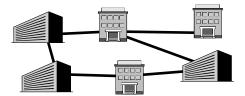

Link Layer review and LAN technologies

188lecture2.ppt © Pasi Lassila 1


S-38.188 - Computer Networks - Spring 2005

Problem

- How to connect two (or more) computers to each other?
 - physical cable, bit encoding, framing, error detection?
 - reliable transfer mechanisms?
 - multiple access? (LANs)

- How to build larger networks?
 - single LANs have limited number of stations that can be connected and limited geographical coverage

Overview

- Physical link technologies
 - Electrical, optical and wireless media; speeds from 2 Mbps (E1) to 2.4 Gbps (SDH-16)
 - "Last mile link": modem, cable modem, ADSL, VDSL
- Encoding
 - Rules to convert bits into electrical/optical signals, e.g., 4B/5B
- Framing
 - Frames separated by Start of Frame/End of frame bit sequences
- · Error detection/correction
 - Extra information in frames to allow detection/correction of bit errors
- Reliable transmission
 - Basic mechanism at L2
- · Multiple access techniques
 - Ethernet, Token ring and FDDI, Wireless
 - Limited by "collision domain"
- Extending a single LAN by using LAN switching techniques

Topics of this lecture

3

S-38.188 - Computer Networks - Spring 2005

Outline

- Error detection/correction
- Reliable transmission
- Multiple access techniques
 - Ethernet
 - Token ring and FDDI
 - Wireless
- Extended LANs

Error detection vs. correction

- Method: add k redundant extra bits computed from the original message to detect (and to correct) bit error(s)
- Error detection
 - idea: $k \ll n$ (n = length of the original message)
 - In Ethernet k = 32 and n = 1500*8 = 12000
 - bit error patterns can be detected but not corrected
 - reasonable if packets (frames) are corrupted relatively seldom
 - in modern optical networks bit error rates ~ 10 -12
 - corrupted frames are retransmitted (and with high probability correctly)
- Error correction
 - now: $k \sim n$
 - what errors can be corrected depends on the used algorithm (codes) and k
 - useful in an environment where packets are frequently corrupted
 - in wireless, bit error rates are often $\sim 10^{-6}$ 10^{-4}
 - \Rightarrow retransmitted frames encounter errors with high probability!

5

S-38.188 - Computer Networks - Spring 2005

CRC (Cyclic Redundancy Check)

- One of the most common error detection techniques
 - used in almost all L2 protocols (HDLC, Ethernet, Token Ring, ATM)
- · The method:
 - Let C(x) = divisor polynomial of degree k, e.g., x^3+x+1
 - Let T(x) = original message with k zeros appended
 - Divide T(x) with C(x) (modulo 2 logic), subtract the remainder from T(x)
 - the result is now exactly divisible with C(x)
 - Thus, if e.g. original message and the remainder are transmitted in a frame, the receiver can determine if the message is corrupted
 - Advantage: can be implemented efficiently in hardware using shift registers
- General error detecting properties of C(x) with degree k
 - All single bit errors if $x^k = x^0 = 1$
 - All double bit errors if C(x) has a factor with at least three terms
 - Any odd number of errors if C(x) contains the term (x+1)
 - Any burst error for which the length of the burst is less than k bits (most burst errors of larger length can also be detected)

6

Internet checksum

- CRC provides strong protection and is used in (almost) all L2 protocols
- Thus, in Internet (L3 and L4) protocols strong protection not necessary
- Simple checksum based method is used in Internet
- Method:
 - A message is viewed as a sequence of 16 bit integers
 - Add all these up using ones complement arithmetic
 - Take ones complement of the result \Rightarrow checksum
 - Ones complement with 4 bits
 - A negative integer -x is represented by the complement of x
 - {+5 = 0101, -5 = 1010}, {+3=0011, -3 = 1100}
 - Carry bit: -5 + -3 = 1010 + 1100 = 0110 + "carry bit" = 0111

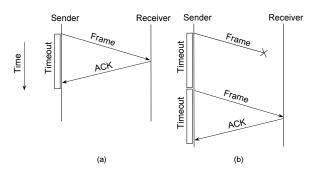
7

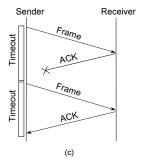
S-38.188 - Computer Networks - Spring 2005

