Multicast routing principles in Internet

Motivation
Recap on graphs
Principles and algorithms

Unicast, Broadcast, Multicast…

Unicast

Local broadcast

Local multicast

Broadcast

Multicast

Anycast
Multicast capability has been and is under intensive development since the 1990’s

- MBone used to multicast IETF meetings from 1992
- Extends LAN broadcast capability to WAN in an efficient manner
- Valuable applications
 - resource discovery
 - multimedia conferencing, teaching, gaming
 - streaming audio and video
 - network load minimization by replacing many point-to-point transmissions

Multicast reduces network load and delay

- For example

- 6 transmissions vs. 4 transmissions

- Generally unreliable transmission (UDP)
- In reliable multicast the source must retransmit missing packets with unicast
Resource discovery by multicast simplifies network management (1)

- No need for lists of neighbors, just use standard multicast address

OSPF router

OSPF hello \[\rightarrow\text{all OSPF routers}\]

RIP-2 router

RIP response \[\rightarrow\text{all RIP routers}\]

Host

DHCP \[\rightarrow\text{broadcast address}\]

DHCP servers

Note: in this case, multicast only on the local network

Resource discovery by multicast simplifies network management (2)

- How to find corporate DNS-server? Multicast to all nodes in corporate network \(\Rightarrow\) Routers need to forward multicast packets.

- Network is easily flooded with messages.
- TTL can be used to limit the scope of a broadcast – “expanding ring search”
 \(\Rightarrow\) find nearest DNS (or other server)
 - when TTL=0 in multicast packet, no ICMP message is returned
Conferencing requirements include

- Multiple sources, multiple recipients, multiple media
- Variable membership
- Small conferences with intelligent media control (what is sent to where)
- Large conferences require media processing in special devices
- QoS is important
 - Low delay
 - Low delay variation
 - Low packet loss

Multipoint sessions differ from point-to-point communication

- Participants may join and leave the session.
- Receiver-makes good principle instead of session parameter negotiation.
- Window based flow control does not apply:
 → use UDP / connectionless protocols
- Packets are sent to a group address instead of a host address
Flooding is the simplest “multicast” algorithm

- Flooding distributes a packet/message to all nodes in the network
 - No group membership \Rightarrow broadcast
 - ”Multicast” implemented by filtering packets
- Used in OSPF, Usenet news, Peer-to-peer systems, Ad hoc routing protocols, etc.
- Avoiding duplicate receptions \Rightarrow avoiding loops
 - State information in the nodes
 - A permanent database as in OSPF
 - Cache of recently seen messages
 \Rightarrow Messages must have a unique identifier
 - State information in the message (trace information)
State information in the nodes avoids forwarding the same message twice

Flooding algorithm:
- Receive M from L
- Search corresponding entry in DB
 - found yes entry in DB older no \(\Rightarrow\) M is a duplicate
 - found no Insert M into DB
 - no no Send M to all links but L
 - yes Update M in DB
 - yes yes Build M' from DB
 - yes yes Send M' to sender on L
 - yes no Stop

Flooding guarantees that node will not forward the same packet twice. It does not guarantee that node will receive the same packet only once! \(\Rightarrow\) greedy algorithm

OSPFI updates the previous hop with the newest entry (if available)

Flooding algorithm:
- Receive M from L
- Search corresponding entry in DB
 - found yes entry in DB older no \(\Rightarrow\) M is a duplicate
 - found no Insert M into DB
 - no no Send M to all links but L
 - yes Update M in DB
 - yes yes Build M' from DB
 - yes yes Send M' to sender on L
 - yes no Stop

Not necessary for correct flooding
- Speeds up on receiving an entry over multiple paths
- Extra protection
Trace information is an alternative to the database in flooding

- Trace info in message lists all passed nodes
- If the neighbor is in trace, do not send
- May forward the same message several times \(\Rightarrow\) not useful as such
- Traces can be combined with state information (DB) in node
 - First check trace, then DB
 - Avoids costly database reads
 - E.g. Usenet news

Observations about flooding

- Works well on the application layer, not efficient on network layer
 - Storing state information about all forwarded packets is not feasible
- Each node may receive the same message several times
 - Number of receptions depends on number of neighbors
- Flooding does not depend on routing tables \(\Rightarrow\) robust
- Limiting TTL
 - To avoid loops
 - To reduce the scope
Example: using flooding in peer-to-peer networks

- In e.g. Gnutella, Kazaa, etc. (unstructured peer-to-peer networks)
- Task: Find the users having the file X
- Implementation: Flood a search request to all users within a given distance (TTL). The users with file X send back a reply to the searching user.
- About 5 receptions of a message per node in a typical Gnutella topology
- Peer-to-peer systems use overlay networks (networks implemented on the application layer)

Networks are modeled as graphs

\[G = (V, E) \]

- \(V \) – set of vertices or nodes (non-empty, finite set)
- \(E \) – set of edges or links.

\[E = \{ e_j \mid j = 1, 2, \ldots, M \} \]
\[e_j = (v_i, v_k) = (i, k) \]

- Nodes \(i \) and \(k \) are adjacent if link \((i, k)\) exists.
- Nodes \(i \) and \(k \) are also called neighbors.
Links are bi-directional, arcs are unidirectional

- Unidirectional links, $a_j = (v_i, v_k) = [i, k]$ are called arcs.

