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Congestion Control
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Resource allocation and congestion control problem

• Problem 1: Resource allocation

– How to effectively and fairly allocate resources among competing users?

– resources = bandwidth of links + buffers on the routers

• Problem 2: Congestion

– How to react when queues overflow and packets have to be dropped?

• Allocation vs. congestion control: two sides of the same coin

– can pre-allocate resources to avoid congestion

– can control congestion if (and when) it occurs
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Where to implement?

• Network initiated resource allocation

– proactive approach 

– may be difficult (resources distributed throughout the network, need to 

schedule multiple links connecting a series of routers)

• Easier approach

– let packet sources send as much data as they want, and recover from 

congestion when it happens

– reactive approach

• Solution in the middle: two points of implementation

– hosts at the edges of the network (transport protocol)

– routers inside the network (queuing discipline)
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Outline

• Congestion control and resource allocation

• Queuing disciplines

• TCP congestion control algorithm

• Congestion avoidance at routers and hosts
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Resource allocation

• Resource allocation and congestion control are active areas of 

research

– not isolated to one level of protocol hierarchy

– implemented partially in routers inside the network (queuing mechanisms),

partially in transport protocols (TCP, etc.)

• Terminology:

– resource allocation = network elements try to meet the competing demands 

for link bandwidth and buffer space (main network resources)

– congestion control = efforts made by network nodes to prevent or respond 

to overload conditions, keeping senders from sending too much data into a 

network

– fairness = try to share the pain among all users, rather than causing great 

pain to a few

– flow control = keeping a fast sender from overrunning a slow receiver
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Framework

• Network model

– packet switched network

– bottle neck link(s) exist and traffic needs control

• Underlying service model

– best-effort (assume for now)

– multiple qualities of service, Differentiated Services (later)

• Connectionless flows

– sequence of packets sent between source/destination pair

– maintain soft state at the routers

– flow either implicitly or explicitly established



S-38.188 - Computer Networks - Spring 2004

7

Framework (cont.)

• Taxonomy:

– router-centric versus host-centric, addressing the problem

• inside the network (routers)

– router decides when packets are forwarded and selects dropped 
packets (drop policy)

• on the edges of the network (hosts)

– hosts observe network conditions and behave accordingly

– reservation-based versus feedback-based

• hosts ask reservations, routers allocate enough resources

• no reservations, end hosts adjust sending rates based on feedback

– window-based versus rate-based

• Above not mutually exclusive characterizations, for example:

– current Internet offers best-effort service ⇒ feedback based ⇒ primarily 
host based, window based

– NextGen Internet offers QoS ⇒ combination of reservation and feedback 
based ⇒ combination of host and router centric

S-38.188 - Computer Networks - Spring 2004

8
Optimal
load

Load

T
h
ro
u
g
h
p
u
t/
d
e
la
y

Evaluation

• Common criteria

– fairness, effectiveness

• Common definition for effectiveness

– Power: ratio of throughput to mean delay

– balances throughput, T, and mean delay, E[D]

– In an M/M/1 queue, E[D] = 1 / (µ - λ) and T = λ / µ ⇒ Power = λ – λ2 / µ

– an optimum load can be determined for Power-curve
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Fairness

• Fairness is another important issue

– no universal (mathematical) definition for fairness

– depends on how many relevant dependencies are included in the model

• All being equal aspect (in best effort networks)

– everybody gets equal service

– all resources available to everybody

– each is expected to respect others and behave accordingly

– when a new connection is added, everybody gets a little bit worse service

• Economical aspect (in QoS enabled networks)

– you should get what you pay for

– old flows should not experience harm if a new flow is accepted
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Outline

• Congestion control and resource allocation

• Queuing disciplines

• TCP congestion control algorithm

• Congestion avoidance at routers and hosts



S-38.188 - Computer Networks - Spring 2004

11

Queuing Discipline

• Choice of queuing discipline affects:

– allocation of bandwidth (which packets get transmitted) and allocation of 
buffer space (which packets get discarded)

• Two mechanisms:

– scheduling (order in which packets are transmitted) 

– drop policy (which packets are dropped)

• First-In-First-Out (FIFO)

– does not discriminate between traffic sources

– FIFO with tail-drop ⇒ congestion control and resource allocation pushed 
out to the edges of the network (current Internet)

– problems: no protection btw. traffic flows and ill-behaved source can take all
capacity

