Mobility in IP networks
Mobile IP

Lecture slides for S-38.192
12.2.2004
Mika Ilvesmäki
Tietoverkkolaboratorio – Networking laboratory

General notes on mobility

• Mobility in communications consists of various technologies and aspects
 – Wireless transmission
 • Using the frequency space
 – Multiplexing, modulation, spread spectrum, cellular systems
 – Medium access control
 • SDMA, FDMA, TDMA, CDMA
 – Communication systems
 • GSM, DECT, TETRA, UMTS, Satellite systems, Broadcast systems
• Mobility may occur on 1) Access-level (OSI 2), 2) Network-level (OSI 3) 3) Transport-level (OSI 4)
Why mobility in IP?

• Need to change physical media without breaking (TCP) connections
• People want Wireless Network Access
 – Ease and economy of operation
• Continuous connectivity
• Home network addressable from the entire Internet

What is mobility?

• A node moving from a location to another location while preserving its original IP address
 – Horizontal handover in the IP level regardless that we (most probably) need vertical handover in layer 2.
 • Different layer 2 networks are (usually) separated by routers (or gateways)
• On the border of different layer 2 networks the change of IP address has to be notified
 – For instance when moving from WLAN to GPRS
 – This would be YAP (Yet Another Protocol) 😊
 • and most probably it would also break up TCP connection state
What moves? Services or users

- **Service mobility**
 - User moves and connects to his home network with arbitrary devices
 - VPNs, secure connections, WWW-mail services, etc.

- **User mobility**
 - User and the device moves and connects to his home network
 - Use of all home network services
 - Appearing to be in the home network

Host routes – the easy solution?!

- Spread knowledge on the movements to all Internet routers
 - Assign a new address to the mobile node as it moves
 - This solution does not scale, overload of networks with location information

- We need to restrict the circulation of location and IP address information to a minimum!
Network scalability

- Scalability in networks
 - If the number of information elements grows faster or at equal speed in the core of the network the solution does not scale.
 - No sense in distributing information on a single user to all nodes in the network
- All technical solutions in the Internet should be scalable!
 - IETF requirement, code of practise

Mobility design guidelines

- No modifications to (other) host operating systems
- Internet-wide mobility calls for a scalable solution
- Application transparency
- No modifications to Internet routing
- Compatibility with Internet Addressing
Mobile IP design objectives

- Limit the size and frequency of route updates
 - preserve host address regardless of location
- Simple implementation
- Simple and straightforward use of address space without resorting to assumptions on address availability

Mobile IP design plan

- Must detect movement
- Must discover/configure care-of-address
- Must inform the home agent
- Home agent Must forward packets to mobile node
Mobile IP standards

- Mobile IP is an IETF effort
 - dealt with in several workgroups
- Mobile IP is defined in IETF standards
 - See also, RFC 1701 (GRE) and RFC 1321.
- Standards define
 - Agent discovery
 - Registration procedure
 - Tunneling

Mobile IP components

- Mobile and correspondent nodes
- Foreign Agents (IPv4 only)
- Home Agents
- Tunnels
- Care-of- addresses
Mobile IP basic features

- Only the Home Agent knows where you are
 - This solution scales better
- With tunneling one is able
 - to forward packets from HomeAgent to MobileNode
 - And back, if necessary
 - to appear to be in one’s home network
- Security is required but not restricted
 - The four building blocks
 - Confidentiality, Authentication, Integrity, Non-repudiation

Mobile IP transforms the mobility problem into a routing problem!

Home agent

- Router for the home network
- Mobility service providing agent
 - access to the home address of the mobile node without mobile node’s presence.
- Advertise routing info on demand
 - to home network, and to other nodes
- Tunnels packets to mobile node (or foreign agent)
Foreign agent (IPv4 only)

• Delivers packets to a mobile node
• Mobility service provider in the foreign network
 – Inform the home agent on FA care-of-address
 – Provide CoA and detunneling for the MN
• Act as the default router for the mobile node in the foreign network

Tunneling

• Tunnel is a path followed by packet that is encapsulated within another packet’s payload
 – Put (IP) packets inside IP packets
 • avoid standard unicast routing
 • use other protocols in the Internet
 – Tunnels are defined manually
 – Tunnels reduce the MTU
 – Tunnel faults are hard to detect
• Tunneling techniques are several
 – IPinIP (RFC 2003, default), MinIP (RFC 2004), GRE (RFC 1701 & 1702) etc.
Care of address

- Foreign Agent CoA and Co-located CoA
- CoA is the mobile nodes point of attachment
 - changes when the network changes
 - stored together with the permanent (home) IP address
 - not used as the the IP source or destination by the other nodes (use the home IP address)
- CoA is the exit point from the tunnel
 - either the Foreign Agent (FA CoA) or
 - mobile node (co-located CoA)

Movement detection

- MN detects Home/Foreign Agent-advertisements (modified RFC 1256)
 - or solicits for a H/FA presence (unmodified RFC 1256)
 - H/FA advertisement = extended ICMP
 - Sequence numbers used to detect need for re-registration
- If no advertisements/solicitations answered
 - send ICMP to home router (check TTL!)
 - assume foreign network and try to obtain an address using DHCP or configure IP address manually
 - then register with Home Agent
Registration

- Request help in routing from the FA
- Inform the HA current location of MN
- Re-registrate
- Notify HA when returned to home network
- Registration done over UDP
 - Registration request
 - Registration reply

Traffic forwarding – Internet

- Home Agent intercepts packets sent to the Mobile Node and sends the packets tunneled to the MN
- ARP requests outside of the home network are answered with HA L2 address
 - proxyARP aka Gratuitous ARP
Traffic forwarding – home network

- Home Agent intercepts packets sent to the Mobile Node and sends the packets tunneled to the MN
- How about home network ARP requests?
 - What about cached ARP-replies?

