
1188lecture7.ppt © Pasi Lassila

Congestion Control

S-38.188 - Computer Networks - Spring 2004

2

Destination
1.5-Mbps T1 link

Router

Source

2

Source

1

100
-Mb

ps
FDD

I

10-Mbps Ethernet

Resource allocation and congestion control problem

• Problem 1: Resource allocation

– How to effectively and fairly allocate resources among competing users?

– resources = bandwidth of links + buffers on the routers

• Problem 2: Congestion

– How to react when queues overflow and packets have to be dropped?

• Allocation vs. congestion control: two sides of the same coin

– can pre-allocate resources to avoid congestion

– can control congestion if (and when) it occurs

S-38.188 - Computer Networks - Spring 2004

3

Where to implement?

• Network initiated resource allocation

– proactive approach

– may be difficult (resources distributed throughout the network, need to

schedule multiple links connecting a series of routers)

• Easier approach

– let packet sources send as much data as they want, and recover from

congestion when it happens

– reactive approach

• Solution in the middle: two points of implementation

– hosts at the edges of the network (transport protocol)

– routers inside the network (queuing discipline)

S-38.188 - Computer Networks - Spring 2004

4

Outline

• Congestion control and resource allocation

• Queuing disciplines

• TCP congestion control algorithm

• Congestion avoidance at routers and hosts

S-38.188 - Computer Networks - Spring 2004

5

Resource allocation

• Resource allocation and congestion control are active areas of

research

– not isolated to one level of protocol hierarchy

– implemented partially in routers inside the network (queuing mechanisms),

partially in transport protocols (TCP, etc.)

• Terminology:

– resource allocation = network elements try to meet the competing demands

for link bandwidth and buffer space (main network resources)

– congestion control = efforts made by network nodes to prevent or respond

to overload conditions, keeping senders from sending too much data into a

network

– fairness = try to share the pain among all users, rather than causing great

pain to a few

– flow control = keeping a fast sender from overrunning a slow receiver

S-38.188 - Computer Networks - Spring 2004

6

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

Framework

• Network model

– packet switched network

– bottle neck link(s) exist and traffic needs control

• Underlying service model

– best-effort (assume for now)

– multiple qualities of service, Differentiated Services (later)

• Connectionless flows

– sequence of packets sent between source/destination pair

– maintain soft state at the routers

– flow either implicitly or explicitly established

S-38.188 - Computer Networks - Spring 2004

7

Framework (cont.)

• Taxonomy:

– router-centric versus host-centric, addressing the problem

• inside the network (routers)

– router decides when packets are forwarded and selects dropped
packets (drop policy)

• on the edges of the network (hosts)

– hosts observe network conditions and behave accordingly

– reservation-based versus feedback-based

• hosts ask reservations, routers allocate enough resources

• no reservations, end hosts adjust sending rates based on feedback

– window-based versus rate-based

• Above not mutually exclusive characterizations, for example:

– current Internet offers best-effort service ⇒ feedback based ⇒ primarily
host based, window based

– NextGen Internet offers QoS ⇒ combination of reservation and feedback
based ⇒ combination of host and router centric

S-38.188 - Computer Networks - Spring 2004

8
Optimal
load

Load

T
h
ro
u
g
h
p
u
t/
d
e
la
y

Evaluation

• Common criteria

– fairness, effectiveness

• Common definition for effectiveness

– Power: ratio of throughput to mean delay

– balances throughput, T, and mean delay, E[D]

– In an M/M/1 queue, E[D] = 1 / (µ - λ) and T = λ / µ ⇒ Power = λ – λ2 / µ

– an optimum load can be determined for Power-curve

S-38.188 - Computer Networks - Spring 2004

9

Fairness

• Fairness is another important issue

– no universal (mathematical) definition for fairness

– depends on how many relevant dependencies are included in the model

• All being equal aspect (in best effort networks)

– everybody gets equal service

– all resources available to everybody

– each is expected to respect others and behave accordingly

– when a new connection is added, everybody gets a little bit worse service

• Economical aspect (in QoS enabled networks)

