

# Mobility in IP networks Mobile IP

Lecture slides for S-38.191
8.2.2001
Mika Ilvesmäki
Tietoverkkolaboratorio – Networking laboratory





Mika Ilvesmäki, M.Sc. (Tech.)

### Network scalability

- · Scalability in networks
  - If the number of information elements grows faster or at equal speed in the core of the network the solution does not scale.
    - No sense in distributing information on a single user to all nodes in the network
- All technical solutions in the Internet should be scalable!



### What is mobility?

- A node moving from a location to another location while preserving its original IP address
  - Possibly also changing the layer 2 environment
  - Different layer 2 networks are (usually) separated by routers (or gateways)
- On the border of different layer 2 networks the change of IP address has to be notified
  - For instance when moving from WLAN to GPRS
  - This would be YAP (Yet Another Protocol)⊗





HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki M Sc (Tech.)

## Different users – different mobility

- Service mobility
  - User moves and connects to his home network with arbitrary devices
    - VPNs, secure connections, WWW-mail services
- User mobility
  - User and the device moves and connects to his home network
    - Use of all home network services
    - Appearing to be in the home network







#### Host routes – the easy solution?!

- Why not spread knowledge on the movements to all Internet routers?
  - Solution does not scale, overload of networks with locality information
- We need to restrict the circulation of location and IP address information to a minimum





HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki M Sc (Tech.)

## Mobile IP design objectives

- Limit the size and frequency of route updates
- Simple implementation
- Simple and straightforward use of address space without resorting to assumptions on address availability





#### Mobile IP standards

- Mobile IP is an IETF working group
- Mobile IP is defined in IETF standards
  - RFC 2002, 2003, 2004, 2006
  - See also, RFC 1701 (GRE) and RFC 1321.
- Standards define
  - Agent discovery
  - Registration procedure
  - Tunneling





HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki M Sc (Tech.)

#### Mobile IP basic features

- With tunneling one is able
  - to forward packets from HA to MN
    - · And back, if necessary
  - to appear to be in one's home network
- Only the Home Agent knows where you are
  - This solution scales better
- · Security is required but not restricted
  - The four building blocks
    - Confidentiality, Authentication, Integrity, Non-repudiation







Mika Ilvesmäki, M.Sc. (Tech.)

#### Home agent

- Mobility service providing agent
  - access to the home address of the mobile node without mobile node's presence.
- · Advertise routing info on demand
  - to home network, or to other nodes
- Tunnels packets towards mobile node





#### Foreign agent

- Mobility service provider in the foreign network
  - Inform the home agent on FA care-ofaddress
  - Provide CoA and detunneling for the MN
- Act as the default router for the mobile node in the foreign network





HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki M Sc (Tech.)

#### Tunneling

- Tunnel is a path followed by packet that is encapsulated within an another packet('s payload)
  - Put (IP) packets inside IP packets
    - · avoid standard unicast routing
    - · use other protocols in the Internet
  - Tunnels are defined manually
  - Tunnels reduce the MTU
  - Tunnel faults are hard to detect
- Tunneling techniques are several
  - IPinIP, MinIP, GRE etc.





#### Care of address

- · Foreign Agent CoA
- Co-located CoA
- CoA is the mobile nodes point of attachment
  - changes when the network changes
  - stored together with the permanent (home) IP address
  - not used as the the IP source or destination by the other nodes (use the home IP address)
- CoA is the exit point from the tunnel
  - either the Foreign Agent (FA CoA) or
  - mobile node (co-located CoA)





HELSINKI UNIVERSITY OF TECHNOLOGY

#### Movement detection

- MN detects Home/Foreign Agentadvertisements
  - or solicits for a H/FA presence
    - H/FA advertisement = extended ICMP
    - · Sequence numbers used to detect need for reregistration
- If no advertisements/solicitations answered
  - send ICMP to home router (check TTL!)
  - assume foreign network and try to obtain an address using DHCP or configure IP address manually
  - then register with Home Agent





#### Registration

- · Request help in routing from the FA
- Inform HA current location of MN
- Re-registrate
- Notify HA when returned to home network
- Registration done over UDP
  - Registration request
  - Registration reply





HELSINKI UNIVERSITY OF TECHNOLOGY

Mika Ilvesmäki M Sc (Tech.)