<table>
<thead>
<tr>
<th>ARP table</th>
<th>Registration request & reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN/IP</td>
<td>MN/L2</td>
</tr>
<tr>
<td>MN/IP</td>
<td>HA/L2</td>
</tr>
</tbody>
</table>

Sent to all local nodes via gratuitous ARP

Triangle routing and reverse tunneling

- CN sends to MN and traffic flows via HA (1., 2. and 3.)
- MN to CN
 - traffic may take the shortest path (4.)
 - If ingress filtering is in effect the traffic may be dropped
 - Solution: Reverse tunneling(5.)
 - Result: triangle routing with CN, HA and MN
New route advertisements
- Home agent knows the true location of the MN
 - HA sends redirects to correspondent nodes (avoid triangle routes)
 - HA sends newFAinfo to oldFA and make oldFA redirect packets

![Diagram showing route advertisements]

Receiving home network broadcast in foreign network
- Co-located address
 - Broadcast packets encapsulated and tunneled to the Mobile Node (tunnel exit point)

- Foreign Agent address
 - Tunneled to the FA (tunnel exit point)
 - If link level broadcast, then packets have to be recursively encapsulated otherwise broadcasted in the foreign network
 - Requires (de)tunneling capability from the MN
Sending broadcasts

- Directed broadcasts sent as such
 - If allowed by the Home Agent
- Link layer broadcasts tunneled to the HA

<table>
<thead>
<tr>
<th>MN to HA (unicast)</th>
<th>Original broadcast packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stripped away by the HA</td>
<td></td>
</tr>
</tbody>
</table>

Multicast

- Multicasts are sent to the
 - Multicast router
 - No encapsulation/tunneling needed
 - HA that should have multicast routing capability
 - encapsulated and tunneled to the HA

<table>
<thead>
<tr>
<th>MN to HA (unicast)</th>
<th>Original multicast packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stripped away by the HA/MC router</td>
<td></td>
</tr>
</tbody>
</table>

- Multicast is received
 - normally as a group member (co-located address)
 - via HA as encapsulated/tunneled packets
 - may require recursive encapsulation
Home agent at home network edge

- Client based VPNs
- Direct connection to home (organization) network
- Requires Home Agent management resources from the organization
 – Flexible security solutions

Home agent at ISP network edge

- Requires less network experts in home network
- Outsources the HA management
 – Dependence on ISP choices on security etc.
Other choices for mobility in IP

- **Cellular IP**
 - Local handovers without renewed registration with CIP gateway
 - Requires changes into Mobile IP protocols
 - Not transparent to existing systems
 - Easy to manage, self-configuring
 - Packets forwarded via multiple paths, routing tables changed by mobile nodes -> not secure

- **HAWAII (Handoff-Aware Wireless Access Internet Infrastructure)**
 - Mixes the concepts of co-located CoA and FA CoA, no private address support
 - Local handovers by sending registration to base stations (FA)

IPv6 fundamentals

- **New header**
- Addressing space increased from 32 bits to 128 bits
 - by some estimates IPv4 addresses are depleted by 2005-2015
 - IPv6 addresses, realistically applied, can cover at least 1564 addresses/m² (oceans included), optimistic calculations give up to 3911873538269506102 addresses/m²
IPv6 – new features

- New anycast – sending mode added to broadcast, multicast and unicast
 - same address for several nodes
 - packet is sent to nearest node having the anycast address
- Multicast sendings controlled with scope – field
- Flow labels to cache forwarding information
- Priority field to support QoS
- Stateless autoconfiguration
 - no more DHCP or BOOTP

IPv6 - reprecussions

- Simpler, though longer header
 - Arbitrary amount of option headers that are not examined in all routers
 - routing
 - fragmentation (only at the source)
 - authentication (for data integrity)
 - security (for data confidentiality)
 - hop-by-hop (to be examined at every hop)
 - destination (to be examined by the destination router)
 - there will be difficulties of keeping up with new headers
 - GOLDEN RULE for LARGE SCALE NETWORKS:
 Extended would be better than extensible
- TCP has to be updated
 - checksum counted with IP address fields
IPv4 vs. IPv6 and mobility

IPv4
1. MN, HA
2. MN home address
3. Foreign Agent
4. FA CoA/CoCoA
5. Address from
 1. Agent discovery
 2. DHCP
 3. Manually
6. Agent discovery
7. Tunneling
8. Routes optimized by a separate protocol

IPv6
1. MN, HA
2. Global home address and link-local address
3. Plain IPv6 router
4. All colocated CoAs
5. Address from
 1. Auto-configuration
 2. DHCPv6
 3. Manually
6. Router discovery (ICMPv6)
7. Source routing (option) or tunneling
8. Integrated route optimization

Mobile IPv6

- MN creates its own CoA with automatic address configuration
 - Stateful: DHCPv6
 - Stateless: Local subnet prefix as in Neighbor Discovery (RFC 2461, IPv6 ARP)+own hardware address
- MN may notify its correspondents when it moves (no more triangular routing)
- Correspondents put CoA in routing headers
- HA encapsulates packets if it gets them
- Binding updates carried in Destination Option
Hierarchical mobile IPv6

• Several propositions based on introducing hierarchy to provide for micro-mobility
 – MAP (mobility anchor point) acts as a local HA for a certain domain
 • MAP receives packets for the MN and forwards them to the link CoA
 • As long as MN is within the MAP influence the global CoA stays the same

Mobile IP summary

• Method to ensure packet forwarding to the mobile node
 – Home Agent, Mobile node, encapsulation and tunneling
 • possibly also Foreign Agent
• Requires registration (although not covered in these slides)
• Works also in IPv6