– you should get what you pay for

– old flows should not experience harm if a new flow is accepted

S-38.188 - Computer Networks - Spring 2004

10

Outline

• Congestion control and resource allocation

• Queuing disciplines

• TCP congestion control algorithm

• Congestion avoidance at routers and hosts

S-38.188 - Computer Networks - Spring 2004

11

Queuing Discipline

• Choice of queuing discipline affects:

– allocation of bandwidth (which packets get transmitted) and allocation of
buffer space (which packets get discarded)

• Two mechanisms:

– scheduling (order in which packets are transmitted)

– drop policy (which packets are dropped)

• First-In-First-Out (FIFO)

– does not discriminate between traffic sources

– FIFO with tail-drop ⇒ congestion control and resource allocation pushed
out to the edges of the network (current Internet)

– problems: no protection btw. traffic flows and ill-behaved source can take all
capacity

• Priority queuing

– problem: high priority queue can starve all other queues

– high priority traffic must be regulated (e.g., by pricing)

– used to protect most important packets (e.g., routing updates after topology
change)

S-38.188 - Computer Networks - Spring 2004

12

• Problem with FIFO: traffic flows interfere with each other

• FQ: separate queue for each active flow, served in round-robin manner

– segregates traffic

– no flow captures more than

its fair share of capacity

– operates together with end-to-end

congestion control (i.e., per flow)

– complication: packets of different

length ⇒ need bit-by-bit round-robin

– work conserving: server never

idle as long as there are packets

• FQ extensions

– FQ for “traffic classes” (Diff Serv)

– non-equal sharing: weighted fair queuing (WFQ)

Flow 1

Flow 2

Flow 3

Flow 4

Round-robin

service

Fair Queuing (FQ) overview

S-38.188 - Computer Networks - Spring 2004

13

FQ algorithm

• Suppose clock ticks each time a bit is transmitted

• Definitions

– let P(i) denote the length of packet i

– let S(i) denote the time when start to transmit packet i

– let F(i) denote the time when finish transmitting packet i

⇒ F(i) = S(i) + P(i)

• When does router start transmitting packet i?

– if before router finished packet i - 1 from this flow, then immediately after

last bit of i - 1

– if no current packets for this flow, then start transmitting when arrives (call

this A(i))

⇒ F(i) = MAX (F(i - 1), A(i)) + P(i)

S-38.188 - Computer Networks - Spring 2004

14

Flow 1 Flow 2

(a) (b)

Output Output

F = 8 F = 10

F = 5

F = 10

F = 2

Flow 1

(arriving)

Flow 2

(transmitting)

FQ algorithm (cont.)

• For multiple flows

– calculate F(i) for each packet that arrives on each flow

– treat all F(i)’s as timestamps

– next packet to transmit is one with lowest timestamp

• Not perfect: can’t preempt current packet

• Example

S-38.188 - Computer Networks - Spring 2004

15

Outline

• Congestion control and resource allocation

• Queuing disciplines

• TCP congestion control algorithm

• Congestion avoidance at routers and hosts

S-38.188 - Computer Networks - Spring 2004

16

TCP Congestion Control

• Introduced in late 1980s after series of congestion collapses:
– sources sending packets as fast as advertised window allows ⇒ packet

drops ⇒ retransmissions ⇒ even worse congestion

– packets = TCP segments

• Idea

– assumes best-effort network (FIFO or FQ routers) where each source
determines network capacity for itself

– send packets without reservation and react to observable events

– uses implicit feedback (oberserves lost packets)

– self clocking

• TCP does not calculate time to send next packet (not rate based)

• instead, arrival stream of ACKs pace transmission (for each received
ACK, new packet can be sent)

• Challenge

– determining the available capacity in the first place

– adjusting to changes in the currently available capacity

– TCP uses only info about packet drops for feedback

S-38.188 - Computer Networks - Spring 2004

17

Additive Increase/Multiplicative Decrease

• Objective: adjust to changes in the available capacity

• New state variable per connection: CongestionWindow

– limits how much data source has in transit

– TCP source sending no faster than the slowest component (network or

destination host) can tolerate

MaxWin = MIN(CongestionWindow, AdvertisedWindow)

EffWin = MaxWin - (LastByteSent - LastByteAcked)

• Idea:

– increase CongestionWindow when congestion goes down

– decrease CongestionWindow when congestion goes up

S-38.188 - Computer Networks - Spring 2004

18

AIMD (cont)

• Question: how does the source determine whether or not the network is
congested?