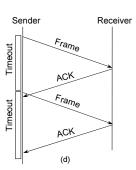
Outline

- Error detection/correction
- · Reliable transmission
- Multiple access techniques
 - Ethernet
 - Token ring and FDDI
 - Wireless
- Extended LANs

Reliable transmission

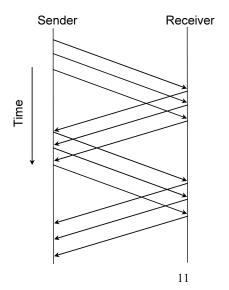

- Packets may be corrupted or simply dropped (due to congestion)
- In packet networks lost packets are retransmitted
- How is this achieved?
 - Acknowledgements (ACKs):
 - · short control packet from the receiver
 - · acknowledges a successfully received packet
 - Time outs:
 - sender waits for a "reasonable" time for an ACK
 - if an ACK is not received, a time out occurs \Rightarrow packet is retransmitted
- Two ARQ (Automatic Repeat Request) algorithms
 - Stop-and-wait
 - Sliding window


9


S-38.188 - Computer Networks - Spring 2005

Stop-and-wait

- The sender stops after each packet and waits for an ACK (a)
 - different error situations in b,c,d



- Problem: keeping the pipe full
 - C = 10 Mbps, RTT = 30 ms \Rightarrow RTT*C = 38 KB
 - sending only one 1500 B packet at a time gives utilization of 1.5/38 \approx 4 %!
 - simple solution: to send for example 3 frames, use 3 stop-and-wait processes in parallel (concurrent logical channels, used in ARPANET)

Sliding window

- Algorithm for handling multiple outstanding ACKs
 - the method used in Internet retransmission schemes
- An upper bound is set on the number of outstanding ACKs
 - called a window
 - protocol ensures that the number of unacknowledged packets is less than the window size
- In practice, bandwidth-delay product varies over time
 - need to manage the window size dynamically
 - TCP with congestion control

S-38.188 - Computer Networks - Spring 2005

Sliding window - sender side operations

- A sequence number (SeqNum) is assigned to each frame
 - assume for the time being that SeqNum can grow infinitely large
- Three state variables
 - Send Window Size (SWS) (upper bound on nof outstanding ACKs)
 - Last Acknowledgement Received (LAR)
 - Last Frame Sent (LFS)
- Sender maintains: LFS LAR < SWS

- · Sender's actions
 - For each ACK, LAR is incremented and a new packet can be transmitted
 - For each packet, a timeout timer is associated (retransmission if time expires)
 - Thus, sender must buffer upto SWS amount of packets

Sliding window - receiver side operations

- Three state variables
 - Receive Window Size (RWS) (bound on out of order frames)
 - Largest Acceptable Frame (LAF)
 - Last Frame Received (LFR)
- Receiver maintains: LAF LFR ≤ RWS

- · Receiver's actions:
 - If SeqNum ≤ LFR or SeqNum > LAF, the frame is discarded
 - If LFR < SeqNum ≤ LAF, the frame is accepted
 - If SeqNum = LFR + 1, LFR is incremented and frame SeqNum is ACKed
 - If SeqNum > LFR + 1, no ACK is generated until the missing frames arrive (sends cumulative ACKs)

S-38.188 - Computer Networks - Spring 2005

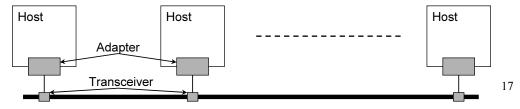
Sliding window operation

- If packets arrive in order and none are lost
 - receiver keeps increasing its LFR and acknowledges each packet
 - sender receives a flow of ACKs and sends a new packet for each ACK
 - · pipe stays full
- If packets arrive out of order at the receiver
 - the receiver does not generate ACKs
 - the sender is throttled (cannot send new packets)
 - if missing packets are lost, sender's timeout mechanism takes care of retransmissions
 - · sending NAKs not useful
 - how quickly the timeout mechanism detects the missing packet becomes important
 - sending selective ACKs (ACKs for each received packet even if they are out of order) is possible but increases protocol complexity

