Need

- Network addresses are numbers
- Addresses are topologically oriented
 - Used for routing purposes
 - Moving a host may require change of address
- Are not easy to remember
- Names can be used for users and for applications
 - Easy for humans
 - Can be used as a low level service discovery mechanism
 - Changing the server machine requires just changing the name->IP binding
- Names can have a logical structure

Some history

- In the beginning, there was the hosts file
 - A file containing the names and addresses of all hosts in the network
 - Problematic: maintainability, size
 - Still used as a backup (local network host information)
- DNS/116 Name service
 - Non scalable, topology-oriented
- DNS
 - Tree-structured
 - Delegation
 - Separated from network structure and topology
 - Uses UDP, port number 53 for queries, TCP for zone transfers
DNS system

- **Terms:**
 - **name server** = set of possible names, flat or hierarchical
 - naming system maintains a collection of bindings of names to values
 - given a name, a resolution mechanism returns the corresponding value
 - a name server is an implementation of the resolution mechanism
 - DNS (Domain Name System) = name service in Internet
 - Zone is an administrative unit, domain is a subtree

DNS domain hierarchy

- **First level hierarchy**
 - Top level domains (common domain names + country codes)
 - DNS first level managed by Internet Corporation for Assigned Names and Numbers (ICANN), also manages address allocations

- **Hierarchy is partitioned into subdomains, zones**
 - Zone corresponds to administrative boundaries in DNS and often also DNS servers.

Name structure

1. Root
 - Hosts, e.g., org, inc, ltd
2. Top level domains (common domain names + country codes)
3. Organisation type domain name
 - in some countries, e.g., uk
4. Organisation
 - Registration (but, ltd)
 - Registered trademark
5. Organisation subdomain
6. Host name

Fully Qualified Domain Name (FQDN)

- Host subdomain (org type, ltd)
- Hostname + domain name = .
- Read from right to left
- A host can be addressed by
 - FQDN
 - Hostname + partial domain names
- E.g.
 - www.netlab.twc55 (FQDN)
 - www.netlab.twc55/host + partial domain name (subject to supplement)
 - www.netlab
Getting a domain name

- **TLD**: ICANN delegated name registrars
- **Country level**: local administrations.
- **Finland**:
 - Ficora (Viestintävirasto)
 - Companies, registered associations
 - For public institutions, their name or administration
 - Must not violate registered trademarks.

Elements

- **RESOLVER**
 - A library within the operating system, provides an API and handles queries
 - Contains a cache
- **PRIMARY NAME SERVER**
 - One per domain. Contains the binding information for all hosts
- **SECONDARY NAME SERVER**
 - Duplicates the information of primary servers, used for distributing load and for redundancy.
- **CACHE NAME SERVER**
 - Contains cache, but no binding info. Queries other DNS servers
- **PROXY NAME SERVER**
 - An cache NS but without cache (For load balancing etc.)

Bind (1)

- Zones defined in two or more name servers (Redundancy)
 - Clients send queries to name servers
 - Servers respond with final answer or pointer to another server
- Name binding database consists of resource records
 - format: (Name, Value, Type, Class, TTL)
 - Type: how Value is interpreted.
 - A means that Value is an IP address, name-address mapping
 - AAAA: All IPv6 address
 - NS: Value contains name to host that knows how to resolve the name
 - CNAME: Value is a canonical name for host, used to define aliases
 - DKIM: Subdomain redirecting
 - mail-to information
 - MX: Value gives the domain name for a host running a mail server
 - PTR: Pointer to domain name Reverse DNS

Bind (2)

- **RP**: Responsible person
- **LOC**: Owner of the host
- **TXT**: Detailed
- **SIG, TSIG, DKIM CERT**: security attributes
- **Class**: only widely used class IN (Internet)
- **TTL**: Time how resource record is valid (used by servers that cache resource results from other servers)
- can use service-specific aliases (www, smtp, mdm, print, etc.)
- MX allows administrators to redirect all mail of a host to a specified mail server
Example

```
Resolution: 130.233.154.176
Resolution: keskus
WWW: keskus
SMTP: keskus
ctkit.hut.fi IN SOA keskus.ctkit.hut.fi. (100000800; serial number 10800; Refresh 3 hours 3600; Retry 1 hour 604800; Expires 1 week 86400) ; TTL 1 day
IN NS keskus.ctkit.hut.fi.; primary name server
IN NS ns1.hut.fi.; first secondary
IN NS ns2.hut.fi.; second secondary
IN MX 10 keskus; primary mail server
IN MX 20 smtp-1.hut.fi.; backup
IN MX 20 smtp-2.hut.fi.; second backup
keskus IN A 130.233.154.176
```

DNS domain hierarchy (cont)

- Root name server: NS record for each 2nd level server + A record that translates name into IP address
 - example.edu, alt-princeton.edu, NS, BNS-1, BNS-2, BNS-3, BNS-4
 - example.edu, alt-princeton.edu, A, BNS-1, BNS-2, BNS-3, BNS-4

- At 2nd level, records contain either final answers or pointer to 3rd level name servers
 - example.edu, alt-princeton.edu, NS, BNS-1, BNS-2, BNS-3, BNS-4
 - example.edu, alt-princeton.edu, A, BNS-1, BNS-2, BNS-3, BNS-4

- Lowest level contains final records, aliases for hosts (CNAME) and MX records

Name resolution

- How did the client locate the root server in the first place?
 - name-to-address mapping for one or more name servers is well known (published outside the naming system itself)
 - in practice, resolver initialized with the address of a local name server
 - client makes a query to local server -> local server makes queries further
 - advantages
 - only the servers need to know about root name servers
 - local server gets to see the responses (can cache them)
 - on a busy naming DNS (in Unix), try "dig" "nslookup", or "host <hostname>"

- Note: Internet has identifiers at several levels - domain names, IP addresses, and physical network addresses
 - users give domain names in applications - applications use DNS to translate these into IP addresses - IP does forwarding at each router, so it maps IP addresses into another (next hop route) - IP engages AIP to translate the next hop IP address into a physical address
Reverse DNS
- Finding the name when knowing the address
- A different hierarchy: in-high sites
- E.g., What is the hostname of 130.233.154.148?
 - Query 148.154.233.100 to valid site
- A separate hierarchy, organized as the address space
- Used for “security purposes”
 - A server might ask if the client name and address match

DNS as a Service
- Requires high reliability
- No single failure should affect → servers located in different parts of the network
 - E.g.: Hydra, Heliski, fi.
 - hi-service.net
 - griffluence.fi
 - netfin-global.anchors.fi
 - tina.actor.fi
 - hi-us.net
- Difficult to organize → Secondary DNS is an easy and important service to provide

Future
- Security still weak
- Using DNS as a directory structure (?)
 - Service Location
 - Generalization of MX records
- Mapping Telephone numbers to IP addresses?
 - Problems of policy (secret numbers, value)
- Character set