
1188lecture6.ppt © Pasi Lassila

Internet transport protocols

2

S-38.188 - Computer Networks - Spring 2005

Problem

• IP can be used to connect together heterogenous networks

– IP network offers only best effort packet delivery (with no guarantees)

• Applications need end-to-end (process-to-process) communication

– ”logical channels” through the network

– ⇒ transport layer protocols on top of IP layer

IP network

3

S-38.188 - Computer Networks - Spring 2005

Outline

• Overview of end-to-end protocols

• UDP

• TCP

– Connection establishment / termination

– Sliding window and flow control

– Adaptive timeout + TCP extensions

• SCTP

• About Remote Procedure Calls (RPC)

4

S-38.188 - Computer Networks - Spring 2005

Requirements of an end-to-end protocol (1)

• An end-to-end transport protocol is shaped

– from above, by application requirements, and

– from below, by limited capabilities of the network layer

• Common application requirements on transport protocols

– guarantee message delivery

– deliver messages in the same order they are sent

– deliver at most one copy of each message

– support arbitrarily large messages

– support synchronization

– allow the receiver to flow control the sender

– support multiple application processes on each host

• Note(!), security is not in list above

– implemented above transport layer

5

S-38.188 - Computer Networks - Spring 2005

Requirements of an end-to-end protocol (2)

• Best-effort networks (Internet) have limited capabilities and can

– drop messages

– re-order messages

– deliver duplicate copies of a given message

– limit messages to some finite size

– deliver messages after an arbitrarily long delay

• Challenge:

– to develop protocols that use best-effort network, but can provide

high (sufficient) level of service

6

S-38.188 - Computer Networks - Spring 2005

Internet transport protocols

• Traditional IP transport protocols

– UDP: simple multiplexing/demultiplexing

– TCP: reliable byte stream

– covered in this course

• New/emerging IP transport protocols

– SCTP: reliable message transport protocol

• briefly covered at the end of lecture

– DCP: (proposed) transport protocol for streaming media

• “TCP-friendly” congestion control but without retransmissions

7

S-38.188 - Computer Networks - Spring 2005

Outline

• Overview of end-to-end protocols

• UDP

• TCP

– Connection establishment / termination

– Sliding window and flow control

– Adaptive timeout + TCP extensions

• SCTP

• About Remote Procedure Calls (RPC)

8

S-38.188 - Computer Networks - Spring 2005

• UDP = User Datagram Protocol

– used in real time services, question-reply protocols

– traditionally not much UDP traffic in Internet

– increasing amount of real time services/applications ⇒ more UDP traffic

• Basic features

– unreliable and unordered datagram service

– only adds multiplexing to best-effort

– greedy: no flow or congestion control

• Endpoints identified by ports

– servers have well-known ports

– ex. DNS uses port 53 etc.

– port only 16 bits (hostwide)

– server’s full address (IP addr, port nr)

• Optional checksum

– pseudo header + UDP header + data

Simple demultiplexor (UDP)

SrcPort DstPort

Checksum Length

Data

0 16 31

UDP header format

9

S-38.188 - Computer Networks - Spring 2005

Outline

• Overview of end-to-end protocols

• UDP

• TCP

– Connection establishment / termination

– Sliding window and flow control

– Adaptive timeout + TCP extensions

• SCTP

• About Remote Procedure Calls (RPC)

10

S-38.188 - Computer Networks - Spring 2005

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

TCP overview

• Connection-oriented

• Byte-stream

– application writes bytes

– TCP sends segments

– application reads bytes

• Full duplex (pair of byte streams)

• Traffic management
– Flow control:

• keep sender from overrunning receiver

– Congestion control:

• keep sender from overrunning network

• Protocols that use TCP

– majority of Internet traffic still generated by TCP

– Telnet, FTP, Simple Mail Transfer Protocol (SMTP), POP (reading of e-mails), IMAP

(reading of e-mails), HTTP, X Window System (X11, decentralized window system)

11

S-38.188 - Computer Networks - Spring 2005

End-to-end issues

• TCP implements a sliding window protocol

– similar to the one covered in lecture 2 for point-to-point links

• Issues that complicate design of an end-to-end sliding window protocol

1. Connects many different hosts/applications

• needs explicit connection establishment and termination

2. Different RTTs

• needs adaptive timeout mechanism (variations in RTTs)

3. Long delays in network (packets reordered)

• each TCP packet has Maximum Segment Lifetime (MSL, 120 s)

