Internet transport protocols

188lecture6.ppt © Pasi Lassila

S-38.188 - Computer Networks - Spring 2005

Problem

* |IP can be used to connect together heterogenous networks
— IP network offers only best effort packet delivery (with no guarantees)

» Applications need end-to-end (process-to-process) communication
— ’logical channels” through the network
— = transport layer protocols on top of IP layer

IP network

S-38.188 - Computer Networks - Spring 2005

Outline

» Overview of end-to-end protocols
« UDP
« TCP

Connection establishment / termination
Sliding window and flow control

Adaptive timeout + TCP extensions

« SCTP
» About Remote Procedure Calls (RPC)

S-38.188 - Computer Networks - Spring 2005

Requirements of an end-to-end protocol (1)

* An end-to-end transport protocol is shaped

from above, by application requirements, and
from below, by limited capabilities of the network layer

« Common application requirements on transport protocols

guarantee message delivery

deliver messages in the same order they are sent
deliver at most one copy of each message

support arbitrarily large messages

support synchronization

allow the receiver to flow control the sender

support multiple application processes on each host

* Note(!), security is not in list above

implemented above transport layer

S-38.188 - Computer Networks - Spring 2005

Requirements of an end-to-end protocol (2)

» Best-effort networks (Internet) have limited capabilities and can
— drop messages
— re-order messages
— deliver duplicate copies of a given message
— limit messages to some finite size
— deliver messages after an arbitrarily long delay

+ Challenge:

— to develop protocols that use best-effort network, but can provide
high (sufficient) level of service

S-38.188 - Computer Networks - Spring 2005

Internet transport protocols

» Traditional IP transport protocols
— UDP: simple multiplexing/demultiplexing
— TCP: reliable byte stream
— covered in this course

* New/emerging IP transport protocols
— SCTP: reliable message transport protocol
+ briefly covered at the end of lecture
— DCP: (proposed) transport protocol for streaming media
+ “TCP-friendly” congestion control but without retransmissions

S-38.188 - Computer Networks - Spring 2005

Outline

» Overview of end-to-end protocols

- UDP

« TCP
— Connection establishment / termination
— Sliding window and flow control
— Adaptive timeout + TCP extensions

« SCTP

» About Remote Procedure Calls (RPC)

S-38.188 - Computer Networks - Spring 2005

Simple demultiplexor (UDP)

+ UDP = User Datagram Protocol
— used in real time services, question-reply protocols
— traditionally not much UDP traffic in Internet
— increasing amount of real time services/applications = more UDP traffic

» Basic features
— unreliable and unordered datagram service
— only adds multiplexing to best-effort
— greedy: no flow or congestion control UDP header format

* Endpoints identified by ports 0 16 31
— servers have well-known ports SrcPort DstPort
— ex. DNS uses port 53 etc. Checksum Length
— port only 16 bits (hostwide)

Data

— server's full address (IP addr, port nr) r\/\/\/\//v\\/\/\/\/\/\//\/\\/j

+ Optional checksum
— pseudo header + UDP header + data

S-38.188 - Computer Networks - Spring 2005

Outline

» Overview of end-to-end protocols

- UDP

« TCP
— Connection establishment / termination
— Sliding window and flow control
— Adaptive timeout + TCP extensions

« SCTP

» About Remote Procedure Calls (RPC)

S-38.188 - Computer Networks - Spring 2005

TCP overview

. Connection-oriented Application process Application process

o - — —
Byte-stream =1 Write 5 Read
— application writes bytes : bytes © bytes
— TCP sends segments = =
— application reads bytes ﬁ ﬁl
* Full duplex (pair of byte streams)
Segment] [Segment] " [Segment]

. Transmit segments
+ Traffic management 9

— Flow control:

» keep sender from overrunning receiver
— Congestion control:

» keep sender from overrunning network

* Protocols that use TCP
— majority of Internet traffic still generated by TCP

— Telnet, FTP, Simple Mail Transfer Protocol (SMTP), POP (reading of e-mails), IMAP
(reading of e-mails), HTTP, X Window System (X11, decentralized window system)

10

S-38.188 - Computer Networks - Spring 2005

End-to-end issues

* TCP implements a sliding window protocol
— similar to the one covered in lecture 2 for point-to-point links

» Issues that complicate design of an end-to-end sliding window protocol

1. Connects many different hosts/applications
* needs explicit connection establishment and termination
2. Different RTTs
* needs adaptive timeout mechanism (variations in RTTs)
3. Long delays in network (packets reordered)
» each TCP packet has Maximum Segment Lifetime (MSL, 120 s)
* need to be prepared for arrival of very old packets
4. Different/varying capacity at destination (delay x bandwidth)
* accommodate very different node capacities