Finite sequence numbers

- In practice, SeqNum is a field in the protocol header ⇒ SeqNum finite
 - sequence numbers bound to wrap around during operation
- Problem:
 - How big must MaxSeqNum be in order to guarantee that receiver never mistakes a received SeqNum to the previous "round's" same SeqNum?
- Answer: if SWS = RWS, then SWS ≤ (MaxSegNum + 1) / 2
 - SWS must be smaller than half of the nof values of MaxSeqNum
 - Interpretation: assume MaxSeqNum = SWS + 1 and SWS = RWS = 7
 - in the worst case sender sends frames 0, ..., 6
 - · assume that all ACKs for the packets are lost
 - sender retransmits again all frames 0, ..., 6
 - receiver is expecting frames 7, 8, 0, 1, ..., but receives 0, ..., 6 interpreting them as belonging to the "next round"!
 - MaxSeqNum must be big enough that all retransmitted frames still "fit" in the same round, i.e., in this case SeqNo range = {0, ..., 13}

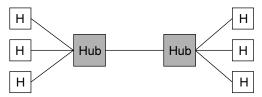
15


S-38.188 - Computer Networks - Spring 2005

Outline

- Error detection/correction
- · Reliable transmission
- Multiple access techniques
 - Ethernet
 - Token ring and FDDI
 - Wireless
- Extended LANs

Ethernet overview


- History
 - developed by Xerox in mid 70s, roots in Aloha packet-radio network
 - standardized by Xerox, DEC, and Intel in 1978, (later IEEE 802.3 standard)
- CSMA/CD
 - carrier sense: nodes detect if line is idle or busy
 - multiple access: multiple stations share the bandwidth
 - collision detection: stations listen to their transmission and detect collisions
- Bandwidth: 10Mbps, 100Mbps, 1Gbps
- Ethernet segment (different coaxial cables, max 500 m):
 - transceiver: detects if line is idle, sends the electrical signals
 - adapter: implements the Ethernet MAC protocol (in hardware)

S-38.188 - Computer Networks - Spring 2005

Collision domain

- Using max 4 repeaters at most 5 segments can be connected
 - max 2500 m distance between any two nodes
- Hubs can be used to create a star (hierarchical) topology
 - used in 10BaseT networks with twisted pair cabling
 - 10 = 10 Mbit/s, Base = Baseband system, T=twisted pair (< 100 m)</p>

- Repeaters and hubs are layer 1 devices connecting Ethernet segments
 - data transmitted by any host on that Ethernet is received by all hosts
 - all compete for the same resource
 - all hosts are in the same collision domain

Ethernet frame format and addresses

- Frame Format (field lengths in bits)
 - max body length 1500 bytes
 - min body length 46 bytes (long enough to detect a collision)

64	48	48	16	32
Preamble	Dest addr	Src addr	Туре	Body CRC

- Addresses
 - unique, 48-bit unicast address assigned to each adapter
 - example: 8:0:e4:b1:2broadcast: all 1smulticast: first bit is 1
- Receiver functionality simple:
 - adapter forwards to the host all unicast traffic directed to it, all broadcast traffic and the multicast traffic it has subscribed to
- Problem: Distributed algorithm that provides fair access
 - Media Access Protocol (MAC)

19

S-38.188 - Computer Networks - Spring 2005

Transmit algorithm (1)

- No centralized access control
 - collisions occur and they are detected
- If line is idle...
 - send immediately
 - upper bound message size of 1500 bytes
 - must wait 9.6 μs between back-to-back frames
- If line is busy...
 - wait until idle and transmit immediately
 - called 1-persistent (special case of p-persistent)
 - p-persistent: if line is idle, transmit with probability p
 - idea: many hosts may be waiting for the line to become idle and we do not want them all to start transmitting (minimizes prob. of collisions)

Transmit algorithm (2)

- If collision...
 - jam for 32 bits, then stop transmitting frame
 - minimum frame is 64 bytes (header + 46 bytes of data)
 - long enough to fill a 2500 m Ethernet operating at 10 Mbps
 - delay and try again
 - 1st time: 0 or 51.2us
 - 2nd time: 0, 51.2, 102.4, or 153.6us
 - 3rd time: choose k=0,...,2³-1 randomly, wait k x 51.2us
 - nth time: for randomly selected k=0,..., 2ⁿ-1, wait k x 51.2us
 - give up after several tries (usually 16)
 - · exponential backoff