• Priority queuing

– problem: high priority queue can starve all other queues

– high priority traffic must be regulated (e.g., by pricing)

– used to protect most important packets (e.g., routing  updates after topology 
change)
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• Problem with FIFO: traffic flows interfere with each other

• FQ: separate queue for each active flow, served in round-robin manner

– segregates traffic

– no flow captures more than 

its fair share of capacity

– operates together with end-to-end 

congestion control (i.e., per flow)

– complication: packets of different 

length ⇒ need bit-by-bit round-robin

– work conserving: server never

idle as long as there are packets

• FQ extensions

– FQ for “traffic classes” (Diff Serv)

– non-equal sharing: weighted fair queuing (WFQ)

Flow 1

Flow 2

Flow 3

Flow 4

Round-robin

service

Fair Queuing (FQ) overview
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FQ algorithm

• Suppose clock ticks each time a bit is transmitted

• Definitions

– let P(i) denote the length of packet i

– let S(i) denote the time when start to transmit packet i

– let F(i) denote the time when finish transmitting packet i

⇒ F(i) = S(i) + P(i)

• When does router start transmitting packet i?

– if before router finished packet i - 1 from this flow, then immediately after 

last bit of i - 1 

– if no current packets for this flow, then start transmitting when arrives (call 

this A(i))

⇒ F(i) = MAX (F(i - 1), A(i)) + P(i)
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FQ algorithm (cont.)

• For multiple flows

– calculate F(i) for each packet that arrives on each flow

– treat all F(i)’s as timestamps

– next packet to transmit is one with lowest timestamp

• Not perfect: can’t preempt current packet

• Example
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Outline

• Congestion control and resource allocation

• Queuing disciplines

• TCP congestion control algorithm

• Congestion avoidance at routers and hosts
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TCP Congestion Control

• Introduced in late 1980s after series of congestion collapses:
– sources sending packets as fast as advertised window allows ⇒ packet 

drops ⇒ retransmissions ⇒ even worse congestion

– packets = TCP segments

• Idea

– assumes best-effort network (FIFO or FQ routers) where each source 
determines network capacity for itself

– send packets without reservation and react to observable events

– uses implicit feedback (oberserves lost packets)

– self clocking

• TCP does not calculate time to send next packet (not rate based)

• instead, arrival stream of ACKs pace transmission (for each received 
ACK, new packet can be sent)

• Challenge

– determining the available capacity in the first place

– adjusting to changes in the currently available capacity

– TCP uses only info about packet drops for feedback
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Additive Increase/Multiplicative Decrease

• Objective: adjust to changes in the available capacity

• New state variable per connection: CongestionWindow

– limits how much data source has in transit

– TCP source sending no faster than the slowest component (network or 

destination host) can tolerate

MaxWin = MIN(CongestionWindow, AdvertisedWindow)

EffWin = MaxWin - (LastByteSent - LastByteAcked)

• Idea:

– increase CongestionWindow when congestion goes down

– decrease CongestionWindow when congestion goes up
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AIMD (cont)

• Question: how does the source determine whether or not the network is 
congested?

• Answer: a timeout occurs

– timeout signals that a packet was lost

– packets are seldom lost due to transmission error

– lost packet implies congestion

– recall how timeout was determined adaptively (measuring RTT)

• AIMD algorithm principle

– increment CongestionWindow by one packet per RTT (linear increase)

– divide CongestionWindow by 2 whenever a timeout occurs (multiplicative 
decrease)

• AIMD properties

– stability: too large a window much worse than too small

– for stability, important to approach congestion conservatively and back off 
aggressively
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• AIMD in practice:

– increment window “a little” for each ACK

– per packet interpretation:

• w denotes window size in packets

• increment by 1/w ⇒ increment by 1 for w packets

• transmitting w packets takes (roughly) one RTT

– however, TCP counts window in bytes (not packets)

Increment = (MSS * MSS)/CongestionWindow

CongestionWindow += Increment 

– for each loss

CongestionWindow = CongestionWindow/2

Source Destination

…

AIMD (cont)
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AIMD (cont)

• Trace: 
– window size vs. time

– sawtooth behavior
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Source Destination

…

Slow Start

• Objective

– determine the available capacity at the beginning

• Idea

– begin with CongestionWindow = 1 packet

– double CongestionWindow each RTT (increment by 1 

packet for each ACK)