## Traffic forwarding – Internet

- Home Agent intercepts packets sent to the Mobile Node and sends the packets tunneled to the MN
- ARP requests outside of the home network are answered with HA L2 address
  - proxyARP



## Traffic forwarding – home network

- Home Agent intercepts packets sent to the Mobile Node and sends the packets tunneled to the MN
- How about home network ARP requests?
- What about cached ARP-replies?

  ARP table

  MN/IP

  MN/L2

  Registration request & reply

  Sent to all local nodes via gratuitous ARP









#### Sending broadcasts

- Directed broadcasts sent as such
  - If allowed by the Home Agent
- · Link layer broadcasts tunneled to the HA

MN to HA (unicast) Original broadcast packet Stripped away by the HA





- Multicasts are sent to the
  - Multicast router
    - · No encapsulation/tunneling needed
  - HA that should have the multicast routing capability
    - encapsulated and tunneled to the HA

MN to HA (unicast) Original multicast packet Stripped away by the HA/MC router

- Multicast is received
  - · normally as a group member (co-located address)
  - via HA as encapsulated/tunneled packets
    - may require recursive encapsulation









## New header Pv6 fundamentals

- Addressing space increased from 32 bits to 128 bits
  - by some estimates IPv4 addresses are depleted by 2005-2015
  - IPv6 addresses realistically applied can cover at least 1564 addresses/m² (oceans included), optimistic calculations give up to 3911873538269506102 addresses/m²

| Version<br>(4 bits)       | Priority<br>(4 bits) |              | Flow Label (24 bits)     |                    |
|---------------------------|----------------------|--------------|--------------------------|--------------------|
| Payload Length (16 bits)  |                      | th (16 bits) | Next Header (8 bits)     | Hop Limit (8 bits) |
| Source Address (128 bits) |                      |              |                          |                    |
|                           |                      | Destin       | ution Address (128 bits) |                    |



Mika Ilvesmäki, M.Sc. (Tech.)

#### IPv6 – new features

- New anycast –sending mode added to broadcast, multicast and unicast
  - same address for several nodes
  - packet is sent to nearest node having the anycast address
- Multicast sendings controlled with scope field
- Flow labels to cache forwarding information
- Priority field to support QoS
- Stateless autoconfiguration
  - no more DHCP or BOOTP



## IPv6 - reprecussions Simpler, though longer header

- - Arbitrary amount of option headers that are not examined in all routers
    - routing
    - fragmentation (only at the source)
    - authentication (for data integrity)
    - security (for data confidentiality)
    - hop-by-hop (to be examined at every hop)
    - destination (to be examined by the destination router)
      - there will be difficulties of keeping up with new headers
      - GOLDEN RULE for LARGE SCALE NETWORKS: Extended would be better than extensible
- TCP has to be updated
  - checksum counted with IP address fields



HELSINKI UNIVERSITY OF TECHNOLOGY

## v6 vs. IPv4 and mobility

- MN, HA
- 2. MN home address
- 3. Foreign Agent
- 4. FA CoA/CoCoA
- 5. Address from
  - 1. Agent discovery
  - 2. DHCP
  - 3. Manually
- 6. Agent discovery
- 7. Tunneling
- 8. Routes optimized by a separate protocol

- 1. MN, HA
- Global home address and linklocal address
- Plain IPv6 router
- 4. All colocated CoAs
- 5. Address from
  - 1. Auto-configuration
  - 2. DHCPv6
  - 3. Manually
- 6. Router discovery (ICMPv6)
- 7. Source routing (option) or tunneling
- Integrated route optimization





#### HELSINKI UNIVERSITY OF TECHNOLOGY

## Mobile IP summary

- Method to ensure packet forwarding to the mobile node
  - Home Agent, Mobile node, encapsulation and tunneling
    - possibly also Foreign Agent
- Requires registration (although not covered in these slides)
- Useful also in IPv6

