S-38.211 Signal Processing in Communications	Stefan Werner
Exercise 1, October 8, 1997	phone: 451 2437 room: SG224
	email: stefan.werner@hut.fi

Figure 1 below shows a simple model of a binary PAM-system:

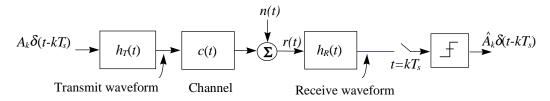


Figure 1: Model of a binary PAM system

The data $A_k \in \{\pm 1\}$ consists of independent identically distributed binary symbols, $h_T(t)$ is the transmit filter, $h_R(t)$ is the receiver filter, c(t) is the channel impulse response, and n(t) is AWGN with power spectral density $N_0/2$. If we assume an ideal channel c(t), the received signal r(t), can be expressed as

$$r(t) = \sum_{m=-\infty}^{\infty} A_m h_T(t - mT_s) + n(t).$$

In these exercises we will study different choices of the filters $h_T(t)$ and $h_R(t)$.

Exercise 1-1

The spectra $H_1(f)$ and $H_2(f)$ of two pulse shaping filters $h_{T_1}(t)$ and $h_{T_2}(t)$, respectively, are shown in Figure 2.

- a) Show that the spectra satisfy the Nyquist criterion.
- b) Find the corresponding transmit pulse shapes $h_{T1}(t)$ and $h_{T2}(t)$.

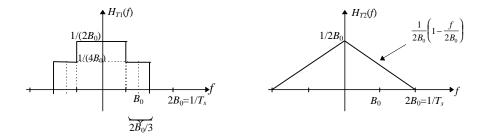


Figure 2: Spectra of the pulse shapes in Exercise 1-1

Exercise 1-2

Assume that the receive filter is matched to the transmit pulse shape. Figure 3 shows the convolution of the transmit filter and the receive filter. Find the transmit filter.

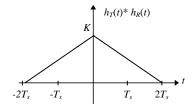


Figure 3: Pulse shape in Exercise 1-2

S-38.211 Signal Processing in Communications	Stefan Werner
Exercise 1, October 8, 1997	phone: 451 2437 room: SG224
	email: stefan.werner@hut.fi

Homework 1 (Return time: October 24, 1997)

In Figure 4, the spectrum for a pulse satisfying the Nyquist criterion is shown.

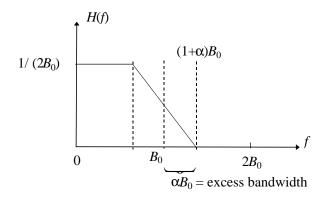


Figure 4: Pulse spectrum satisfying the Nyquist criterion

- a) Derive the transmit waveform (no receiver).
- b) Split the spectrum between the transmitter and the receiver and derive the pulse waveform.
- c) What is the maximum α that can be used if the symbol rate is 2300 symbols per second and the total bandwidth is 3000 Hz without introducing ISI?
- d) What is the maximum symbol rate that can be used if the total bandwidth is 3000 Hz?