– trying to space packets out to avoid bursts

– congestion window increases exponentially (still nicer 

than sending all at once as a burst)

• Used in 2 situations

– at the beginning of connection

– when connection goes dead while waiting for a timeout

• if no packets in transit, no ACKs to “clock” 

transmission of new packets
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• Switching from slow start to AIMD

– when transmission goes dead, TCP knows current value of 
CongestionWindow (= value prior to loss / 2)

– use that as a “target” window size (= CongestionThreshold)

– use slow start up to this value, then use additive increase (AIMD)

• Trace

• Problem: 

– during initial slow start may lose up to half a CongestionWindow’s
worth of data

Slow Start and AIMD
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Fast Retransmit and Fast Recovery

• Problem: 

– coarse-grain TCP timeouts lead to idle 

periods

– solutions: fast retransmit and fast recovery

• Fast retransmit: use duplicate ACKs to 

trigger retransmission

– usually 3 duplicate ACKS

– about 20% improvement in throughput

• Fast recovery: possible to use ACKs that 

are still in pipe to clock sending

– removes some slow start phases

– halves congestion window and resumes 

additive increase

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit

packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver
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• Trace of TCP with fast retransmit

• TCP with fast recovery

– under ideal conditions, AIMD type saw tooth without slow starts (except initial slow start)

• TCP variants

– TCP Tahoe

• original TCP by Van Jacobson

• had basic TCP algorithms, AIMD, Slow Start, Fast Retransmit

– TCP Reno

• addition of Fast Recovery
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Improved TCP behavior and TCP variants
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About TCP performance

• Window size and sending rate

– window size = w (in packets, upper bound on number of unacked packets)

– during one RTT at most w packets can be sent

– thus, sending rate ~ w/RTT

• TCP throughput influenced by packet loss and RTT, but how?

• Floyd’s simple deterministic model

– window grows linearly from w/2 to w and after reaching w, packet is lost
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pRTTRTT

w
rate

w
p

ww
ww

⋅

⋅==⇒=⇒

≈++++⇒

1

3

8

3

8

8

3
)1

2
(

2

2

2
L

S-38.188 - Computer Networks - Spring 2004

26

TCP friendly congestion control 

• TCP is the most important transport protocol 

• TCP friendly: a protocol that behaves like TCP

– backs off if congestion and uses a fair share of resources

– protocol that obeys TCP long term throughput relation, T ~ k / (RTT * √p)

• Internet requirement: new transport protocols must be TCP friendly

– applies also to application layer protocols transmitting over UDP, e.g., real 
time telephony or streaming applications

– rate control implemented on top of UDP as part of application

• Non-TCP friendly: a protocol that 

– takes more than its fair share of bandwidth (greedy)

– may cause fluctuations in network load and result in congestion collapse

• How to protect your protocol against non-TCP friendly greedy 
protocols?
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Outline

• Congestion control and resource allocation

• Queuing disciplines

• TCP congestion control algorithm

• Congestion avoidance at routers and hosts
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Congestion Avoidance

• TCP’s strategy

– control congestion once it happens

– repeatedly increase load in an effort to find the point at which congestion 

occurs, and then back off

– needs to create losses to find out network resources

• Alternative strategy

– predict when congestion is about to happen

– reduce rate before packets start being discarded

– call this congestion avoidance, instead of congestion control

• Two possibilities 

– router-centric: DECbit and RED Gateways 

– host-centric: TCP Vegas 
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• Add binary congestion bit to each packet header

• Router

– monitors average queue length over last busy + idle cycle + current cycle

– set congestion bit if average queue length > 1

– attempts to balance throughout against delay

Queue length

Current
time

Time
Current
cycle

Previous
cycle

Averaging
interval

DECbit
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End host actions

• Operates with TCP sources

• Destination echoes bit back to source

• Source records how many packets resulted in setting the bit

• If less than 50% of last window’s worth had bit set 

– increase CongestionWindow by 1 packet

• If 50% or more of last window’s worth had bit set 

– decrease CongestionWindow by 0.875 times
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Random Early Detection (RED)

• Notification is implicit 

– just drop the packet (TCP will timeout or see duplicate ACKs)

– could be made explicit by marking the packet

• Early random drop

– rather than wait for queue to become full, drop each arriving packet with 

some drop probability whenever the queue length (load) is “too large”

– let dropping probability depend on queue length (load) 

