Core Network

- Connects MAN networks together
- Requires high bandwidth technologies with long range passive operation
 - Transmission speed and distance without repeaters tend to be inversely proportional
 - 1Gbps Ethernet -> 80-150km in SM-fiber with ZX-transmitter
 - 10Gbps Ethernet -> 10-40km in SM-fiber with ZX-transmitter
- Typical medias are
 - Fiber (Single Mode)
 - Radio (Microwave, Satellite)

Core Network Technologies

- High bandwidth requirements
- Transmission speeds are jumping up with constant rate
 - 1995: 155Mbps (SDH/ATM)
 - 2000: 2.4Gbps (SDH)
 - 2004: 10 Gbps (SDH/Ethernet)
- 2000-2004 wavelength technologies brought a new means to increase capacity
 - DWDM
 - CWDM

Frame based multiplexing
- Irrespective of low layer functionality
 - Fiber/Radio
- Options today are
 - GMPLS
 - SDH
 - ATM
 - Ethernet
 - GFP
WDM

• Optical counterpart for Frequency Division Multiplexing

FDM

WDM

Carrier

WDM

• Effectively N fold increase of transmission capacity from the same fiber infrastructure
 - Wide band components are relatively more expensive than N times narrow band components
 - Individual lambdas can be used independently
 - Usage depends on transponder unit
 - Framing is in general from SDH (interface may be what ever)
 » STM-16 – 2.4Gbps
 » STM-64 – 10 Gbps = 10GbE
 » STM-256 – 40 Gbps = 40GbE

WDM

• Two operative versions
 - CWDM – Coarse Wavelength Division Multiplexing
 • Max 8 channels between (1470 - 1610nm with 20nm steps)
 - DWDM – Dense Wavelength Division Multiplexing
 • ITU Grid (100 Ghz resolution)
 - 50 channels between 1569.80nm to 1611.79nm
 - 50 channels between 1529.75nm to 1569.59nm
 - 50 channels between 1491.69nm to 1529.55nm

WDM

• DWDM
 - Narrow channel
 • Components need to be compensated for temperature effects
 - Expensive
 - More channels to choose from
 • nonlinearities of fibers can be avoided by selecting proper wavelengths

WDM

• CWDM
 - Wide channel
 • Component requirements are looser
 - Cheaper lasers and receivers
 - Less channels
 • Not suitable for long-haul networks
 • Suitable for MANs
WDM

- Can be used as link or network technology
 - Link technology
 - Multiplexers at the ends of the links
 - Network technology
 - Optical switching components
 - Optical delay lines
 - Wavelength conversion
 - Photonic switching

Pros:
- Protocol independent
- Virtual fiber
- Multiplexing different traffic through different wavelengths
- Similar failure protection than SDH networks (SDH framing)

Cons:
- Depending on system pay as you go may not be possible
 - The number of required channels need to be estimated for lifetime of systems
 - Not cost effective if capacity expansion is not immediately required

Frame Multiplexing

Synchronous multiplexing
- Fixed usage of resources

Asynchronous multiplexing
- Free usage of resources

Synchronous
- Fixed usage of resources
- Information does not need L2 addresses
- Wastes resources if communication is not CBR
- Easy to integrate
- SDH

Asynchronous
- Free usage of resources
- Information requires L2 addresses
- Does not waste resources
- Requires additional logics to control resource usage
- ATM, Ethernet
SDH

- Synchronous frame based multiplexing of transmitted signals
 - Link framing is done with 2430 byte frames
 - Generation interval is 125us -> reflects the original coding of speech with 8kHz sampling rate
 - Datarate = 155.52Mbps

- SDH hierarchy makes possible to use multiples and fractions of basic rate
 - Multiples are generated by injecting multiple (factor of four) link frames within time-slot
 - STM-1: 155.52 Mbit/s (basic rate)
 - STM-4: 622.08 Mbit/s (first multiplex)
 - STM-16: 2488.32 Mbit/s (second multiplex)
 - STM-64: 9953.28 Mbit/s (third multiplex)
 - Operation is byte synchronous
 - Timing of individual bytes in multiplex is same than in basic rate frame

- Fractions are generated by multiplexing different streams of content into individual frame
 - Several virtual containers destined to same or different points in network
 - Multiplexing is done with byte interleaving
SDH

- SDH supports also concatenation of resources
 - Old version – strict mode
 - Clear channel operation (small 'c' after the virtual container type)
 - All VC:s in different frames form a single bit stream
 - Not feasible in SDH networks
 - Feasible if SDH is used as a point to point link technology
 - New version – flexible mode
 - Concatenation is used only in edge devices
 - Supports SDH networks
 - Concatenated VC:s need not be with same speeds
 » Even over different fibers