- The degree of a node is the number of links incident on the node (=number of neighbors in a simple graph)

- If links and nodes have properties, the graph is called a network.

Graphs with parallel links are called **multigraphs**

- Links between a node and itself are self loops.

- A graph with no parallel links and no self loops is a simple graph.

- A path in a network is a sequence of links beginning at some node s and ending at some node t (= s,t-path).

- If $s = t$, the path is called a cycle. If an intermediate node appears no more than once, it is a simple cycle.
A graph is **connected** if there is at least one path between every pair of nodes.

- A subset of nodes with paths to one another is a **connected component**.

 Reflective: By def. $\exists i,i$-path
 Symmetric: $\exists i,j$-path $\Rightarrow \exists j,i$-path
 Transitive: $\exists i,j$-path and $\exists j,k$-path $\Rightarrow \exists i,k$-path

Components are equivalence classes and the component structure is a partition of the graph.

Partition applies to links and nodes alike.

A directed graph is **strongly connected** if there is a directed path from every node to every other node.

- Directed connectivity is not symmetric.
- A subset of nodes with directed paths from any one node to any other is a **strongly connected component**.
- A node belongs to exactly one strongly connected c. An arc is part of at most one strongly connected c.
A tree is a connected graph without cycles

- A leaf has the degree 1
- Given a graph \(G = (V, E) \), \(H = (V', E') \) is a subgraph of \(G \) if \(V' \subseteq V \) and \(E' \subseteq E \)
- A spanning tree is a connected graph without cycles. (Connects all nodes in the graph)
- A forest is a (not necessarily connected) graph without cycles.

Spanning trees model minimally connected networks

- A spanning tree connects all nodes without loops.
- Only a single path exists between any two nodes in a spanning tree \(\Rightarrow \) routing is trivial.
- If a graph has \(N \) nodes, any tree spanning the nodes has exactly \(N - 1 \) edges.
- Any forest with \(k \) components has exactly \(N - k \) edges.
 - proof by induction starting from graph with no edges.
A set of edges whose removal disconnects a graph is called a **disconnecting set**.

- **XY-cutset** partitions a graph to subgraphs X and Y.
- In a tree any edge is a **minimal cutset**.
- A minimal set of nodes whose removal partitions the remaining nodes into two connected subgraphs is called a **cut**.

A graph can be presented with an **adjacency matrix** or an **incidence matrix**

Adjacency Matrix

<table>
<thead>
<tr>
<th>Node</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Incidence Matrix

<table>
<thead>
<tr>
<th>Link</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

For an undirected graph, the adjacency matrix is symmetric. For directed graphs, +1 is source and -1 is sink of an arc.

Adjacency matrix – Naapurasmatriisi

Incidence matrix – Liitäntämatriisi
For graph algorithms linked list presentation of adjacency is convenient

A tree can be traversed by **breadth-first-search**

```plaintext
Void ← BfsTree (n, root, n_adj_list)
    dcl n_adj_list [n, list] /* array of lists of neighbors
    scan_queue [queue]
    InitializeQueue (scan_queue)
    Enqueue (root, scan_queue)
    while NotEmpty (scan_queue)
        node ← Dequeue (scan_queue)
        Visit (node)
        for each (neighbor, n_adj_list[node])
            Enqueue (neighbor, scan_queue)
Works for directed links
```

- Breadth-first-search
 - leveyshaku
A tree can also be traversed by *depth-first-search*

\[
\begin{align*}
\text{DfsTree} & (n, \text{root, n_adj_list}) \\
\text{dcl n_adj_list} & [n, \text{list}] \\
\text{Visit} & (\text{root}) \\
\text{for each (neighbor, n_adj_list[node])} & \\
& \quad \text{DfsTree} (n, \text{neighbor, n_adj_list}) \\
\end{align*}
\]

Works for directed links

An undirected graph can be traversed by *depth-first-search*

\[
\begin{align*}
\text{Dfs} & (n, \text{root, n_adj_list}) \\
\text{dcl n_adj_list} & [n, \text{list}], \\
\text{visited} & [n] \quad /\ast \text{keeps track of progress} \ast/ \\
\text{DfsLoop} & (\text{node}) \\
\quad \text{if not visited [node]} & \\
\quad \quad \text{visited [node]} & \leftarrow \text{TRUE} \\
\quad \text{Visit} & (\text{node}) \\
\quad \text{for each (neighbor, n_adj_list[node])} & \\
\quad & \quad \text{DfsLoop} (\text{neighbor}) \\
\text{visited} & \leftarrow \text{FALSE} \\
\text{DfsLoop} & (\text{root}) \\
\end{align*}
\]
We can now find and label the connected components of an arbitrary graph

Void \xleftarrow{} \text{LabelComponents} (n, n_adj_list)

dcl n_component_nr[n], n_adj_list[n, list]

void \xleftarrow{} \text{Visit}(node)

n_component_nr[node] \xleftarrow{} n\text{components}

n_component_nr \xleftarrow{} 0

n\text{components} \xleftarrow{} 0

for each (node, nodeset)