• Answer: a timeout occurs

– timeout signals that a packet was lost

– packets are seldom lost due to transmission error

– lost packet implies congestion

– recall how timeout was determined adaptively (measuring RTT)

• AIMD algorithm principle

– increment CongestionWindow by one packet per RTT (linear increase)

– divide CongestionWindow by 2 whenever a timeout occurs (multiplicative
decrease)

• AIMD properties

– stability: too large a window much worse than too small

– for stability, important to approach congestion conservatively and back off
aggressively

S-38.188 - Computer Networks - Spring 2004

19

• AIMD in practice:

– increment window “a little” for each ACK

– per packet interpretation:

• w denotes window size in packets

• increment by 1/w ⇒ increment by 1 for w packets

• transmitting w packets takes (roughly) one RTT

– however, TCP counts window in bytes (not packets)

Increment = (MSS * MSS)/CongestionWindow

CongestionWindow += Increment

– for each loss

CongestionWindow = CongestionWindow/2

Source Destination

…

AIMD (cont)

S-38.188 - Computer Networks - Spring 2004

20

AIMD (cont)

• Trace:
– window size vs. time

– sawtooth behavior

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30

40

50

10

10.0

S-38.188 - Computer Networks - Spring 2004

21

Source Destination

…

Slow Start

• Objective

– determine the available capacity at the beginning

• Idea

– begin with CongestionWindow = 1 packet

– double CongestionWindow each RTT (increment by 1

packet for each ACK)

– trying to space packets out to avoid bursts

– congestion window increases exponentially (still nicer

than sending all at once as a burst)

• Used in 2 situations

– at the beginning of connection

– when connection goes dead while waiting for a timeout

• if no packets in transit, no ACKs to “clock”

transmission of new packets

S-38.188 - Computer Networks - Spring 2004

22

• Switching from slow start to AIMD

– when transmission goes dead, TCP knows current value of
CongestionWindow (= value prior to loss / 2)

– use that as a “target” window size (= CongestionThreshold)

– use slow start up to this value, then use additive increase (AIMD)

• Trace

• Problem:

– during initial slow start may lose up to half a CongestionWindow’s
worth of data

Slow Start and AIMD

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30

40

50

10

timeoutpacket

loss

S-38.188 - Computer Networks - Spring 2004

23

Fast Retransmit and Fast Recovery

• Problem:

– coarse-grain TCP timeouts lead to idle

periods

– solutions: fast retransmit and fast recovery

• Fast retransmit: use duplicate ACKs to

trigger retransmission

– usually 3 duplicate ACKS

– about 20% improvement in throughput

• Fast recovery: possible to use ACKs that

are still in pipe to clock sending

– removes some slow start phases

– halves congestion window and resumes

additive increase

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit

packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

S-38.188 - Computer Networks - Spring 2004

24

• Trace of TCP with fast retransmit

• TCP with fast recovery

– under ideal conditions, AIMD type saw tooth without slow starts (except initial slow start)

• TCP variants

– TCP Tahoe

• original TCP by Van Jacobson

• had basic TCP algorithms, AIMD, Slow Start, Fast Retransmit

– TCP Reno

• addition of Fast Recovery

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30

40

50

10

Improved TCP behavior and TCP variants

S-38.188 - Computer Networks - Spring 2004

25

About TCP performance

• Window size and sending rate

– window size = w (in packets, upper bound on number of unacked packets)

– during one RTT at most w packets can be sent

– thus, sending rate ~ w/RTT

• TCP throughput influenced by packet loss and RTT, but how?