« for a given node, amount of resources (buffer space) available
changes with number of simulteneous TCP connections

5. Different/varying network capacity (TCP has no link info)
* need to be prepared for network congestion

S-38.188 - Computer Networks - Spring 2005

Sending data

TCP byte oriented
— sender application writes and receiver application reads bytes
... but still TCP sends segments
— MSS = Maximum Segment Size
* 3 mechanisms to trigger segment transmission
— send segment once MSS bytes received
— sender invoked operation (push)
— timer that periodically fires
+ Segment transmission:

— data has sequence number, receiver acknowledges data and includes info
on current buffer space (AdvertisedWindow)

Data (SequenceNum)

Sender Receiver

-~

Acknowledgment + 12
AdvertisedWindow

S-38.188 - Computer Networks - Spring 2005

Segment format

* Unique identification
— <SrcPort, SrclPAddr, DstPort, DstIPAddr>

0

4 10 16

31

* For sliding window algorithm
— SequenceNum: number of first byte

SrcPort

DstPort

carried
— Acknowledgment & AdvertisedWindow:

SequenceNum

info on flow on reverse direction

Acknowledgment

* 6-bit Flags: control info btw. TCP peers HdrLen
— Syn, Fin: establish & terminate TCP

0 Flags AdvertisedWindow

connection

Checksum

UrgPtr

— Ack: if Acknowledgment is valid
— Urg: urgent data

Options (variable)

— Push: sender invoked push operation
— Reset: receiver is confused

Data

e —

* Checksum:
— TCP header, TCP data, pseudoheader

S-38.188 - Computer Networks - Spring 2005

Outline

» Overview of end-to-end protocols

- UDP

« TCP
— Connection establishment / termination
— Sliding window and flow control
— Adaptive timeout + TCP extensions

« SCTP

+ About Remote Procedure Calls (RPC)

14

S-38.188 - Computer Networks - Spring 2005

Connection establishment

» Connection setup:

— done before any actual data is transmitted

— asymmetric, active open (caller/client) & passive open (callee/server)
* Connection teardown:

— symmetric (each side closes independently)
* 3-way handshake

— algorithm for establishing a connection and connection tear down

— idea during establishment: to agree on starting sequence numbers
* Why not fixed starting numbers?

— TCP specification: random initial sequence numbers

— protection against two incarnations of the same connection

* ‘“incarnation” = same connection from same source <IP addr, port> pair

S-38.188 - Computer Networks - Spring 2005

Timeline for 3-way handshake (establishment)

Client sends SYN and own initial seq. number x

2. Server responds with SYN+ACK, where own initial seq. number =y, and next
expected byte (acknowledgment) = x+1

3. Client responds with ACK, where next expected byte (acknowledgement) = y+1

Active participant Passive participant
(client) (server)

16

S-38.188 - Computer Networks - Spring 2005

State transitions (not all, no timeouts)

CLOSED « Format: event/action

Active openVSYN
Passive opef Close @ « Connection establishment
(above "Established”)
LISTEN - asymmetric

 Connection tear down
(below "Established”)
- symmetric (both sides tear
down independently)

SYN/SYN + AC

SYN_ SYN_SENT

* Client initiated establish (C=client,
S=server)

- Server is in state LISTEN
-(C1),(S,2), (C,3), (S5,4)

* Server initiated tear down

Close/FIN - (8,5), (C,6), (S,7), (C,8), (S,9),
(C,10), (S,11)

- transition 11 takes 240 s!

- server does not know if client
received last ACK = must wait
max possible time for a
retransmitted FIN
from client 17

AckK Timeout after two
segment lifetime:

TIME_WAIT @ CLOSED

FIN/ACK

S-38.188 - Computer Networks - Spring 2005

Outline

» Overview of end-to-end protocols

- UDP

« TCP
— Connection establishment / termination
— Sliding window and flow control
— Adaptive timeout + TCP extensions

« SCTP

+ About Remote Procedure Calls (RPC)

18

S-38.188 - Computer Networks - Spring 2005

TCP sliding window

* Purposes:
— guarantees reliable delivery of data
— ensures that data is delivered in order
— enforces flow control between sender and receiver

* Receiver advertises a window size to sender
— idea: prevent sender from overrunning receiver’s buffer