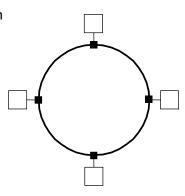
21

S-38.188 - Computer Networks - Spring 2005

Ethernets in practice

- Performance
 - Ethernet works efficiently in light load
 - 30% load is considered a heavy load and too much of Ethernet's capacity is wasted on collisions
 - no flow control in Ethernet (flow control implemented in IP protocols)
- Nof hosts
 - theoretical maximum 1024 hosts
 - in reality most have < 200 hosts
- Length
 - theoretical maximum 2500 m with round-trip delay 51.2 μs
 - $-\,$ in practice, delay is closer to 5 μs
- Ethernet advantages:
 - easy to manage and administer (add/remove hosts, no route configuration)
 - cheap

Outline


- Error detection/correction
- Reliable transmission
- Multiple access techniques
 - Ethernet
 - Token ring and FDDI
 - Wireless
- Extended LANs

23

S-38.188 - Computer Networks - Spring 2005

Token ring overview

- Examples
 - 16Mbps IEEE 802.5 (based on earlier IBM ring)
 - 100Mbps Fiber Distributed Data Interface (FDDI)
- Similarities with Ethernet
 - shared medium with a distributed access algorithm
 - all nodes see all frames
- Differences to Ethernet
 - ring topology
 - access to the ring is tightly controlled (tokens)
 - NOT random access

Token ring operation

- Idea
 - frames flow in one direction: upstream to downstream
 - special bit pattern (token, length 24 bits) rotates around ring
 - if a node has frame(s) to transmit and sees the token
 - · node inserts its frame into the ring
 - · each node forwards the frame, receiver copies it
 - node can transmit for upto THT (Token Holding Time, default 10 ms)
 - release token after done transmitting
 - immediate release (token is inserted before last frame has been sent)
 - delayed release (token is inserted after last frame has been sent)
 - remove your frame when it comes back around
 - stations get round-robin service
- Additional features
 - supports unicast, broadcast and multicast addresses
 - reliable frame delivery: receiver sets A and C bits if frame OK
 - supports priorities

25

S-38.188 - Computer Networks - Spring 2005

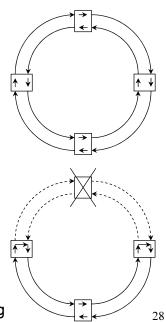
Token ring maintenance

- Designated monitor station guards operation of the ring
 - any station can be the monitor
 - healthy monitor issues regular control messages
 - if control msgs are not received for some period of time
 - any station can try to become new monitor by issuing "claim token" msg
 - · new monitor is elected based on "highest address" rule
- Monitor functions
 - adds extra bits of delay if necessary (ring must be at least 24 "bits long")
 - makes sure that token is not lost (host crash, bit errors, ...)
 - maximum rotation time timer (NumStations x THT + RingLatency)
 - check for corrupted or orphaned frames
 - detection of dead stations

Physical properties and frame format of token ring

- Properties:
 - Robustness:
 - · in a ring, if any station fails the ring is inoperable
 - solution: an electromechanical relay in the network adapter is open as long as the station is operating
 - data rate: 4 Mbps (old version) or 16 Mbps
 - bit encoding: Manchester
 - upto 260 stations (250 in IEEE 802.5)
 - physical medium: twisted pair
- Frame Format

8	8	8	48	48		32	8	24
Start of frame	Access control	Frame control	Dest addr	Src addr	Body 7	CRC	End of frame	Status


- 48 bit addresses (as in Ethernet)
- frame status contains the A and C bits

27

S-38.188 - Computer Networks - Spring 2005

FDDI overview

- Dual ring
 - second ring not used in normal operation
 - if a node fails or a single link fails,
 ring loops back to form a complete ring
- Dual ring expensive
 - SAS (single attachment station) possible
 - multiple SAS connected to a DAS (dual attachment station) (=concentrator)
 - in case of SAS failure, DAS bypasses the faulty SAS
- Physical properties
 - at most 500 stations
 - max cable length 200 km (100 km ring length)
 - physical media: coax, twisted pair, fiber
 - encoding: 4B/5B
- Frame format (almost) the same as in Token ring