• need to be prepared for arrival of very old packets

4. Different/varying capacity at destination (delay x bandwidth)

• accommodate very different node capacities

• for a given node, amount of resources (buffer space) available
changes with number of simulteneous TCP connections

5. Different/varying network capacity (TCP has no link info)

• need to be prepared for network congestion

12

S-38.188 - Computer Networks - Spring 2005

Sending data

• TCP byte oriented

– sender application writes and receiver application reads bytes

• … but still TCP sends segments

– MSS = Maximum Segment Size

• 3 mechanisms to trigger segment transmission

– send segment once MSS bytes received

– sender invoked operation (push)

– timer that periodically fires

• Segment transmission:

– data has sequence number, receiver acknowledges data and includes info

on current buffer space (AdvertisedWindow)

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

13

S-38.188 - Computer Networks - Spring 2005

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

Segment format

• Unique identification

– <SrcPort, SrcIPAddr, DstPort, DstIPAddr>

• For sliding window algorithm

– SequenceNum: number of first byte

carried

– Acknowledgment & AdvertisedWindow:

info on flow on reverse direction

• 6-bit Flags: control info btw. TCP peers

– Syn, Fin: establish & terminate TCP

connection

– Ack: if Acknowledgment is valid

– Urg: urgent data

– Push: sender invoked push operation

– Reset: receiver is confused

• Checksum:

– TCP header, TCP data, pseudoheader

14

S-38.188 - Computer Networks - Spring 2005

Outline

• Overview of end-to-end protocols

• UDP

• TCP

– Connection establishment / termination

– Sliding window and flow control

– Adaptive timeout + TCP extensions

• SCTP

• About Remote Procedure Calls (RPC)

15

S-38.188 - Computer Networks - Spring 2005

Connection establishment

• Connection setup:

– done before any actual data is transmitted

– asymmetric, active open (caller/client) & passive open (callee/server)

• Connection teardown:

– symmetric (each side closes independently)

• 3-way handshake

– algorithm for establishing a connection and connection tear down

– idea during establishment: to agree on starting sequence numbers

• Why not fixed starting numbers?

– TCP specification: random initial sequence numbers

– protection against two incarnations of the same connection

• “incarnation” = same connection from same source <IP addr, port> pair

16

S-38.188 - Computer Networks - Spring 2005

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN
 + AC

K, Se
quen

ceNu
m = y,

ACK, Acknowledgment = y + 1

Ackn
owle

dgm
ent =

 x + 1

Timeline for 3-way handshake (establishment)

1. Client sends SYN and own initial seq. number x

2. Server responds with SYN+ACK, where own initial seq. number = y, and next

expected byte (acknowledgment) = x+1

3. Client responds with ACK, where next expected byte (acknowledgement) = y+1

17

S-38.188 - Computer Networks - Spring 2005

State transitions (not all, no timeouts)

• Format: event/action

• Connection establishment

(above ”Established”)

- asymmetric

• Connection tear down

(below ”Established”)

- symmetric (both sides tear

down independently)

• Client initiated establish (C=client,

S=server)

- Server is in state LISTEN

- (C,1), (S,2), (C,3), (S,4)

• Server initiated tear down

- (S,5), (C,6), (S,7), (C,8), (S,9),

(C,10), (S,11)

- transition 11 takes 240 s!

- server does not know if client

received last ACK ⇒ must wait

max possible time for a

retransmitted FIN

from client

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKA
C
K
 +
 F
IN
/A
C
K Timeout after two

segment lifetimes
FIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

1

2

3
4

9

87

65

10

11

18

S-38.188 - Computer Networks - Spring 2005

Outline

• Overview of end-to-end protocols

• UDP

• TCP

– Connection establishment / termination

– Sliding window and flow control

– Adaptive timeout + TCP extensions

• SCTP

• About Remote Procedure Calls (RPC)

19

S-38.188 - Computer Networks - Spring 2005

TCP sliding window

• Purposes:

