

Provider based Virtual Private Networks

An introduction and an MPLS case

Lecture slides for S-38.192 27.2.2003 Mika Ilvesmäki

Mika Ilvermiki, Lic Sc. (Tech.)

"The idea is to create a private network via tunneling and/or encryption over the public Internet. Sure, it's a lot cheaper than using your own frame-relay connections, but it works about as well as sticking cotton in your ears in Times Square and pretending nobody else is around."

- Wired Magzine on VPNs in February 1998 - Lecturer's note: If, in the final exam, asked about VPNs, do not use the above definition. Please!

Contents

- VPN terminology
- · VPNs on IP layer
 - addressing, routing, security
- Engineering VPNs with
 - Controlled route leaking
 - Tunnels
 - MPLS

What is a VPN?

- Virtual
 - network resources used are part of a common shared resource
- Private
 - $\boldsymbol{-}$ privacy of addressing and routing $\boldsymbol{-}$ topological isolation
 - security (authentication, encryption, integrity) of the data
 - (seemingly) dedicated use of network resources temporal isolation
- Network
 - devices that communicate through some arbitrary method

Addressing

- Private address space defined in RFC 1918 (BCP)
 - Addresses may be used freely within enterprise networks
 - 10.0.0.0-10.255.255.255 (10/8 prefix)
 - 172.16.0.0-172.31.255.255 (172.16/12 prefix)
 - 192.168.0.0-192.168.255.255 (192.168/16 prefix)
 - ISPs will reject packets with above addresses
 - Need for NAT or application layer gateways for Internet communications

a filtering is the most basis we

- Route filtering is the most basic way of constructing VPNs
 - not recommendable
- · Privacy through obscurity
 - Security means ISPs managing customer edges
 - or inserting address filters
- · Requires common routing core
 - VPN addresses may not overlap within the routing core

BGP issues

- RFC 2858 Multiprotocol extensions for BGP-4
 - Network Layer Reachability Identifier
- RFC 1997 BGP communities attribute
 - Mark the NLRI with a community attribute
 - routes within VPN can be marked with a single community instead of keeping up with individual routes

Notes on tunneling

- · Allows for overlapping in VPN addresses
- · Multiprotocol capable
- · Manual configuration of tunnels
 - Low tolerance on network topology changes
- · Concerns on QoS issues
- · CE routers (tunnel exit points) have to managed by the ISP

- · Management of traditional VPNs is manual
 - Tunnels are setup manually
 - Routing information is manually configured
- Complexity of VPN management results from the integration of IP route lookup and forwarding decisions

....

MPLS for VPNs with BGP

- Meeting the (MPLS) objective for flexibility in new service introduction
 - MPLS separates the route lookup and forwarding somewhere in between layers 2 and 3.
 - MPLS basics covered in S-38.180
- · Virtual Private Network
 - Tunnel via core network virtual backbones
 - Separate VPN address spaces
 - Advertising of VPN networks either by a routing protocol (RFC 2547 BGP/MPLS VPNs) or label distribution protocol

Mika Ilvermiki, Lic Sc. (Tech.)

Requirements for MPLS/VPNs

- Use of VPN/IP addresses
- Constrained distribution of routing information
 - BGP, LDP
- · Multiple forwarding tables
 - Naturally for traffic inside the VPN
 - outside the VPN
 - At ISP edge VPN addresses may conflict
 - for traffic between VPNs
 - This is where MPLS kicks in!

Note on BGP mechanisms

- · Globally non-unique addresses
 - dealt with VPN-IP addresses and Route Distinguisher
 - no constraint on connectivity
- · Constrain the distribution of routing info
 - dealt with BGP (extended) community field

- · Distribution of BGP info is handled by the ISP - no involvement from the customer
- · CE maintains routing peering with only the nearest PE
- · To add a new site to an existing VPN only the connecting PE needs to be configured
- · PE only maintains routes for the directly connected VPNs

VPN-IP addresses

- · BGP assumes that IP addresses are unique
 - not valid when using private address space (RFC 1918)
- IP address + Route Distinguisher
 - RD=Type+AS number+Assigned number
 - AS number = ISP AS number
 Assigned number = VPN identifier given by ISP
- VPN-IP addresses are unique
- Use of VPN-IP addresses is done only in ISP network - no customer involvement, conversion done at PE
- VPN-IP addresses are carried only in routing protocol messages, not in IP headers
 - not used for packet forwarding

2-level MPLS label stack

- · Bottom label
 - PE receives a packet from CE
 - If the packet should be forwarded to the backbone, a label is attached to reach the egress PE
- · Top label
 - PE starts to send the packet to the backbone
 - PE looks into the IGP routing table to find the next hop (P) towards PE and assigns a label to this information
 - Packet is the carried through the backbone (P routers) and P routers are unaware of the VPNs

- IETF IP Security Working Group
- · Several commercial implementations
 - Authentication header (AH)
 - provides for access control, message integrity, authentication and anti-replay
 - Encapsulated Security Payload (ESP)
 - provides for AH services + confidentiality
 - Key Exchange Protocol
 - ISAKMP + Oakley/SKEME

Final words

- VPNs are an existing solution
 - due to the need of Intranets
- VPNs may connect anything from two end devices to two networks
 - with tunnels, routing, MPLSand naturally with leased lines
- Use of VPNs adds network management load
 - either in the company or within the ISP