Timed Token Algorithm (1)

- Algorithm for controlling token holding time: Timed Token Algorithm
 - ensures that every station gets to transmit within a defined period of time
- Token Holding Time (THT)
 - upper limit on how long a station can hold the token, configured value
 - same as in Token ring
- Token Rotation Time (TRT)
 - how long it takes the token to traverse the ring
 - TRT <= ActiveNodes x THT + RingLatency
- Target Token Rotation Time (TTRT)
 - agreed-upon upper bound on TRT
 - decided during token generation (ring initialization)

29

S-38.188 - Computer Networks - Spring 2005

Timed Token Algorithm (2)

- Each node measures TRT between successive tokens.
 - if measured-TRT > TTRT: token is late so don't send
 - if measured-TRT < TTRT: token is early so OK to send
- Problem:
 - an upstream node with lot of data to send hogs all bw before the token reaches downstream nodes which might have delay critical data
- · Two classes of traffic
 - synchronous: can always send
 - asynchronous: can send only if token is early
- Problem: synchronous traffic can take all bw
- Solution: max TTRT amount of synch data can be sent during token round
 - nodes first send TTRT worth of asynchronous data and then other nodes send TTRT worth of synchronous data
 - worst case: measured-TRT can be 2xTTRT between seeing token
 - in the next token round, token is already late and asynchronous data cannot be sent ⇒ back-to-back 2xTTRT rotations not possible

Token maintenance

- Lost Token
 - no token when initializing ring
 - bit error corrupts token pattern
 - node holding token crashes
 - token loss monitored by all stations
 - · stations should see valid frames or tokens every now and then
 - if nothing is seen for 2.5 ms, node issues a "claim" msg
- Generating a Token (and agreeing on TTRT)
 - execute when joining ring or suspect a failure
 - send a claim frame that includes the node's TTRT bid
 - when receive claim frame, update the bid and forward
 - if your claim frame makes it all the way around the ring:
 - · your bid was the lowest
 - · everyone knows TTRT
 - · you insert new token

31

S-38.188 - Computer Networks - Spring 2005

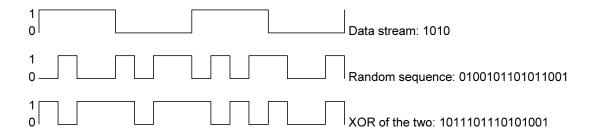
Outline

- Error detection/correction
- · Reliable transmission
- Multiple access techniques
 - Ethernet
 - Token ring and FDDI
 - Wireless
- Extended LANs

Wireless LANs

- (Original) Wireless LAN standard: IEEE 802.11
 - limited geographical coverage
 - defines MAC protocol suitable for wireless environment
 - additional features: real time support, power mgmt, security
- · Physical properties
 - bandwidth: 1 or 2 Mbps
 - physical media
 - 2 media based on spread spectrum radio operating in 2.4GHz frequency range
 - diffused infrared (sender and receiver do not need to have line of sight contact), distance limitation approx. 10 m
- New standards
 - IEEE 802.11a and IEEE 802.11b
 - Higher data rates: 10 Mbit/s upto 54 Mbit/s
 - New frequency range: 5 GHz

33

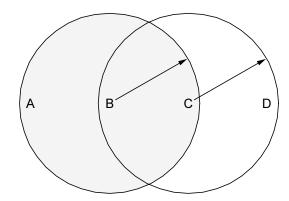

S-38.188 - Computer Networks - Spring 2005

Spread spectrum techniques (1)

- General principles
 - signal spread over wider frequency band than required
 - minimizes impact of interference from other devices
 - originally military technology, deigned to thwart jamming
 - transmission "coded" such that the signal appears as noise to an observer not knowing the "key"
 - · possible to trade off capacity and amount of noise
- Frequency hopping
 - signal transmitted over random sequence of frequencies
 - sender and receiver share...
 - · pseudorandom number generator
 - seed
 - → receiver can hop frequencies in sync
 - 802.11 uses 79 x 1MHz-wide frequency bands

Spread spectrum techniques (2)

