

Helsinki University of Technology Networking Laboratory

How to Configure Cisco 2600 Routers

Juha Järvinen Juha.Jarvinen@netlab.hut.fi 10.6.2004

Table of Contents

1	Purpose.		3
2	Cisco Int	er-network Operating System (IOS)	4
	2.1 Cisc	to IOS Operation Modes	4
	2.1.1	User EXEC Mode	5
	2.1.2	Privileged EXEC Mode	5
	2.1.3	Configuration Mode	5
	2.1.4	No Form	5
	2.2 Gett	ing Help	6
	2.3 Con	figuration Files	6
	2.4 Con	figuration System (Setup)	7
	2.5 IP A	Address and Interface Configuration	7
3	Routing l	Protocol Configuration	8
	3.1 Rou	ting Information Protocol RIP	8
	3.1.1	RIP Commands	8
	3.1.2	Specify a RIP Version	8
	3.1.3	No Form	9
	3.2 Ope	n Shortest Path First OSPF	9
	3.2.1	OSPF Commands	9
	3.2.2	Router ID	10
	3.2.3	Virtual Link	11
	3.2.4	Configure OSPF Interface Parameters	11
	3.2.5	No Form	12
	3.3 RIP	and OSPF Redistribution	12
	3.3.1	RIP	12
	3.3.2	OSPF	12
	3.3.3	Gateway	13
	3.3.4	LAN	13
R	References		

1 Purpose

Purpose of this document is to show how to use and configure Cisco 2600 Series routers. Mainly this document has been done for Laboratory work course (S-38.133) at Networking Laboratory at HUT. On laboratory course these Cisco's routers are used for IPv4 routing in small network.

This document includes configuring interfaces up and routing part, which has manual for RIP (Routing Information Protocol) and for OSPF (Open Shortest Path First). For other routing protocols among others BGP (Border Gateway Protocol) see for example Cisco's web site¹.

Chapter 3 is suited very good for example for PC routers running $Zebra^2$ (nowadays $Quagga^3$) as routing daemon, because it has same commands as Cisco routers use.

Mainly this document is collection of Cisco's manuals ([1] - [2], [6] - [7]), which are modified for our laboratory course's use.

¹ www.cisco.com

² www.zebra.org

³ www.quagga.net

2 Cisco Inter-network Operating System (IOS)

2.1 Cisco IOS Operation Modes

The Cisco Software provides access to four different command modes. There are more commands, but in normal use they are not necessary. Each command mode provides a different group of related commands. For security purposes, the Cisco IOS software provides two levels of access to commands: user and privileged. The unprivileged user mode is called user EXEC mode. The privileged mode is called privileged EXEC mode and requires a password.

The following table, Table (1) describes four used modes, how to enter the modes and the resulting prompts. The prompt helps you identify which mode you are in and therefore which commands are available to you. In Fig. (1) these four operation modes are presented as a figure.

Command Mode	Access Method	Prompt	Exit Method
User EXEC	Log in.	Router>	Use the logout
			command.
Privileged EXEC	From user EXEC	Router#	To return to user EXEC
	mode, use the enable		mode, use the disable
	EXEC Command		command
Global configuration	From privileged	Router(config)#	To return to privileged
	EXEC mode, use the		EXEC mode from
	configure terminal		global configuration
	privileged EXEC		mode, use the exit or
	command.		end command, or press
			Ctrl-Z.
Interface configuration	From global	Router(config-if)#	To return to global
	configuration mode,		configuration mode use
	specify an interface	Or	the exit command. To
	using an interface (or	Doutor (config	return to privileged
	router) command	router)#	EXEC mode, use the
			end command, or press
			Ctrl-Z.

Table 1. Accessing and Exiting Command Modes.

Figure 1. Four Cisco IOS Operation modes and their accesses and exits as a figure.

2.1.1 User EXEC Mode

When you are connected to the router, you are started in user EXEC mode. The user EXEC commands are a subset of the privileged EXEC commands.

2.1.2 Privileged EXEC Mode

Privileged commands include the following:

- Configure Changes the software configuration.
- Debug Display process and hardware event messages.
- Setup Enter configuration information at the prompts.

Enter the command disable to exit from the privileged EXEC mode and return to user EXEC mode.