• Designed to work with TCP sources

– if congestion detected, drop packets from some (not all) TCP sources 

⇒ some (not all) TCPs will back off

– note: with tail-drop TCP sources can become synchronized easily (all 

sources increase and decrease windows at the same time)
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RED details

• Congestion indicator: averaged queue length

– low-pass filter, allows transient bursts in the buffer

– permanent congestion leads to increased averaged queue length

• Computation of  average queue length

AvgLen = (1 - Weight) * AvgLen +   Weight * SampleLen

• 0 < Weight < 1 (usually 0.002)

• SampleLen is queue length each 

time a packet arrives

Queue length

Instantaneous

Average

Time
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RED Details (cont)

• Two queue length thresholds

– if AvgLen ≤ MinThreshold then enqueue (accept) the packet

– if MinThreshold < AvgLen < MaxThreshold then

• calculate probability P

• drop arriving packet with probability P

– if AvgLen ≥ MaxThreshold then drop arriving packet

MaxThreshold MinThreshold

AvgLen
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RED Details (cont)

• Computing probability P

TempP = MaxP * (AvgLen - MinThreshold) / (MaxThreshold - MinThreshold)

P = TempP / (1 - count * TempP)

– count: time in packets since previous drop, used to space drops more evenly

• Drop probability curve:
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Tuning RED and problems with RED

• Tuning RED appears to be difficult, topic of current research

– probability of dropping a particular flow’s packet(s) is roughly proportional to 

the share of the bandwidth that flow is currently getting

– MaxP is typically set to 0.02, meaning that when the average queue size is 

halfway between the two thresholds, the gateway drops roughly one out of 

50 packets.

– If traffic is bursty, then MinThreshold should be sufficiently large to allow link 

utilization to be maintained at an acceptably high level 

– Difference between two thresholds should be larger than the typical 

increase in the calculated average queue length in one RTT; setting 

MaxThreshold = 2 x MinThreshold is reasonable for traffic on today’s 

Internet

• Problems with RED

– tuning is problematic (may even cause oscillations)

– more importantly, RED does not isolate ill-behaving flows (e.g., UDP flows)

– has many variants  (SRED, RED+, gentle RED, FRED, etc.)
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TCP Vegas

• Detecting incipient congestion at end hosts

– DECbit and RED router based mechanisms

– could rising congestion be detected at end hosts (at transport layer)?

• Legacy TCP variants

– TCP Tahoe

– TCP Reno

– only react when congestion has already occurred 

• TCP Vegas

– latest TCP variant

– additional features in congestion control

– idea: source watches for some sign that router’s queue is building up and 
congestion will soon happen 

• RTT grows

• sending rate flattens

– calculates the difference between the expected and the actual sending rates
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Key observation for TCP Vegas

Observation: 

Between 4.5 and 6 s con-

gestion window increases 

but throughput stays flat

⇒ Throughput can not increase 

beyond available bandwidth

⇒ Any increase in window size 

would just increase queues 

in the bottleneck router
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TCP Vegas algorithm

• BaseRTT = minimum of all measured RTTs (usually RTT of first packet)

• If not overflowing the connection, then

ExpectRate = CongestionWindow/BaseRTT

• Source calculates sending rate (ActualRate) once per RTT

Diff = ExpectedRate – ActualRate

• Source compares ActualRate with ExpectRate

if Diff < a, 

increase CongestionWindow linearly

else if Diff > b,

decrease CongestionWindow linearly

else,

leave CongestionWindow unchanged

end
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Algorithm (cont)

• Parameters 

– a = 1 packet

– b = 3 packets

• Even faster retransmit

– keep fine-grained timestamps for each packet 

– check for timeout on first duplicate ACK

– multiplicative decrease when timeout occurs, otherwise linear decrease

Expected rate

Actual rate
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Evaluating new congestion control mechanisms

• Research has produced a large number of alternative congestion 
control methods

• Did the algorithm get a great throughput only because it was greedy
and all other sources were nice and backed off?

– What about fairness?

– Concept of TCP friendliness should help, but still leaves a lot of design 
freedom…

• How to test the algorithm?

– Can’t do experiments in the Internet

– Testing on simulated networks or private testbed networks

– Challenge: come up with a topology and traffic loads that represent the real 
Internet 

– What real Internet??? There is no such thing - Internet is changing all the 
time (keep that in mind when making new algorithms, you need robustness)