- Direct sequence
 - for each bit, send XOR of that bit and n random bits
 - random sequence known to both sender and receiver
 - called n-bit chipping code
 - 802.11 defines an 11-bit chipping code



35

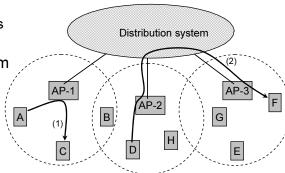
S-38.188 - Computer Networks - Spring 2005

MAC for wireless

- Idea to provide similar random access as in Ethernet, but ...
 - in wireless environment not all nodes are always within reach of each other
- Problem 1: hidden nodes
 - Assume node A and C want to transmit to B
 - A and C are unaware of each other
 - transmissions collide at B, but
 A and C do not know about that
- Problem 2: exposed nodes
 - suppose B is sending to A
 - C hears this
 - however, C can still transmit to D

Wireless MAC addresses the problems by collision avoidance strategy

MACAW

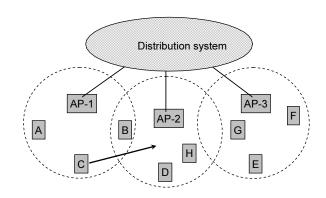

- MACAW (MACA for Wireless LANs)
 - MACA = Multiple Access with Collision Avoidance
 - idea: nodes ask for permission to send
- MACAW operation:
 - sender transmits RequestToSend (RTS) frame
 - receiver replies with ClearToSend (CTS) frame
 - neighbors...
 - that see CTS: keep quiet (they are too close to sender)
 - that see RTS but not CTS: ok to transmit
 - receiver sends ACK when it has received the frame
 - neighbors silent until see ACK
 - Collisions (= multiple RTS frames sent at the same time)
 - · no collision detection
 - known when senders do not receive CTS
 - · exponential backoff

37

S-38.188 - Computer Networks - Spring 2005

Supporting mobility: Access Points (AP)

- · Each AP serves hosts within a cell
 - cf. base stations in cellular systems
- APs connected to distribution system
 - 802.11 does not specify what (can be e.g. Ethernet)



- Each mobile node associates with an AP
 - hierarchical network
 - process of making associations called scanning
- Routing
 - within a cell transmissions through AP (1)
 - transmitting to a node in neighboring AP done via distribution network (2)

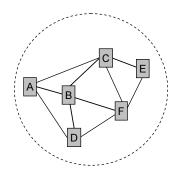
38

Associating with an Access Point

- Active scanning
 - node C sends Probe frame
 - all APs within reach reply with ProbeResponse
 - at some point node C selects AP-2 and sends a new AssociationRequest
 - AP-2 replies with AssociationResponse and notifies AP-1 that host C has moved

- Passive scanning
 - APs periodically send Beacon frames
 - host can decide to join at will by replying with AssociationRequest

39


S-38.188 - Computer Networks - Spring 2005

Supporting mobility: ad hoc networks

- Ad hoc network
 - IEEE 802.11 stations can dynamically form a network without APs
 - each host acts as a "switch" that relays packets based on information about neighboring host location
 - mesh type network topology
 - ad hoc routing a very active research field

- laptop meetings in a conference
- interconnection of personal devices (e.g. in a house)
- battlefield
- IETF MANET (Mobile Ad hoc Networks) working group

802.11 frame format

8	8	48	48	48	16	48	32
Control	Duration	Addr1	Addr2	Addr3	SeqCtrl	Addr4	Body CRC

- Control field
 - indicates if frame is a data frame; an RTS or CTS frame; or is used by the scanning algorithm
 - ToDS and FromDS bits (used with 4 address fields)
- 4 address fields
 - if sender and receiver in same cell
 - ToDS = FromDS = 0
 - Addr1 = target, Addr2 = source
 - if sender and receiver in different cells
 - ToDS = FromDS = 1
 - Addr1 = target, Addr4 = source
 - Addr2 = AP that sent frame to target
 - Addr3 = AP that received frame from source

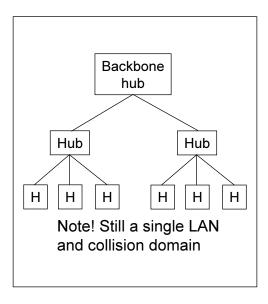
41

S-38.188 - Computer Networks - Spring 2005

Outline

- Error detection/correction
- Reliable transmission
- Multiple access techniques
 - Ethernet
 - Token ring and FDDI
 - Wireless
- Extended LANs