2.1.3 Configuration Mode

Configuration mode has a set of submodes that you use for modifying interface settings, routing protocol settings, line settings, and so forth. Use caution with configuration mode because all changes you enter take effect immediately.

To enter configuration mode, enter the command configure terminal and exit by pressing Ctrl-Z.

2.1.4 No Form

Almost every configuration command also has a no form. In general, use the no form to disable a feature or function. Use the command without the keyword no to re-enable a disabled feature or to enable a feature that is disabled by default. For example, IP

routing is enabled by default. To disable IP routing, enter the no ip routing command and enter ip routing to re-enable it.

2.2 Getting Help

In any command mode, you can get a list of available commands by entering a question mark (?).

Router>?

To obtain a list of command that begin with a particular character sequence, type in those characters followed immediately by the question mark (?).

Router#co? Configure connect copy

To list keywords or arguments, enter a question mark in place of a keyword or argument. Include a space before the question mark.

Router#configure ? memory Configure from NV memory network Configure from a TFTP network host terminal Configure from the terminal

You can also abbreviate commands and keywords by entering just enough characters to make the command unique from other commands. For example, you can abbreviate the show command to sh.

2.3 Configuration Files

Any time you make changes to the router configuration, you must save the changes to memory because if you do not they will be lost if there is a system reload or power outage. There are two types of configuration files: the running (current operating) configuration and the startup configuration, which is loaded up in rebooting a router.

Use the following privileged mode commands to work with configuration files.

- **configure terminal** modify the running configuration manually from the terminal.
- **show running-config** display the running configuration.
- **show startup-config** display the startup configuration.
- **copy running-config startup-config** copy the running configuration to the startup configuration.
- **copy startup-config running-config** copy the startup configuration to the running configuration.
- **erase startup-config** erase the startup-configuration in NVRAM.
- **copy tftp running-config** load a configuration file stored on a Trivial File Transfer Protocol (TFTP) server into the running configuration.
- **copy running-config tftp** store the running configuration on a TFTP server.

2.4 Configuration System (Setup)

In privileged EXEC mode you can setup the whole system, for example setup network cards, put IP addresses, start simple RIP routing.

Router#setup

In Cisco routers interfaces are named as FastEthernet0/0 and FastEthernet0/1. Some of our lab routers also include serial cable interfaces. Numbering is same like above.

2.5 IP Address and Interface Configuration

If you don't like to put IP address like in 1.4 *Configuration System (Setup)*, you can put them with the following instructions.

In privileged EXEC mode give the next command:

Router#config terminal

Then enter the **interface** *type port* to enter the interface configuration mode.

```
Router(config)#interface FastEthernet0/0
```

Now you are in interface configuration mode and you can modify this chosen interface. Enter the IP address and subnet mask of the interface using **ip address** *ipaddress subnetmask* command.

```
Router(config-if)#ip address 10.12.0.1 255.255.255.252
```

In this mode you can give parameters like for example hello protocol interval in OSPF for an interface. Exit interface configuration mode by giving command Ctrl-Z.

3 Routing Protocol Configuration

3.1 Routing Information Protocol RIP

You can modify RIP routing by giving the next command in global configuration mode:

Router(config) #router rip

3.1.1 RIP Commands

Then in router configuration mode Router(config-router) # you can give the next listed commands:

•	address-family	Enter Address Family command mode
•	auto-summary	Enable automatic network number
	-	summarization
•	default	Set a command to its defaults
•	default-information	Control distribution of default information
•	default-metric	Set metric of redistributed routes
•	distance	Define an administrative distance
•	distribute-list	Filter networks in routing updates
•	exit	Exit from routing protocol configuration mode
•	flash-update-threshold	Specify flash update threshold in second
•	help	Description of the interactive help system
•	input-queue	Specify input queue depth
٠	maximum-paths	Forward packets over multiple paths
•	neighbor	Specify a neighbor router
•	network	Enable routing on an IP network
•	no	Negate a command or set its defaults
•	offset-list	Add or subtract offset from IGRP or RIP metrics
•	output-delay	Interpacket delay for RIP updates
•	passive-interface	Suppress routing updates on an interface
•	redistribute	Redistribute information from another routing protocol
٠	timers	Adjust routing timers
•	traffic-share	How to compute traffic share over alternate paths
•	validate-update-source	Perform sanity checks against source address of routing updates
•	version	Set routing protocol version

3.1.2 Specify a RIP Version

By default the software receives the both RIP version 1 and version 2 packets but send only version 1 packets. To control which RIP version an interface sends, use one of the following commands in interface configuration mode, shown in Table (2).