* Both sides have (finite) buffers and 3 pointers

19
S-38.188 - Computer Networks - Spring 2005
Sliding window buffers and pointers
TCP TCP
LastByteWritten \ y LastByteRead
§ | | $: LI 3
LastByteAcked LastByteSent NextByteExpected LastByteRcvd
+ Sending side * Receiving side
— LastByteAcked < LastByteSent — LastByteRead < NextByteExpected
— LastByteSent < LastByteWritten — NextByteExpected < LastByteRcvd +1
— buffer bytes between LastByteAcked — buffer bytes between LastByteRead
and LastByteWritten and LastByteRcvd

20

S-38.188 - Computer Networks - Spring 2005

Flow control

« Variables
— Send buffer size: MaxSendBuffer
— Receive buffer size: MaxRcvBuffer
* Receiving side
— LastByteRcvd - LastByteRead < MaxRcvBuffer
— AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd - LastByteRead)
— AdvertisedWindow = max amount of buffer space left

— always send ACK in response to arriving data segment (even when
receiving out of order segments = seq.number does not change)

+ Sending side
— LastByteSent - LastByteAcked < AdvertisedWindow
— EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)
+ amount of data that can be sent
LastByteWritten - LastByteAcked < MaxSendBuffer
block sender if (LastByteWritten - LastByteAcked) + y > MaxSendBuffer
» Persist when AdvertisedWindow = 0
— send periodically probe segments

21

S-38.188 - Computer Networks - Spring 2005

Protection against wrap around

+ 32-bit SequenceNum may wrap around
— during connection’s lifetime (not during one RTT)
— during one connection, segments as old as MSL may arrive (120 s)

» fast network = sequence numbers consumed fast
— 232 = 4GB may be sent before wrap around

* Bandwidth Time Until Wrap Around
— T1 (1.5 Mbps) 6.4 hours
— Ethernet (10 Mbps) 57 minutes
— T3 (45 Mbps) 13 minutes
— FDDI (100 Mbps) 6 minutes
— STM-1 (155 Mbps) 4 minutes
- STM-4 (622 Mbps) 55 seconds
— STM-8 (1.2 Gbps) 28 seconds

* Protection against wrap around implemented by TCP options

22

S-38.188 - Computer Networks - Spring 2005

Keeping the pipe full

* 16-bit AdvertisedWindow
— maximum window size = 64 KB

+ Delay x bandwidth worth of data can be transmitted, RTT of 100 ms
assumed below

— Bandwidth Delay x Bandwidth Product
— T1 (1.5 Mbps) 18KB

— Ethernet (10 Mbps) 122KB

— T3 (45 Mbps) 549KB

— FDDI (100 Mbps) 1.2MB
— STS-3(155Mbps) 1.8MB
— STS-12 (622 Mbps) 7.4MB
— STS-24 (1.2 Gbps) 14.8MB

* Increased maximum window size through TCP options

23

S-38.188 - Computer Networks - Spring 2005

Outline

» Overview of end-to-end protocols

- UDP

« TCP
— Connection establishment / termination
— Sliding window and flow control
— Adaptive timeout + TCP extensions

« SCTP
+ About Remote Procedure Calls (RPC)

24

S-38.188 - Computer Networks - Spring 2005

Adaptive retransmission

* Reliable delivery of data = retransmission needed
* ACK not received = timeout

* Timeout depends on RTT

— inInternet RTT is a random variable (depends on random queuing delays
and also routes may change)

» Choosing the right timeout (i.e., RTT):
— RTT too short: too many retransmissions
— RTT too long: unnecessary waiting
— many algorithms to determine RTT

25

S-38.188 - Computer Networks - Spring 2005

Adaptive retransmission (original algorithm)

* Measure SampleRTT for each segment/ACK pair
— Note! for retransmissions SampleRTT includes also retransmission time

* Compute weighted average of RTT

EstRTT = a x EStRTT + (1-a) x SampleRTT

— where a between 0.8 and 0.9

+ Set timeout based on EstRTT

TimeOut = 2 x EStRTT

26

S-38.188 - Computer Networks - Spring 2005

Karn/Partridge algorithm

Sender Receiver Sender Receiver

— OI'I .
L0al g, ansm;
ISs, I'on

SampleRTT
SampleRTT

* Problem:

impossible to know if ACK came from original packet or retransmission (see above)

timeout implies congestion, retransmissions increase congestion = reaction to timeout
should be conservative

+ Solution:
— don’'t sample RTT when retransmitting!
— double timeout after each retransmission (= exponential backoff)