– guarantees reliable delivery of data

– ensures that data is delivered in order

– enforces flow control between sender and receiver

• Receiver advertises a window size to sender

– idea: prevent sender from overrunning receiver’s buffer

• Both sides have (finite) buffers and 3 pointers

20

S-38.188 - Computer Networks - Spring 2005

Sliding window buffers and pointers

• Sending side

– LastByteAcked ≤ LastByteSent

– LastByteSent ≤ LastByteWritten

– buffer bytes between LastByteAcked

and LastByteWritten

• Receiving side

– LastByteRead < NextByteExpected

– NextByteExpected ≤ LastByteRcvd +1

– buffer bytes between LastByteRead

and LastByteRcvd

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

21

S-38.188 - Computer Networks - Spring 2005

Flow control

• Variables

– Send buffer size: MaxSendBuffer

– Receive buffer size: MaxRcvBuffer

• Receiving side

– LastByteRcvd - LastByteRead ≤ MaxRcvBuffer

– AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd - LastByteRead)

– AdvertisedWindow = max amount of buffer space left

– always send ACK in response to arriving data segment (even when
receiving out of order segments ⇒ seq.number does not change)

• Sending side

– LastByteSent - LastByteAcked ≤ AdvertisedWindow

– EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)

• amount of data that can be sent

– LastByteWritten - LastByteAcked ≤ MaxSendBuffer

– block sender if (LastByteWritten - LastByteAcked) + y > MaxSendBuffer

• Persist when AdvertisedWindow = 0

– send periodically probe segments

22

S-38.188 - Computer Networks - Spring 2005

Protection against wrap around

• 32-bit SequenceNum may wrap around
– during connection’s lifetime (not during one RTT)

– during one connection, segments as old as MSL may arrive (120 s)

• fast network ⇒ sequence numbers consumed fast
– 232 ⇒ 4GB may be sent before wrap around

• Bandwidth Time Until Wrap Around
– T1 (1.5 Mbps) 6.4 hours

– Ethernet (10 Mbps) 57 minutes

– T3 (45 Mbps) 13 minutes

– FDDI (100 Mbps) 6 minutes

– STM-1 (155 Mbps) 4 minutes

– STM-4 (622 Mbps) 55 seconds

– STM-8 (1.2 Gbps) 28 seconds

• Protection against wrap around implemented by TCP options

23

S-38.188 - Computer Networks - Spring 2005

Keeping the pipe full

• 16-bit AdvertisedWindow

– maximum window size = 64 KB

• Delay x bandwidth worth of data can be transmitted, RTT of 100 ms

assumed below

– Bandwidth Delay x Bandwidth Product

– T1 (1.5 Mbps) 18KB

– Ethernet (10 Mbps) 122KB

– T3 (45 Mbps) 549KB

– FDDI (100 Mbps) 1.2MB

– STS-3 (155 Mbps) 1.8MB

– STS-12 (622 Mbps) 7.4MB

– STS-24 (1.2 Gbps) 14.8MB

• Increased maximum window size through TCP options

24

S-38.188 - Computer Networks - Spring 2005

Outline

• Overview of end-to-end protocols

• UDP

• TCP

– Connection establishment / termination

– Sliding window and flow control

– Adaptive timeout + TCP extensions

• SCTP

• About Remote Procedure Calls (RPC)

25

S-38.188 - Computer Networks - Spring 2005

Adaptive retransmission

• Reliable delivery of data ⇒ retransmission needed

• ACK not received ⇒ timeout

• Timeout depends on RTT

– in Internet RTT is a random variable (depends on random queuing delays

and also routes may change)

• Choosing the right timeout (i.e., RTT):

– RTT too short: too many retransmissions

– RTT too long: unnecessary waiting

– many algorithms to determine RTT

26

S-38.188 - Computer Networks - Spring 2005

Adaptive retransmission (original algorithm)

• Measure SampleRTT for each segment/ACK pair

– Note! for retransmissions SampleRTT includes also retransmission time

• Compute weighted average of RTT

EstRTT = a x EstRTT + (1-a) x SampleRTT

– where a between 0.8 and 0.9

• Set timeout based on EstRTT

TimeOut = 2 x EstRTT

27

S-38.188 - Computer Networks - Spring 2005

Sender Receiver

Original transmission

ACK

S
a
m
p
le
R
T
T

Retransmission

Sender Receiver

Original transmission

ACK

S
a
m
p
le
R
T
T

Retransmission

Karn/Partridge algorithm

• Problem:

– impossible to know if ACK came from original packet or retransmission (see above)

– timeout implies congestion, retransmissions increase congestion ⇒ reaction to timeout

should be conservative

• Solution:

– don’t sample RTT when retransmitting!