• Floyd’s simple deterministic model

– window grows linearly from w/2 to w and after reaching w, packet is lost

packets sent / lost packet

pRTTRTT

w
rate

w
p

ww
ww

⋅

⋅==⇒=⇒

≈++++⇒

1

3

8

3

8

8

3
)1

2
(

2

2

2
L

S-38.188 - Computer Networks - Spring 2004

26

TCP friendly congestion control

• TCP is the most important transport protocol

• TCP friendly: a protocol that behaves like TCP

– backs off if congestion and uses a fair share of resources

– protocol that obeys TCP long term throughput relation, T ~ k / (RTT * √p)

• Internet requirement: new transport protocols must be TCP friendly

– applies also to application layer protocols transmitting over UDP, e.g., real
time telephony or streaming applications

– rate control implemented on top of UDP as part of application

• Non-TCP friendly: a protocol that

– takes more than its fair share of bandwidth (greedy)

– may cause fluctuations in network load and result in congestion collapse

• How to protect your protocol against non-TCP friendly greedy
protocols?

S-38.188 - Computer Networks - Spring 2004

27

Outline

• Congestion control and resource allocation

• Queuing disciplines

• TCP congestion control algorithm

• Congestion avoidance at routers and hosts

S-38.188 - Computer Networks - Spring 2004

28

Congestion Avoidance

• TCP’s strategy

– control congestion once it happens

– repeatedly increase load in an effort to find the point at which congestion

occurs, and then back off

– needs to create losses to find out network resources

• Alternative strategy

– predict when congestion is about to happen

– reduce rate before packets start being discarded

– call this congestion avoidance, instead of congestion control

• Two possibilities

– router-centric: DECbit and RED Gateways

– host-centric: TCP Vegas

S-38.188 - Computer Networks - Spring 2004

29

• Add binary congestion bit to each packet header

• Router

– monitors average queue length over last busy + idle cycle + current cycle

– set congestion bit if average queue length > 1

– attempts to balance throughout against delay

Queue length

Current
time

Time
Current
cycle

Previous
cycle

Averaging
interval

DECbit

S-38.188 - Computer Networks - Spring 2004

30

End host actions

• Operates with TCP sources

• Destination echoes bit back to source

• Source records how many packets resulted in setting the bit

• If less than 50% of last window’s worth had bit set

– increase CongestionWindow by 1 packet

• If 50% or more of last window’s worth had bit set

– decrease CongestionWindow by 0.875 times

S-38.188 - Computer Networks - Spring 2004

31

Random Early Detection (RED)

• Notification is implicit

– just drop the packet (TCP will timeout or see duplicate ACKs)

– could be made explicit by marking the packet

• Early random drop

– rather than wait for queue to become full, drop each arriving packet with

some drop probability whenever the queue length (load) is “too large”

– let dropping probability depend on queue length (load)

• Designed to work with TCP sources

– if congestion detected, drop packets from some (not all) TCP sources

⇒ some (not all) TCPs will back off

– note: with tail-drop TCP sources can become synchronized easily (all

sources increase and decrease windows at the same time)

S-38.188 - Computer Networks - Spring 2004

32

RED details

• Congestion indicator: averaged queue length

– low-pass filter, allows transient bursts in the buffer

– permanent congestion leads to increased averaged queue length

• Computation of average queue length

AvgLen = (1 - Weight) * AvgLen + Weight * SampleLen

• 0 < Weight < 1 (usually 0.002)

• SampleLen is queue length each

time a packet arrives

Queue length

Instantaneous

Average

Time

S-38.188 - Computer Networks - Spring 2004

33

RED Details (cont)

• Two queue length thresholds

– if AvgLen ≤ MinThreshold then enqueue (accept) the packet

– if MinThreshold < AvgLen < MaxThreshold then

• calculate probability P

• drop arriving packet with probability P

– if AvgLen ≥ MaxThreshold then drop arriving packet

MaxThreshold MinThreshold

AvgLen

S-38.188 - Computer Networks - Spring 2004

34

TempP

1.0

MaxP

MinThresh MaxThresh

AvgLen

RED Details (cont)

• Computing probability P

TempP = MaxP * (AvgLen - MinThreshold) / (MaxThreshold - MinThreshold)

P = TempP / (1 - count * TempP)

– count: time in packets since previous drop, used to space drops more evenly

• Drop probability curve:

S-38.188 - Computer Networks - Spring 2004

35

Tuning RED and problems with RED

• Tuning RED appears to be difficult, topic of current research

– probability of dropping a particular flow’s packet(s) is roughly proportional to

the share of the bandwidth that flow is currently getting

– MaxP is typically set to 0.02, meaning that when the average queue size is

halfway between the two thresholds, the gateway drops roughly one out of

50 packets.