27

S-38.188 - Computer Networks - Spring 2005

Jacobson/ Karels algorithm

* Problem with earlier algorithms:

— RTT is a random variable, moreover it has a variance

— If variance is small, EstimatedRTT more reliable

— If variance is large, timeout should not be “too much” based on EstimatedRTT
* New Calculations for EstRTT (i.e., average RTT)

Diff = SampleRTT - EstRTT
EstRTT = EstRTT + (d x Diff)
Dev = Dev + d x (|Diff| - Dev)

* where d is a factor between 0 and 1
* |dea: consider variance when setting timeout value

TimeOut = m x EstRTT + f x Dev

« wherem=1andf=4
 Notes

— algorithm only as good as granularity of clock (500ms on Unix)
— accurate timeout mechanism important to congestion control (later) 28

S-38.188 - Computer Networks - Spring 2005

TCP extensions

* Implemented as header options

— store timestamp (32 bit) in outgoing segments (to improve RTT measurement accuracy
by measuring it from the packet)

— extend sequence space with 32-bit timestamp (protection against sequence number
wrap around)

— shift (scale) advertised window (larger window sizes)
— use of Options negotiated during TCP connection establishment

* Nagle algorithm (RFC896)
— built in most TCP implementations

— sender holds a partial segment’s worth of data (even if PUSHed) until either a full
segment accumulates or the most recent outstanding ACK arrives (= all data has been
received correctly by receiver)

+ small packet problem: Telnet can generate 1B + 40B packets (4000% overhead)

+ Delayed ACKs (RFC813)
— to limit generation of small ACK packets

— receiver waits until there is data to transmit on reverse path and “piggybacks” ACKs on
TCP data segment

 timer guards that receiver does not wait “too long”

— ACKs must still be generated at least after receiving 2*MSS bytes (every 2 segments)
29

S-38.188 - Computer Networks - Spring 2005

Outline

» Overview of end-to-end protocols

- UDP

« TCP
— Connection establishment / termination
— Sliding window and flow control
— Adaptive timeout + TCP extensions

« SCTP
+ About Remote Procedure Calls (RPC)

30

S-38.188 - Computer Networks - Spring 2005

Stream Control Transmission Protocol (SCTP)

Suitable transport protocol for signaling traffic (SS7) over IP
— may be used for traditional Internet services such as those based on HTTP and SIP
— sometimes called the “Next Generation TCP”
— Internet standard RFC2960
Service model
— unicast transport protocol
— provides reliable, message-oriented data delivery

» SCTP sends “complete” messages whereas TCP is byte oriented and does not
preserve any structure in the byte stream

* reliable = lost/corrupted messages are retransmitted
Other features
— functionality is TCP-like with modifications due to message oriented principle
» TCP-like sliding window, flow control and congestion control
» uses selective acknowledgements (SACKSs) to report out of sequence data
— multistreaming: data stream can be partitioned into multiple streams, each controlled
independently

— multihoming: for redundancy, an SCTP endpoint can be associated with multiple IP
addresses

31

S-38.188 - Computer Networks - Spring 2005

Outline

Overview of end-to-end protocols
UDP
TCP
— Connection establishment / termination
— Sliding window and flow control
— Adaptive timeout + TCP extensions
SCTP

About Remote Procedure Calls (RPC)

32

S-38.188 - Computer Networks - Spring 2005

About remote procedure calls

* Request/reply paradigm, but UDP message going in one direction and UDP
message back is not enough

— messages can be lost or reordered
— use of TCP overkill

* Protocol family Remote Procedure Call (RPC)
— RPC more complex than local procedure call:
* network between calling process and called process is complex
» computer at each end may have different architectures and data representation
— semantics:

» at-most-once = for every request message, only one copy of message is delivered
to the server

» zero-or-more = remote procedure call invoked zero or more times
— examples: SunRPC, DCE RPC

* Internet society view

— RPC carried on top of UDP = RPC is not a transport protocol according to Internet
architecture

33

S-38.188 - Computer Networks - Spring 2005

Some remarks

» Getting a transport protocol right is hard, changing circumstances make
it harder

* In Internet, transport protocols have a crucial role
— [P network is unreliable

— |IP design principle has usually been that end systems implement all
intelligent functions = transport layer is (first) end-to-end layer

* Protocols can and do change
— for example TCP timers and congestion control
— networks do change
— How to change a protocol in the Internet?
* Must always consider interoperability...

— How to supply the level of service required by applications (that also
changes all the time)

* New requirements by real time applications = DCP
» Other emerging requirements...

34