\quad \text{if } (n_component_nr[node] = 0)

\quad \quad n\text{components}++

\quad \quad \text{Dfs}(\text{node, n_adj_list})

Minimum spanning tree (MST) is the spanning tree with minimum cost

- We assign a length to each edge of the graph.
 - “length” can be distance, cost, a measure of delay or reliability.
- We look for minimum total length, thus we talk about MST.
- If the graph is not connected, we may look for a minimum spanning forest.

\[n = c + e \]

where \(n \) is the number of nodes, \(c \) the number of components and \(e \) number of edges selected so far holds always.
Multicast to a spanning tree leads to reception only once in each node

- Requires on/off bit (∈ ST) per link
- Disadvantages
 - No group membership
 - Concentrates traffic to the ST-links
- Ideal would be a tree that
 - spans the group members only
 - minimizes state information in nodes
 - optimizes routes based on metrics

A greedy minimum spanning tree algorithm

List \leftarrow Greedy (properties)
dcl properties [list, list],
 candidate_set [list], solution [list]
void \leftarrow GreedyLoop (*candidate_set, *solution)
dcl test_set[list], candidate_set[list], solution[list]
element \leftarrow BestElementOf (candidate_set) /* for MST: shortest edge
test_set \leftarrow element \cup solution
If test_set is feasible /* for MST: no cycles
 solution \leftarrow test_set
candidate_set \leftarrow candidate_set \ element
If candidate set is not Empty
 Greedy_Loop(*candidate_set, *solution)
solution \leftarrow \emptyset
If (candidate_set \leftarrow ElementsOf (properties)) is not Empty
 GreedyLoop (*candidate_set, *solution)
return(solution)
Reverse-Path Forwarding is flooding on the shortest paths according to the routing table

- Reverse-path forwarding computes an implicit spanning tree per source

Note: In the unicast routing table, the path is computed from the current node to S. In symmetric networks = path from S to the current node.

DVMRP has a separate routing table with path from S to the current node.

Looking one step further: send only if the current node is on shortest path from S to next node.
ReQUIRES 1 bit per source and link in link state DB

- First used in MBone

Reverse-Path Forwarding properties

- Different tree for each source ⇒ traffic is spread over multiple links leading to better network utilization

- Guarantees fastest possible delivery since it uses the shortest paths only

- No group membership ⇒ packets flooded to the whole network – can be scoped by TTL
"Flood and prune" introduces dynamic group membership to Reverse-Path Forwarding

Drawbacks:
- first packet is flooded to the whole network
- all nodes must keep state per S and G.

→ Suitable for dense trees

State is transient (timed out)

→ New members are detected
A Steiner tree spans the group members with a minimal total cost according to link metrics

- Has never actually been used, only simulated:
 - Finding the minimum Steiner tree in a graph has exponential complexity
 - The tree is undirected: links must be symmetrical
 - Requires knowledge of the full topology, therefore it cannot be distributed (monolithic algorithm)
 - The tree is unstable when changes occur: traffic routes change dramatically when e.g. a member leaves.
- Popular because of its mathematical complexity
- Leads to center-based approach (CBT, PIM)

Center-based trees (1)

- Choose a center (rendezvous point, core)
- The recipients send join commands toward the center
 - Each router on the path toward the center processes the join message and adds the interface on which the join message is received to the forwarding table for the group. The join message continues to the next router toward the center.
 - If an intermediate router already is a member of the tree, it only adds the interface without forwarding the join message. Consequently, a branch is created in the multicast tree.
Center-based trees (2)

- Senders send packets to the center.
 - The first router that belongs to the group’s tree intercepts the packet and forwards it to all interfaces of the multicast group. Each router receiving a packet forwards it on all interfaces belonging to the tree, except the one that the packet was received on.
 - Senders are not required to be members of the group

How to choose the center?
- Choosing a center that minimizes delay is a NP-hard problem
- Group membership varies

Unidirectional and bidirectional center-based trees

Bidirectional tree (e.g. CBT)
- First router intercepts the packet and distributes along tree

Unidirectional tree (e.g. PIM-SM)
- The packet is first sent to the center, which distributes along the tree
Source based trees and shared trees

Source based trees (e.g. RPF) Shared tree (e.g. center-based tree)

Multicast routing example

192.5.1/24 192.5.2/24
G1 S2 192.5.3/24
R5 R6
8 8
W1 W2
192.6.1/24
192.7.1/24
192.5.1/24
128.5.1/24
R8
128.5.2/24
128.5.3/24
R9
128.5.2/24
128.5.3/24
128.5.2/24
128.5.3/24
Source based trees for G1

Tree for source S1

192.5.1/24

192.7.1/24

S1 — R1 — R10 — G1

S2 — G1

192.5.2/24

Shared tree for G1

192.5.1/24

192.5.2/24

S1 — R1 — R2 — R3 — R4 — R11 — R5 — R6 — G1

R7 — R8 — S3

Rendezvous Point in PIM
Core in CBT