Extending LANs


- A single LAN
 - all stations on the LAN share bandwidth
 - limited geographical coverage (Ethernet 2500 m)
 - = single collision domain
 - nof stations limited
- Techniques to extend LANs beoynd a single collision domain
 - hubs
 - bridges
 - Ethernet switches

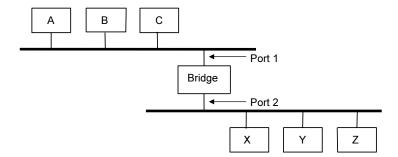
43

S-38.188 - Computer Networks - Spring 2005

Hubs

- Layer 1 device
 - repeats received bits on one interface to all other interfaces (repeaters)
- Hubs can be arranged in hierarchy
 - provides star topology
- Each connected LAN referred to as LAN segment
- · Hubs do not isolate collision domains
 - collisions may happen with any node on any segment

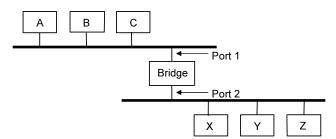
Hubs: advantages and limitations


- Hub advantages:
 - simple, inexpensive device
 - hierarchy provides graceful degradation: portions of the LAN continue to operate if one hub malfunctions
 - extends maximum distance between node pairs (100m per Hub)
- Hub limitations:
 - single collision domain results in no increase in max throughput
 - multi-tier throughput same as single segment throughput
 - individual LAN restrictions pose limits on number of nodes in same collision domain and on total allowed geographical coverage
 - cannot connect different Ethernet types (e.g., 10BaseT and 100baseT)

45

S-38.188 - Computer Networks - Spring 2005

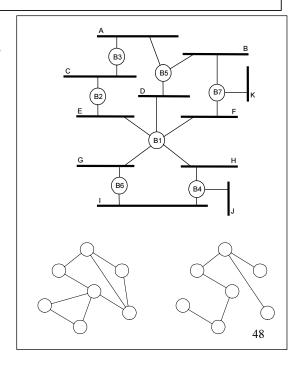
Simple bridges


- Connect two or more LANs with a bridge
- Simple bridge
 - all packets from a particular port forwarded on all other ports
 - level 2 forwarding/switching (does not add packet header)
 - isolates collision domains
 - Ethernet bridge uses CSMA/CD to transmit packets onto connected LANs

46

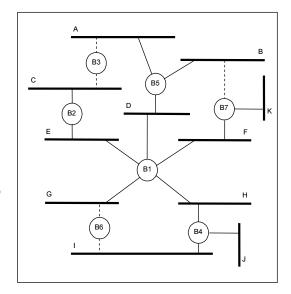
Learning bridges

- Idea: forward only when necessary
 - bridges maintain forwarding tables
 - datagram switching on layer 2
- Dynamic algorithm
 - bridge examines source address of each packet seen on a port
 - addresses saved in a table
 - table entries have time outs (if host moves from one segment to another)
 - broadcast frames always forwarded
- Table is an optimization; need not be complete


Host	Port
Α	1
В	1
С	1
Х	2
Y	2
Z	2

47

S-38.188 - Computer Networks - Spring 2005

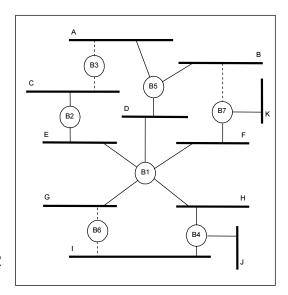

Spanning tree algorithm

- · Problem: loops in topology
 - loops used to provide redundancy in case of link failure
- Bridges run a distributed spanning tree algorithm
 - selects which bridges actively forward traffic
 - subset of network graph representing a tree that spans all nodes
 - dynamic algorithm: tree reconfigures when topology changes
 - developed by Radia Perlman
 - now IEEE 802.1 specification