– If traffic is bursty, then MinThreshold should be sufficiently large to allow link

utilization to be maintained at an acceptably high level

– Difference between two thresholds should be larger than the typical

increase in the calculated average queue length in one RTT; setting

MaxThreshold = 2 x MinThreshold is reasonable for traffic on today’s

Internet

• Problems with RED

– tuning is problematic (may even cause oscillations)

– more importantly, RED does not isolate ill-behaving flows (e.g., UDP flows)

– has many variants (SRED, RED+, gentle RED, FRED, etc.)

S-38.188 - Computer Networks - Spring 2004

36

TCP Vegas

• Detecting incipient congestion at end hosts

– DECbit and RED router based mechanisms

– could rising congestion be detected at end hosts (at transport layer)?

• Legacy TCP variants

– TCP Tahoe

– TCP Reno

– only react when congestion has already occurred

• TCP Vegas

– latest TCP variant

– additional features in congestion control

– idea: source watches for some sign that router’s queue is building up and
congestion will soon happen

• RTT grows

• sending rate flattens

– calculates the difference between the expected and the actual sending rates

S-38.188 - Computer Networks - Spring 2004

37

60

20

0.5 1.0 1.5 4.0 4.5 6.5 8.0

K
B

Time (seconds)

Time (seconds)

70

30
40
50

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

900

300

100

0.5 1.0 1.5 4.0 4.5 6.5 8.0

S
e
n
d
in
g
 K
B
p
s 1100

500

700

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Time (seconds)
0.5 1.0 1.5 4.0 4.5 6.5 8.0Q

u
e
u
e
 s
iz
e
 i
n
 r
o
u
te
r

5

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Key observation for TCP Vegas

Observation:

Between 4.5 and 6 s con-

gestion window increases

but throughput stays flat

⇒ Throughput can not increase

beyond available bandwidth

⇒ Any increase in window size

would just increase queues

in the bottleneck router

S-38.188 - Computer Networks - Spring 2004

38

TCP Vegas algorithm

• BaseRTT = minimum of all measured RTTs (usually RTT of first packet)

• If not overflowing the connection, then

ExpectRate = CongestionWindow/BaseRTT

• Source calculates sending rate (ActualRate) once per RTT

Diff = ExpectedRate – ActualRate

• Source compares ActualRate with ExpectRate

if Diff < a,

increase CongestionWindow linearly

else if Diff > b,

decrease CongestionWindow linearly

else,

leave CongestionWindow unchanged

end

S-38.188 - Computer Networks - Spring 2004

39

70
60
50
40
30
20
10

K
B

Time (seconds)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

C
A
M
 K
B
p
s

240

200

160

120

80

40

Time (seconds)

Algorithm (cont)

• Parameters

– a = 1 packet

– b = 3 packets

• Even faster retransmit

– keep fine-grained timestamps for each packet

– check for timeout on first duplicate ACK

– multiplicative decrease when timeout occurs, otherwise linear decrease

Expected rate

Actual rate

S-38.188 - Computer Networks - Spring 2004

40

Evaluating new congestion control mechanisms

• Research has produced a large number of alternative congestion
control methods

• Did the algorithm get a great throughput only because it was greedy
and all other sources were nice and backed off?

– What about fairness?

– Concept of TCP friendliness should help, but still leaves a lot of design
freedom…

• How to test the algorithm?

– Can’t do experiments in the Internet

– Testing on simulated networks or private testbed networks

– Challenge: come up with a topology and traffic loads that represent the real
Internet

– What real Internet??? There is no such thing - Internet is changing all the
time (keep that in mind when making new algorithms, you need robustness)

