S-38.211 Signal Processing in Communications	Stefan Werner
Exercise 3, October 22, 1997	phone: 451 2437 room: SG224
	email: stefan.werner@hut.fi

Figure 1 below shows a discrete-time model of a digital communication system. n_k is white Gaussian noise.

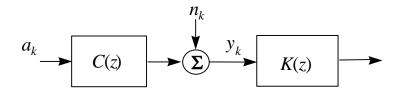


Figure 1: Block diagram over the communication system.

Exercise 3-1

The channel that introduces ISI can be described with the discrete-time transfer function $C(z) = 1 + \alpha z^{-1}$.

- a) Assume that α is a positive constant smaller than unity ($0 < \alpha < 1$). Draw the pole-zero diagram. Find the optimal linear zero-forcing (LE-ZF) equalizer K(z) and draw the filter structure.
- b) Assume that $\alpha > 1$. Draw the pole-zero diagram. Find the optimal LE-ZF equalizer K(z) (which is minimum-phase to guarantee stability) and draw the filter structure.
- c) Show that the magnitude of the frequency responses of the two equalizers are the same (regardless of the value of α).
- d) Compute the output noise power spectrum (assuming that the noise of the equalizer input is white) and determine the noise power (variance).Hint: use Parseval's relation.

Homework 3 (Return time: November 6, 1997)

The channel that introduces ISI can be described with the recursive channel $C(z) = \frac{1}{1 + \alpha z^{-1}}$

- a) Assume that α is a positive constant smaller than unity ($0 < \alpha < 1$). Draw the pole-zero diagram. Find the optimal linear zero-forcing (LE-ZF) equalizer K(z) and draw the filter structure.
- b) Assume that $\alpha > 1$. Draw the pole-zero diagram. Find the optimal LE-ZF equalizer K(z) (which is minimum-phase) and draw the filter structure. Is it a problem here to have a maximum-phase equalizer? Why?
- c) Show that the magnitude of the frequency responses of the two equalizers are the same (regardless of α).
- d) Compute the output noise power spectrum (assuming that the noise of the equalizer input is white) and determine the noise power (variance).