Command	Purpose
ip rip send version 1	Configure an interface to send only RIP
	version 1 packets.
ip rip send version 2	Configure an interface to send only RIP
	version 2 packets.
ip rip send version 1 2	Configure an interface to send RIP
	version 1 and 2 packets.

Table 2. RIP version commands in sending.

To control how packets received from an interface are processed, use one of commands shown in Table (3).

Table 3. RIP version commands in receiving.

Command	Purpose
ip rip receive version 1	Configure an interface to receive only
	RIP version 1 packets.
ip rip receive version 2	Configure an interface to receive only
	RIP version 2 packets.
ip rip receive version 1 2	Configure an interface to receive RIP
	version 1 and 2 packets.

3.1.3 No Form

To turn off any feature of RIP routing, for example to turn off neighbor 10.12.0.5 255.255.255.252, give the next command:

Router(config-router)#no neighbor 10.12.0.5 255.255.255.252

To turn off RIP, use the **no router rip** command:

Router(config)#no router rip

3.2 Open Shortest Path First OSPF

You can modify OSPF routing by giving the next command in global configuration mode:

Router(config)#router ospf **process-id**

Process-id is a number between 1 and 65535. Pick the process-id which is not being used. To determine which ids are being used, issue the show process command

Router#show ip ospf

3.2.1 OSPF Commands

Then in router configuration mode Router(config-router) # you can give the next listed commands:

٠	area	OSPF area parameters
٠	auto-cost	Calculate OSPF interface cost according to
		bandwidth
٠	capability	Enable specific OSPF feature
٠	compatible	OSPF compatibility list
•	default	Set a command to its defaults
٠	default-information	Control distribution of default information
•	default-metric	Set metric of redistributed routes
•	discard-route	Enable or disable discard-route installation
•	distance	Define an administrative distance
•	distribute-list	Filter networks in routing updates
٠	domain-id	OSPF domain-id
•	domain-tag	OSPF domain-tag
•	exit	Exit from routing protocol configuration mode
٠	help	Description of the interactive help system
٠	ignore	Do not complain about specific event
•	log-adjacency-changes	Log changes in adjacency state
•	maximum-paths	Forward packets over multiple paths
•	neighbor	Specify a neighbor router
•	network	Enable routing on an IP network
٠	no	Negate a command or set its defaults
٠	passive-interface	Suppress routing updates on an interface
•	redistribute	Redistribute information from another routing
•	routor id	router id for this OSDE process
•		Configure D address summaries
•	summary-address	A divide any time time time time time time time time
•	uniters	Aujust routing timers
•	traffic-share	How to compute traffic share over alternate
		pains

The network-number identifies the network using OSPF. The mask tells which bits to use from the network-number, and the area-id is used for determining areas in an OSPF configuration. For example:

Router(config-router)#network 10.12.0.4 255.255.255.252 area 0

Area 0 is so called backbone network.

3.2.2 Router ID

Router ID is the tie-breaker for OSPF path selection. The path selection process uses a variety of metrics to select a route. If all other metrics (accessibility, administrative weight, local preference, etc.) are equal, OSPF determines the router ID using the following priority:

- 1. Use the address configured by the ospf router-id command
- 2. Use the address of the loopback 0 interface
- 3. Use the highest IP address of any interface
- 4. If no interface exists, set the router-ID to 0.0.0.0

If no OSPF router ID is explicitly configured, OSPF computes the router-ID based on the items 2, 3, and 4 and restarts OSPF (if the process is enabled and router-ID has changed). The **ospf router-id** command causes the OSPF process to restart using the new router-ID (if the processes are enabled and router-ID has changed).

Use in router configuration mode **ospf router-id** *ip-address* command to set the OSPF router ID for the system. Use the **no ospf router-id** to configure the OSPF router ID as the default value (address of the loopback 0 interface). Factory Default is Loopback 0 interface address.