SDH

- Terminal multiplexer
 - Responsible of taking non-SDH and lower rate SDH traffic in and interleave them in STM-N frames.
 - Vice versa on other end of the path
 - Each incoming traffic component has its own virtual container (routed separately within SDH network)

SDH

- Add-drop multiplexer
 - Basic component in ring type SDH networks
 - Most of traffic passes through the ADM on ring interfaces
 - Some traffic is taken out of ring and/or inserted into the ring

SDH

- Digital Cross Connect
 - Switches SDH traffic
 - Between fibers
 - From individual STM frame to other
 - Basic component on mesh type networks
SDH

- IP can not be used directly with SDH
 - Packet over Sonet (PoS) is method for delivering IP packets in SDH
 - Additional framing
 - IP packet into PPP-packet
 - PPP packet into HDLC frame
 - HDLC frame into SDH virtual container

ATM

- Asynchronous frame based multiplexing
- Capabilities for dynamic switching
 - Not only PVP’s or PVC’s
- Connection oriented
- Fixed packet structure
 - 5 bytes of headers
 - Addresses (VPI, VCI)
 - Packet content type (PT)
 - Priority (CLP)
 - Checksum (HEC)
 - 48 bytes of data
ATM

- Can be used
 - As is over the transmission media
 - Assumes low bit error ratio from the media
 - Over any other L2 protocol
 - Benefits from the error control of L2 media
- Why sensitivity to BER
 - Packet has no markers
 - Delineation is accomplished through state-machine which goes through packet bit by bit and looks header checksum matches
 - Sensitive to errors if high BER

48 byte content field is too big for voice communications
- Separate protocol layers to handle
 - Sub cell delineation
 - Timing
 - Sequencing
- Clear channel communication for video applications

48 byte content field is too little for data networks
- Fragmentation of data packets into multiple ATM cells
- Separate protocol layer to handle the fragmentation and reassembly of protocol packets

Framing options for IP traffic in ATM links:
- RFC2684: Multiprotocol Encapsulation over ATM Adaptation Layer 5 (Classical IP)
 - Uses LLC/SNAP encapsulation of traffic within ATM adaption layer 5
Framing options for IP traffic in ATM links:
- RFC2364: Point to Point Protocol over ATM
 - Uses in AAL5 frames either
 - raw PPP packets
 - PPP on LLC/NLPID packets

ATM network is from IP perspective
- NBMA network
 - Separate virtual connection between each and every router
 - Large number of connections and adjacencies in routing
 - Usually subinterface per connection

Pros:
- Easy capacity management
- Virtual short-cuts without routing
- MPLS ready
- Fault tolerant if ATM-level dynamic routing is used

Cons:
- Additional layer of technology
 - Not good for framing itself
- Expensive interfaces at routers
 - Subinterface structure in networked ATM

Technology has scaled to level where conventional core network technologies are
- STM-64 and 10GbE are the same
 - Even in optical interface level they are the same but ethernet is only 20% of the price
- STM-256 will be the base for 40GbE
- 1GbE is based on fiber channel but can be multiplexed in STM-16 networks by having two independent connections
Ethernet

- 10GbE
 - IEEE 802.3ae
 - Full duplex
 - Adjustable MAC speed
 - 10Gb in LAN
 - 9.29Gb in WAN
 - Optical media
 - SDH WAN Phy
 - 10Gb LAN Phy
- 1GbE
 - 802.3z
 - CSMA/CD + Full Duplex
 - Optical and copper media
 - Fiber channel Phy

Ethernet

- Possibility to build transparent LAN services
 - Majority of LAN networks are built with ethernet
 - Some applications benefit from the fact that ethernet headers are preserved
 - Possibility to have same IP subnet on both ends
 - WAN network is transparent for ethernet network
 - No PPP protocol in between SDH and Ethernet
 - VLANs provide separation of users within the core
 - Separate forwarding tables per customer
 - If customer has own VLANs so called aggregated VLAN can be used
 - Second VLAN header in packets within the core
- PoS way of doing things
 - Avoids protocol conversion between ethernet and PPP
- WAN ethernet way
 - Avoids protocol conversion between ethernet and PPP

Source: http://www.foundrynet.com/
Ethernet

- **Pros:**
 - Optimized for burst data services
 - No protocol conversion for interfacing with routers and LAN switches
 - Plug-and-play ideology in operation
- **Cons:**
 - Expensive and complicated to support the TDM voice and leased line services
 - Poor in trouble isolation and network recovery
 - Spanning tree operation takes tens of seconds to recover the networks
 - IEEE802.17 (Resilient Packet Ring) and BFD (Bi-directional Forwarding Detection) will eventually help this