Algorithm overview

- Bridges have unique ids (B1, B2, etc.)
- Bridge with smallest id is root
 - root forwards all traffic onto all ports
- Select designated bridge on each LAN
 - LAN may be connected to many bridges
 - bridge "closest" (=min nof hops) to root selected as designated bridge
 - id used to break ties
- Each bridge forwards frames over each LAN for which it is the designated bridge
- Dynamic (survives link failures), but not able to utilize multiple paths during congestion

49

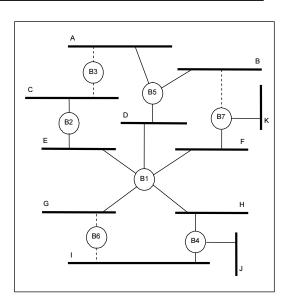

S-38.188 - Computer Networks - Spring 2005

Algorithm details

- Bridges exchange configuration messages containing
 - id for bridge sending the message
 - id for what the sending bridge believes to be root bridge
 - distance (hops) from sending bridge to root bridge
- Each bridge records current best configuration message for each port
 - identifies root with smaller id
 - identifies root with same id but with shorter distance
 - root id and distance are same but sending bridge has smaller id
- · Initially, each bridge believes it is the root
- When learn not root, stop generating config messages
 - in steady state, only root generates configuration messages
- When learn not designated bridge, stop forwarding config messages
 - in steady state, only designated bridges forward config messages
- Root continues to periodically send config messages
 - If any bridge does not receive config message after a period of time, it starts generating config messages claiming to be the root

Algorithm example

- (Y, d, X): Message from X, at distance d from root Y
- Consider node B3:
- 1 B3 receives (B2, 0, B2)
- 2 2 < 3, B3 accepts B2 as root
- 3 B3 increments d and sends (B2, 1, B3) towards B5
- 4 B2 accepts B1 as root (lower id) and sends (B1, 1, B2) towards B3
- 5 B5 accepts B1 as root and sends (B1, 1, B5) towards B3
- 6 B3 accepts B1 as root, notes that B2 and B5 are closer to root ⇒ stop



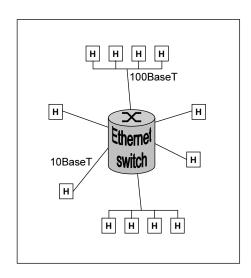
51

S-38.188 - Computer Networks - Spring 2005

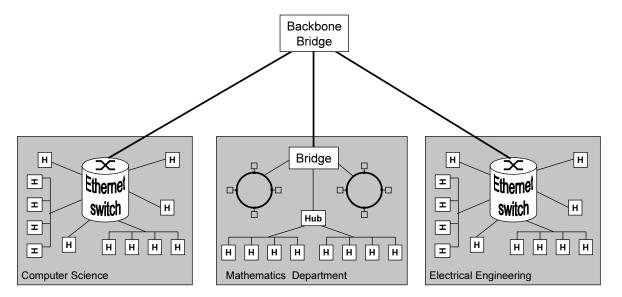
Broadcast and Multicast

- Forward all broadcast/multicast frames
 - current practice
- Possible optimization for multicast:
 - learn when no group members downstream (similarly as in learning bridges)
 - typically group members are not sending any traffic
 - accomplished by having each member of group G send a frame to bridge multicast address with G in source field
 - not widely deployed

Bridges: advantages and limitations


- Advantages:
 - isolates collision domains (higher throughput than when using hubs)
 - can connect multiple LAN types (different Ethernets, Token Rings)
 - transparent: no need for any changes in end hosts
 - used to build network of "tens" of LAN segments within e.g. a campus area
- Limitations:
 - scalability:
 - · spanning tree algorithm does not scale
 - broadcast does not scale (VLANs can be used to alleviate)
 - heterogeneity: not all network technologies use 48 bit addresses
- Caution: beware of transparency
 - in an extended LAN, there may be congestion, larger delays, ...
 - end host applications should not assume that all is behind a single LAN

53


S-38.188 - Computer Networks - Spring 2005

Ethernet switches

- Layer 2 forwarding and filtering using LAN addresses
- Uses switching (frames can be sent in parallel between multiple ports)
- Can accommodate large number of interfaces
 - mix of 10/100/1000 Mbit Ethernets
 - shared (multiple hosts) or dedicated (single host) Ethernets
- Common configuration
 - star topology: hosts connected to switch
 - Ethernet, but no collisions!

Building a campus area network

55