Router(config-router)#router id 1.1.1.1

It is very recommend checking router's router ID by giving the next command

Router#show ip ospf

3.2.3 Virtual Link

A Virtual link can be built up for network shown in Figure (2) by

- 1. Defining Router IDs for the both ends.
- 2. Giving in router configuration mode the **area** *x* **virtual-link** *A.B.C.D*, where *x* is area ID in the both routers. For example in Router 1.1.1.1

```
Router(config-router)#area 1 virtual-link 2.2.2.2

Router ID 1.1.1.1 Router ID 2.2.2.2

Area 1
```

Figure 2. Configuration a Virtual link.

To ensure a virtual link is up, give the next command

Router#show ip ospf

3.2.4 Configure OSPF Interface Parameters

You are not required to alter any of these parameters, but some interface parameters must be consistent across all routers in an attached network. In interface configuration mode, specify any of the following commands show in Table (4).

Command	Purpose
ip ospf cost <i>cost</i>	Explicitly specify the cost of sending a
	packet on an OSPF interface.
ip ospf retransmit-interval seconds	Specify the number of seconds between link state advertisement retransmissions for adjacencies belonging to an OSPF interface.

Table 4. OSPF Interface Parameters.

ip ospf transmit-delay seconds	Set the estimated number of seconds it takes to transmit a link state update packet on an OSPF interface.
ip ospf priority <i>number</i>	Set router priority to help determine the OSPF designated router for a network.
ip ospf hello-interval seconds	Specify the length of time, in seconds, between the hello packets that a router sends on an OSPF interface.
ip ospf dead-interval seconds	Set the number of seconds that a router's hello packets must not have been seen before its neighbors declare the OSPF router down.
ip ospf authentication-key password	Assign a specific password to be used by neighboring OSPF routers on a network segment that is using OSPF's simple password authentication.

3.2.5 No Form

To turn off any feature of OSPF routing, for example to turn off network 10.12.0.4 255.255.252 area 0, give the next command:

```
Router(config-router)#no network 10.12.0.4 255.255.255.252 area 0
```

To turn off RIP, use the **no router rip** command:

Router(config) #no router ospf process-id

3.3 RIP and OSPF Redistribution

3.3.1 RIP

If you like to redistribute routing information to OSPF, you have to tell RIP running router process-id of OSPF and default-metric value. For example

Router(config-router)#redistribute ospf process-id

And default-metric value:

Router(config-router)#default-metric value

Value is a positive integer.

3.3.2 OSPF

In OSPF you have to mention any default-metric value, just give the next command, if you like to transform routing information to RIP.

```
Router(config-router)#redistribute rip
```

In addition in classless addressing, you have to write subnets, like

```
Router(config-router) #redistribute rip subnets
```

3.3.3 Gateway

When you have a network with running A routing protocol and you like to connect it to another network running B routing protocol throughout one or more routers, you have to tell about border area router or gateway router with the following command. B network is generally much bigger and for example the Internet.

Router(config-router)#default-information originate

3.3.4 LAN

If a LAN is connected to a router as shown in Fig. 3., you have to tell about it to the router's routing protocol. Just write

Router(config-router) #redistribute connected

Figure 3. Redistributing to LAN

References

[1] Cisco: Configuring RIP

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/np1_c/1cprt1/1crip.pdf

[2] Cisco: Configuring OSPF

 $http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/np1_c/1cprt1/1cospf.pdf$

[3] Josh Gentry: *Cisco Router Configuration Tutorial* http://www.swcp.com/~jgentry/topo/cisco.htm

[4] University of Pittsburgh, School of Information Science: http://www.tele.pitt.edu/Main/Resources/Labs/lab_manual/Router%20Config%20Tutor ial.pdf

[5] Avici systems: *OSPF Router-id* http://www.avici.com/documentation/HTMLDocs/02223-06_revBA/ospf19.html

[6] Cisco: *What Are OSPF Areas and Virtual Links?* http://www.cisco.com/warp/public/104/8.pdf

[7] Cisco: *RIP and OSPF Redistribution*: http://www.cisco.com/univercd/cc/td/doc/cisintwk/ics/cs001.htm