneck, not terminal

Source: TEKES NETS, 2003
Technology vision
Services and applications

2005
– Mobile Internet services as common as those of wireline Internet
– Users can access their files from home, office, and on the move
– IP audio delivery common (plus broadcast radio in wireline Internet)
– Voice-over-IP emerging in wireline (WWW push-to-talk, chat, SIP)
– New services are based on open standards (IETF, 3GPP, W3C, OMA), but applications remain proprietary

2010
– Content adapts to environment (place, radio, device, user profile)
– IP audio/video has become efficient (multicast) and controlled (QoS)
– Voice-over-IP common in public networks (wireline and wireless)
– User controls (home) devices independently of place and time

Usability is the bottleneck

Source: TEKES NETS, 2003