– double timeout after each retransmission (⇒ exponential backoff)

28

S-38.188 - Computer Networks - Spring 2005

Jacobson/ Karels algorithm

• Problem with earlier algorithms:

– RTT is a random variable, moreover it has a variance

– If variance is small, EstimatedRTT more reliable

– If variance is large, timeout should not be “too much” based on EstimatedRTT

• New Calculations for EstRTT (i.e., average RTT)

Diff = SampleRTT - EstRTT

EstRTT = EstRTT + (d x Diff)

Dev = Dev + d x (|Diff| - Dev)

• where d is a factor between 0 and 1

• Idea: consider variance when setting timeout value

TimeOut = m x EstRTT + f x Dev

• where m = 1 and f = 4

• Notes

– algorithm only as good as granularity of clock (500ms on Unix)

– accurate timeout mechanism important to congestion control (later)

29

S-38.188 - Computer Networks - Spring 2005

TCP extensions

• Implemented as header options

– store timestamp (32 bit) in outgoing segments (to improve RTT measurement accuracy

by measuring it from the packet)

– extend sequence space with 32-bit timestamp (protection against sequence number

wrap around)

– shift (scale) advertised window (larger window sizes)

– use of Options negotiated during TCP connection establishment

• Nagle algorithm (RFC896)

– built in most TCP implementations

– sender holds a partial segment’s worth of data (even if PUSHed) until either a full

segment accumulates or the most recent outstanding ACK arrives (= all data has been

received correctly by receiver)

• small packet problem: Telnet can generate 1B + 40B packets (4000% overhead)

• Delayed ACKs (RFC813)

– to limit generation of small ACK packets

– receiver waits until there is data to transmit on reverse path and “piggybacks” ACKs on

TCP data segment

• timer guards that receiver does not wait “too long”

– ACKs must still be generated at least after receiving 2*MSS bytes (every 2 segments)

30

S-38.188 - Computer Networks - Spring 2005

Outline

• Overview of end-to-end protocols

• UDP

• TCP

– Connection establishment / termination

– Sliding window and flow control

– Adaptive timeout + TCP extensions

• SCTP

• About Remote Procedure Calls (RPC)

31

S-38.188 - Computer Networks - Spring 2005

Stream Control Transmission Protocol (SCTP)

• Suitable transport protocol for signaling traffic (SS7) over IP

– may be used for traditional Internet services such as those based on HTTP and SIP

– sometimes called the “Next Generation TCP”

– Internet standard RFC2960

• Service model

– unicast transport protocol

– provides reliable, message-oriented data delivery

• SCTP sends “complete” messages whereas TCP is byte oriented and does not

preserve any structure in the byte stream

• reliable = lost/corrupted messages are retransmitted

• Other features

– functionality is TCP-like with modifications due to message oriented principle

• TCP-like sliding window, flow control and congestion control

• uses selective acknowledgements (SACKs) to report out of sequence data

– multistreaming: data stream can be partitioned into multiple streams, each controlled

independently

– multihoming: for redundancy, an SCTP endpoint can be associated with multiple IP

addresses

32

S-38.188 - Computer Networks - Spring 2005

Outline

• Overview of end-to-end protocols

• UDP

• TCP

– Connection establishment / termination

– Sliding window and flow control

– Adaptive timeout + TCP extensions

• SCTP

• About Remote Procedure Calls (RPC)

33

S-38.188 - Computer Networks - Spring 2005

About remote procedure calls

• Request/reply paradigm, but UDP message going in one direction and UDP

message back is not enough

– messages can be lost or reordered

– use of TCP overkill

• Protocol family Remote Procedure Call (RPC)

– RPC more complex than local procedure call:

• network between calling process and called process is complex

• computer at each end may have different architectures and data representation

– semantics:

• at-most-once = for every request message, only one copy of message is delivered

to the server

• zero-or-more = remote procedure call invoked zero or more times

– examples: SunRPC, DCE RPC

• Internet society view

– RPC carried on top of UDP ⇒ RPC is not a transport protocol according to Internet

architecture

34

S-38.188 - Computer Networks - Spring 2005

Some remarks

• Getting a transport protocol right is hard, changing circumstances make
it harder

• In Internet, transport protocols have a crucial role

– IP network is unreliable

– IP design principle has usually been that end systems implement all
intelligent functions ⇒ transport layer is (first) end-to-end layer

• Protocols can and do change

– for example TCP timers and congestion control

– networks do change

– How to change a protocol in the Internet?

• Must always consider interoperability…

– How to supply the level of service required by applications (that also
changes all the time)

• New requirements by real time applications ⇒ DCP

• Other emerging requirements…

