Survivability

- Modern telecommunication network are built survivable
 - Network maintain service continuity (SLA: availability) in the presence of faults within the network
 - Requires mechanisms for protection and/or restoration
 - Level of mechanisms depend on importance of traffic
 - 2 nines -> restoration
 - 5 nines -> protection (1:1)
 - 7 nines -> protection (1+1)

Protection vs Restoration

- Protection
 - Predetermined failure recovery
 - Protection path is precomputed and installed into the network
 - Reconfiguration
 - Switching the affected traffic from faulty entity to backup entity

- Restoration
 - Dynamic failure recovery
 - Recovery path is computed after the occurrence of a fault
 - Reconfiguration
 - Selection of a new path for the traffic
 - Rerouting the affected traffic

Different Modes

- 1+1 protection
 - A separate secondary resource is dedicated for each primary resource
 - Traffic is sent on both resources and receiving end of resource selects one copy to be transmitted further

- 1:1 protection
 - A separate secondary resource is dedicated for each primary resource
 - Extra traffic is carried over the secondary resource but in case of fault in primary traffic is pre-empted from the secondary
Different Modes

- **1:N protection**
 - A secondary resource is set for a group of primary resources
 - Extra traffic is carried over the secondary resource but in case of fault in primary(y/ies) traffic is pre-empted from the secondary
 - Only a subset of primary traffic is delivered on secondary
 - Priorization of primaries
- **M:N protection (M<<N)**
 - M secondary resources are set for a group of primary resources
 - Higher percentage of primary traffic is secured

Restoration

- **Local restoration**
 - Network device that detects the error uses local capabilities to circumvent the failed part of the network
 - In case of link; possible secondary link to same destination
 - In case of node; 3rd node to circumvent failed node
 - Leads to sub-optimal network state
- **Path restoration**
 - Source of the path recalculates new path in case of failure in primary path
 - Precalculation of disjoint paths is possible
 - Faster switch over time

Global restoration

- Network node that detects fault in the network informs all other nodes in the network about existence of fault
 - This depends on routing protocol
 - Link state routing: by removing the LSA
 - Only if happens to be originator of LSA
 - Otherwise sits back and waits for timer to clean the LSDB (can be hours)
 - Distance vector routing: by calculating new routing vector

SDH

- SDH networks are famous of their fast restoration in case of fault
 - Typically less than 50ms for complete restoration
 - Based on general idea of non-arbitrary network topologies
 - Double rings which can be restored by reversing the traffic at the ends of faulty section
 - Single action
 - Single failure restoration within the ring
 - 50% of network capacity reserved for restoration
Ethernet

- Conventional Ethernet restoration is based on spanning trees
 - Any arbitrary topology is turned into tree topology
 - Each node has weight which determines whether the root of the tree can be reached through it
 - Higher the value the more closer the root is
 - Wastes network resources by blocking loop forming interfaces

- Three are several versions of spanning tree protocol
 - 802.1d (original spanning tree) with long convergence time (50s)
 - 802.1w (Rapid Spanning Tree) with only few seconds of convergence
 - 802.1s (Multiple Instance Spanning Tree) per VLAN operation
- All versions are based on same protocol operation
 - Exchange of BPDU messages to determine whether or not interface should be blocked

- SDH type network restoration on top of Ethernet
 - Two manufacturers
 - Extreme Networks: Ethernet Automated Protection Switching (EAPS) RFC 3619
 - Foundry: Metro Ring Protocol (MRP)
 - Basic idea same as in SDH
 - Ring type network topology
 - Traffic reversion in case of error
Ethernet

- Each ring has a master which
 - blocks loop forming interface
 - In case of fault opens the loop forming interface for traffic
 - Detection of fault can be based on
 - Probes sent by the master
 - Signalling from the device that detects the fault
 - Convergence time of network is dependent on time between fault and notification of master
 - Varies between
 » Tens of milliseconds with device signalling
 » Hundreds of milliseconds with probes

MPLS

- LSP restoration processes are based on Constrained Shortest Path First routing algorithm for selecting bypass LSPs.
- Different reroute options are:
 - Link protection
 - Link and node protection
 - Path protection
 - Dynamic restoration

Link Protection

- Link protection offers per-link traffic protection
 - Each link on protected LSP has its own bypass for circumventing the failed link
 - Link protection can be made
 • per LSP
 • several LSPs can be aggregated into single bypass LSP
- Requires that
 - Separate bypass is calculated between each RSVP neighbor
 - Router tracks the interface status of egress link and reroutes the protected traffic by stacking the original label with label structure of bypass LSP
Link/Node Protection

- Node protection is used to circumvent faults which may not be due to interconnecting link rather than next node.
 - Bypass LSP is established around set of next link, node and link using separate router.
 - Otherwise node protection operates like link protection

Path protection

- Path protection is done per ingress/egress pair and to each individual LSP
 - Separate backup LSP is calculated through the network using disjoint resources
 - Separate routers
 - Separate links

Path protection

- In failure of primary LSP ingress point of LSP swaps into backup
 - Question is
 - How can ingress become aware of failure in primary
 - Upstream notification takes time to travel
 - Additional delay in restoration of network status

Switch Back

- Switch back is process of rerouting the failed LSPs from their backups
 - Path protected LSPs this may not be wise
 - Shifting the traffic causes always deterioration
 - Even with make-before-brake packets usually experience sequence errors
 - Facility backups require some form of switch back
 - Into original paths they are up and running
 - Into new primaries if restoration of original primary is not expected to happen
Dynamic Restoration

- If there are no other protections new LSP can also be calculated on demand
 - Failure of primary triggers on-demand calculation of a new primary
 - Failure is circumvented by the fact that failed resources are no longer in TED
 - Causes few hundred milliseconds of additional delay for restoration

IP

- Detection of errors
 - Slow process if there is a L2 interconnection device between routers
 - L2 may be up even though other router is dead
 - L2 indication process works only if interconnection device fails
 - Normal Hello based detection (tens of seconds)
 - Can be speeded up with usage of bi-directional forwarding detection (BFD)
 - Probes are sent between forwarding planes of routers
 - Fault is signalled to routing process

IP

- Convergence of IP routing depends heavily on detection time of fault
 - Hello process -> tens of seconds
 - BFD -> some hundreds of milliseconds
 - L2 indication -> few milliseconds
 - Flooding process and SPF calculations take only some tens or hundreds of milliseconds
 - Of the shelf running networks can have large deadlocks due to default timer values:
 - Hello timer of 10s -> router dead 40s
 - LS refresh time 1800s -> LSA max age 3600s

IP

- IP restoration is based on convergence of routing protocols
 - Detection of fault
 - Hello timers
 - (L2 indications)
 - (BFD indication)
 - Flood of new LSAs
 - Calculation of global routing tables
 - Instantion of new forwarding table
Inter-layer Communication

- Modern telecommunications networks are layered with their structure
 - Fault in lower layer affects all higher layers
 - Convergence process should proceed from bottom to up
 - Unnecessary oscillation can be avoided if each layer is allowed to convergence before next layer attempts to restore the situation
 - Fast restoration in lower layer may be ignored in higher layers all together if communication partner with higher layer entity stays the same